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APPENDIX A 

NATURAL UNITS AND PLANE WAVES 

A.1 Natural Units 

It is common and useful to use natural units in derivations and problem solving. This 
serves to save time and make the equations more transparent by eliminating the physical 
constants which tend to clutter the equations. In contrast to the popular belief, once you 
have developed the knack of placing the constants back into the final answers, dimensional 
analysis is still possible. The basis of our natural units has Planck’s constant h = 1 and the 
speed of light c = 1 .  

To convert to natural units just take your formulas in conventional units and set h = 1 
and c = 1. The fine structure constant a = e2/hc 2 1/137.04 becomes a = e2 2: 

1/137.04. With these units, angular momenta are measured inh’s, velocities in c’s, and 
masses as rest energies m2 = m (for example the electron has m2 = m = 0.5 1 1  MeV). 
Thus the Compton wavelength h / m  = l /m is in inverse mass (energy) units. In summary: 

e2 e2 1 
hc 4 4 i c  

- - e  2 2:- 
137.04’ 

a =  

1 - - 1 - - h 
mc m 0.511MeV’ 
- _  

To convert from natural to conventional units, just insert the h’s and c’s. In practice, 
the author finds it simplest to: 

0 Change mass m to mc’ so it has energy units. 

0 Change e2 to a = e2/hc so it is dimensionless. 

0 Insert hc, which has the dimensions of energy x length, in either numerator or 
denominator to get the dimensions in the desired form (or close to it as described 
next). 
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0 If needed, insert c, which has the dimension of length f time, in either numerator or 
denominator to get the dimensions correct (for example to convert length to inverse 
time). 

0 To obtain actual numbers for your answers, substitute the explicit values for the 
constants: 

hc = 197.329MeVfm = 1973.29 eVA, 

h = 6.582 x 10-22MeV sec = 1.055 x lO-*'erg sec. 
c = 2.998 x 108m/sec, (A-4) 

For example, the Bohr radius of hydrogen (assuming an infinitely heavy proton) is ag = 
l/me2 in natural units. In conventional units it is 

x 137.04. - - 1 1 hc aB = - = -- 
mee2 mec2 e2 0.51 I MeV 

Yet because we know ag is a length, we now multiply byhc which cancels the energy unit 
in the denominator and inserts a length into the numerator: 

ag = 137'036 x (hc = 197.33 x lO-'MeVA) = 0.529A = 5.29 x 10-9cm. (A.6) 
0.51 1 MeV 

A.2 Plane Waves in Little and Big Boxes 
A plane wave is a mathematical abstraction, a solution to the wave equation which has 
constant phase along a 2D infinite plane. Although these may not be physically realizable, 
they are a convenient substitute for a wave packet of definite momentum and are the 
conventional basis for expanding the wave function of an interacting particle. The wave 
functions of quantum mechanics form a Hilbert space, that is, a linear vector space of 
infinite dimension.' Whereas the dynamical coordinates r and p of wave functions are 
continuous, the eigenvalues or parameters of these functions, such as the bound-state 
energies E = -~.:/2p, are discrete. Any Hermitian Hamiltonian can be used to generate 
a complete, orthogonal set of wave functions. The free-particle Hamiltonian, 

is particularly convenient because it generates the plane waves: 

For simplicity in developing the formalism (and a patina of mathematical rigor), it is useful 
to consider the plane waves as occupying a finite volume (a box). The box and the periodic 
boundary conditions we impose on the wave functions are just for convenience (scattered 
waves are certainly not periodic); eventually we go to the limit of an infinite domain. 

~ 

'Jackson (1962); Gottfried (1966). 
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Little Boxes 
To determine the allowed eigenenergies, we place the plane waves (A.8) in a box of volume 
V with sides (L,, Ly, Lz),  and demand that they satisfy periodic boundary conditions 

$k(" -k LZI  Y -k Ly, z -k LL) = dk("i Yi z) ,  (A.9) 
3 (~ ,Lz ,kyLy,k ,Lz)  = 2r(G, iy , i z ) .  (A.lO) 

Here (iz, i,, it) 3 i is a set of three positive or negative integers which determine the 
allowed, discrete wave vectors and thus energies: 

i, i i, k; 
L, I Ly I L, ' - 2p 

k; = 2 r ( -  2 -), E .  - -. (A. 1 1 )  

With these boundary conditions, the plane waves for different values of i and j are orthog- 
onal. By choosing the normalization constant N we make the plane waves orthonormal: 

,ik,.r 
&,(r) h ( r )  = 71 (A. 12) 

+ / d3r c$;(r)dj(r) = 6;j (orthonormality). (A. 13) 

Note that in the confined volume of the box, the variable k is discrete but the variable r is 
continuous (but limited). The discreteness of k; leads to the Kronecker deltafunction in 
(A.13). Since the free Hamiltonian is Hermitian, plane waves form a complete set in which 
any solution of the Schrodinger equation $(r) can be expanded: 

m 

$(r) = c Ci#i( . ) .  (A. 14) 
a 

Orthonormality determines the c;'s [multiply (A.14) by 4: and integrate over r]: 

c, = d3r'&(rr)$(r'). (A.15) 

If we substitute this back into (A.14) and interchange the order of integration and summa- 
tion, we obtain 

I 
1 

(A.16) 

Yet because (A.16) must be an identity, we identify the term in brackets as some kind of 
unit operator. This yields the closure or completeness relation for discrete states: 

(A. 17) 

The Big Box 
To obtain plane waves in an infinite domain, we let the box size approach infinity. In this 
limit of very large L and very large i, the index i is still an integer so Pi = 1. The momenta 



468 APPENDIX A NATURAL UNITS AND PLANE WAVES 

ki in (A.11) remain finite but become continuous: 

2a L,  -Ai -+ dk;, Ai, + -dkz, Li 2x 

X A i  + V / & .  

(A. 18) 

(A.19) 

The relation (A.19) is the basis for the important result that the number of states in a volume 
V with momenta in the interval k -+ k + Ak is: 

d3k dN = noV- 
( 2 4 3  * 

(A.20) 

Here no is the number of states with the same momentum (for example, two for electrons 
with spins up and down in atoms, and four for nucleons with spins and isospins up and 
down in nuclei). 

Equation (A.20) is often used to determine the Fermi momentum, p~ = l ikF = k F ,  for 
a gas of fermions confined to a box of volume V .  If N electrons are placed in the box, they 
will progressively fill up all the levels until there are no particles left. The momentum at 
which all levels just get filled is kF. Since N equals the momentum-space density times 
the momentum-space volume, we have 

noV d3k = -k  ( T ) ,  
6x2 

N = no- 
(2.Y J" 0 

6a2N/V 6a2p -- k$ = - 1 

n0 710 

(A.21) 

(A.22) 

(A.23) 

Here p = N/V is the number of particles per unit volume and, although the derivation 
assumes it to be a constant, it is sometimes taken to be a function of position T .  

1 into the sum 
in (A.17), and take the L -+ 00 limit: 

To generalize the closure relation (A.17) to a big box, we insert a Ai 

00 

Ai cjf(r')cji(r) = 6(r' - r), (A.24) 
i 

6(r' - r), (closure). (A.25) 

This give ; -s the form for plane waves in an infinite domain: 

eik,.r ,ik.r 
3 &(r) = - (24312 * h ( r )  = - dv (A.26) 

The orthogonality relation (A.13) for an infinite domain is now just the closure relation 
with a change of variable, 

(orthogonality). (A.27) 




