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APPENDIX B 

DIRAC NOTATION AND 
REPRESENTATIONS 

This appendix is meant for reference. See elementary texts such as Merzbacher (1970) and 
Gottfried (1966) for a proper introduction, and Chapters 5-7 for applications. 

6.1 Dirac Notation 
A state is represented by the ker 13). This state is a ray in a linear vector space of infinite 
dimension, that is, an abstract vector in a Hilbert space. 

A dual or adjoint-space state is represented by the bra ($1. The 1:l correspondence 
between the spaces of kets and bras is shown by the adjoint operation: 

($1 = Id))’ * 

The scalar or inner product of states 14) and 13) is given by the juxtaposed “bra-ket” = 
bruker, 

General operators 0 or 0 are objects which transform one state into another: 
(4 I$) = (dl 3 )  = (3 Id)’. 

0 I$) = 14) = 103) 

( B 4  

(B.3) 

Accordingly, 0 14) is not proportional to I$)-although it may look that way. 

An operator is formed by the juxtaposition 14) (41 of a ket and a bra. This is an operator 
and not a scalar product because it changes one ket into another. 

A complete set of states is obtained as the eigenstates of any Hermitian operator H ,  

H 140) = a Ida) 3 a = 1voo. 03.4) 

A basis is formed by a complete set such as I $ ~ .  Any state can be expanded as a sum of the 
fpa’S: 

13) = $ca 140) i ca = ( d o  I+) * P . 5 )  
a 
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Here the sum is for discrete states and the integral is for continuumstates. When integrating, 
there is a phase space factor, J + J d31c / ( 2 ~ ) ~ .  The quantity ca is the probability 
amplitude for 14) to “contain” I&) or to be “at” a. 

The orthogonality relation is 

discrete states, 
(‘a 1 4 a l )  = { $‘ L a’)/p, I continuum states. 

In (B.6) the pa is the density-of-statesfacto~: 

(B.7) 
1, for cPa = exp(ik - r ) / ( 2 ~ ) ~ / ~ ,  (our choice), 

da ( 2 ~ ) ~ ~ ~  for& = exp(ik - r), (others). 

The a representation of a state is the expansion of that state: 

The completeness relation follows from the preceding expansion, 

where i is the unit operator. 

The matrix representation of an operator 0 in the a representation is the bracket (all 0 la). 
By changing basis we change the representation of an operator: 

(b ’ l0  Ib) = $ (b‘ la’) (a’/ 0 la) (a Ib) . (B. 11) 
ala 

The complex conjugate of a bracket can take different forms: 

The wave function in Dirac notation is 

$(r) = (r 14) I (B.13) 

which is just the probability amplitude for finding the state $ at r, that is, its projection 
onto the r basis (see too next section). 

6.2 Explicit Representations 
Examples of explicit representations include Ir), Ik), and (Iclrn); that is, coordinate, mo- 
mentum, and energy plus angular momentum space. These are developed in Chapters 5-8. 
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Coordinate Space 

(r I$) E $(I) = ($ Ir)’ = probability amplitude to be at r (B.14) 
(r Ir’) = 6(r - r’) (B. 15) 

Jd’r  Ir) (rI = i +- 111) = 1 d3r 1.) (r 111) = / d 3 r $ ( r )  1.) (B.16) 

Momentum Space 

l4k) E Ik) = plane wave ray (B.17) 
,ik.r ,-ik.r 

(.Id&) (rlk) = - (2x)3/2’ (k l r )  = 0’/2 (B.18) 

(k Ik’) = (k I & )  = (dk I & )  = 6(k’ - k) (B.19) 

(B.20) 

$(k) z (k 1111) = probability amplitude to containk (B.21) 

i = Jd’k  Ik) (kJ  

Change of representations occur via insertion of completeness relations: 

(B.23) 

(B.27) 

K and G Operators (Nonrelativistic) 

(B.28) 
-V,2 
2P 

(r’l K 1.) = 6(r - r’)- (kinetic energy) 

(B.29) 

- ,ikIr-r’l 

27r Ir - r’( 
(r’IG‘E+’Ir) = -- (Green’s function) (B.30) 

(B.31) 
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(B.32) 

Scattering Amplitude and T Matrix 

Energy and Angular Momentum Basis 
Plane Wave 

Distorted Wave 

Angular Momentum and Energy Eigenstate 

Momentum Ket Expansion 

Completeness Relation, Identity Operator 

i = 5 gm dk k2 (klrn)  (klml = - dEk k Iklm) (klml y,  g m  

(B.42) 

(B.43) 
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T and V Matrix Expansions, p Space 

Rotational Invariance 

T and V Matrix Expansions, r Space 

Local Potential 
b(T - T ’ )  

f l ( T ‘ ,  T )  = V ( r )  (all Z’s) 
T2 

(B.46) 

(B.47) 

(B.48) 

Wave function Transform, Non-Local Potential 

f l ( k l 1  k) = lw d r l -  dr‘rr’Fl(k’r’)fl(r’l ~ ) F i ( k r )  (B.49) 

Wave function Transform, Local Potential 

(B.50) 

T matrix 

!I?.@‘, k; Ek) = - k!k 1- d7‘ lw d T ‘ T T ‘ ~ ~ ( k ’ T ’ ) f l ( T ’ l  T ) U l ( k T )  (B.51) 

On-Energy-Shell Values 

tan&(k) 
PT 

RI(k ,k ;Ek)  = -- I PT =w 
S ~ ( E [ ~ I )  = e2a6J (only defined on shell) 

(B.52) 

(B.53) 

(B.54) 

(B.55) 

(B.56) 
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One-Dimensional Integral Equations 

(B.58) 

(B.59) 

(B.60) 




