Impact of 3N forces on neutron matter

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

Impact of 3N forces on neutron matter

neutron matter uncertainties dominated by 3N forces (c₃ coupling) Hebeler, AS (2010)

Chiral effective field theory for nuclear forces

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,...

Neutron matter from chiral EFT interactions

direct calculations without RG/SRG evolution, 3N to N²LO only

N³LO 3N and 4N interactions in neutron matter

evaluated at Hartree-Fock level

Complete N³LO calculation of neutron matter

first complete N³LO result, Hartree-Fock +2nd order +3rd order (pp+hh) includes uncertainties from NN, 3N (dominates), 4N

Comparisons to equations of state in astrophysics

many equations of state used in supernova simulations not consistent with neutron matter results

Neutron skin of ²⁰⁸Pb

probes neutron matter energy/pressure, neutron matter band predicts neutron skin of ²⁰⁸Pb: 0.17±0.03 fm (±18% !) Hebeler et al. (2010)

Neutron skin of ²⁰⁸Pb

probes neutron matter energy/pressure, neutron matter band predicts neutron skin of ²⁰⁸Pb: 0.17±0.03 fm (±18% !) Hebeler et al. (2010)

week ending 5 AUGUST 2011

16 MARCH 2013

in excellent agreement with extraction from complete E1 response 0.156+0.025-0.021 fm PRL 107, 062502 (2011) PHYSICAL REVIEW LETTERS

Complete Electric Dipole Response and the Neutron Skin in ²⁰⁸Pb

A benchmark experiment on ²⁰⁸Pb shows that polarized proton inelastic scattering at very forward angles including 0° is a powerful tool for high-resolution studies of electric dipole (*E*1) and spin magnetic dipole (*M*1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted *E*1 polarizability leads to a neutron skin thickness $r_{skin} = 0.156^{+0.025}_{-0.021}$ fm in ²⁰⁸Pb derived within

PREX: neutron skin from parity-violating electron-scattering at JLAB electron exchanges Z-boson, couples preferentially to neutrons

PRL 108, 112502 (2012)

goal II: ±0.06 fm

Measurement of the Neutron Radius of ²⁰⁸Pb through Parity Violation in Electron Scattering

We report the first measurement of the parity-violating asymmetry $A_{\rm PV}$ in the elastic scattering of polarized electrons from ²⁰⁸Pb. $A_{\rm PV}$ is sensitive to the radius of the neutron distribution (R_n). The result $A_{\rm PV} = 0.656 \pm 0.060(\text{stat}) \pm 0.014(\text{syst})$ ppm corresponds to a difference between the radii of the neutron and proton distributions $R_n - R_p = 0.33^{+0.16}_{-0.18}$ fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

PHYSICAL REVIEW LETTERS

Symmetry energy and pressure of neutron matter

neutron matter band predicts symmetry energy $S_{\rm v}$ and its density derivative L

comparison to experimental and observational constraints Lattimer, Lim (2012)

neutron matter constraints H: Hebeler et al. (2010, 2013)

G: Gandolfi et al. (2011)

microscopic calculations provide tight constraints!

Discovery of the heaviest neutron star

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

direct measurement of neutron star mass from increase in signal travel time near companion

J1614-2230 most edge-on binary pulsar known (89.17°) + massive white dwarf companion (0.5 M_{sun})

heaviest neutron star with 1.97 \pm 0.04 M_{sun}

Neutron matter and neutron stars

Impact on neutron stars Hebeler et al. (2010, 2013)

Equation of state/pressure for neutron-star matter (includes small Y_{e.p})

pressure below nuclear densities agrees with standard crust equation of state only after 3N forces are included

Why are (neutron) stars stable?

equilibrium between pressure of matter and gravity

leads to Tolman-Oppenheimer-Volkov equations for neutron stars: solve for enclosed M(r), total M and R, only input: equation of state

pressure for neutrons: Fermi pressure plus NN, 3N,... interactions

Impact on neutron stars Hebeler et al. (2010, 2013)

Equation of state/pressure for neutron-star matter (includes small Y_{e.p})

pressure below nuclear densities agrees with standard crust equation of state only after 3N forces are included

extend uncertainty band to higher densities using piecewise polytropes allow for soft regions

Pressure of neutron star matter

constrain polytropes by causality and require to support $1.97 M_{sun}$ star

low-density pressure sets scale, chiral EFT interactions provide strong constraints, ruling out many model equations of state

Pressure of neutron star matter

constrain polytropes by causality and require to support $1.97 M_{sun}$ star

low-density pressure sets scale, chiral EFT interactions provide strong constraints, ruling out many model equations of state

central densities for 1.4 M_{sun} star: 1.8-4.4 ρ_0

Neutron star radius constraints

uncertainty from many-body forces and general extrapolation

constrains neutron star radius: 9.7-13.9 km for M=1.4 M_{sun} (±18% !) consistent with extraction from X-ray burst sources Steiner et al. (2010)

Neutron-star mergers and gravitational waves

explore sensitivity to neutron-rich matter in neutron-star merger and gw signal Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012).

Fig. 1: Various snapshots of the collision of two neutron stars initially revolving around each other. The sequence simulated by the computer covers only 0.03 seconds. The two stars orbit each other counterclockwise (top left) and quickly come closer (top right). Finally they collide (centre left), merge (centre right), and form a dense, superheavy neutron star (bottom). Strong vibrations of the collision remnant are noticeable as deformations in east-west direction and in north-south direction (bottom panels). (Simulation: Andreas Bauswein and H.-Thomas Janka/MPA)

Oxygen isotopes - impact of 3N forces

- include 'normal-ordered' 2-body part of 3N forces (enhanced by core A)
- leads to repulsive interactions between valence neutrons
- contributions from residual three valence-nucleon interactions suppressed by $\rm E_{ex}/E_{F} \sim N_{valence}/N_{core}$ ^{16}O core Friman, AS (2011)

 $d_{3/2}$ orbital remains unbound from ¹⁶O to ²⁸O

microscopic explanation of the oxygen anomaly Otsuka et al. (2010)

New ab-initio methods extend reach

impact of 3N forces confirmed in large-space calculations:
Coupled Cluster theory with phenomenological 3N forces Hagen et al. (2012)
In-Medium Similarity RG based on chiral NN+3N Hergert et al. (2013)
Green's function methods based on chiral NN+3N Cipollone et al. (2013)

residual 3N small compared to normal-ordered contributions

increases with N, important for neutron-rich ^{25,26}O studied at MoNA/NSCL and R3B-LAND

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order

A. Ekström,^{1,2} G. Baardsen,¹ C. Forssén,³ G. Hagen,^{4,5} M. Hjorth-Jensen,^{1,2,6} G. R. Jansen,^{4,5} R. Machleidt,⁷ W. Nazarewicz,^{5,4,8} T. Papenbrock,^{5,4} J. Sarich,⁹ and S. M. Wild⁹

¹Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway
 ²National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ³Department of Fundamental Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
 ⁴Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
 ⁵Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
 ⁶Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ⁷Department of Physics, University of Idaho, Moscow, Idaho 83844, USA
 ⁸Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warsaw, Poland
 ⁹Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

We optimize the nucleon-nucleon interaction from chiral effective field theory at next-to-leading order (NNLO). The resulting new chiral force NNLO_{opt} yields $\chi^2 \approx 1$ per degree of freedom for laboratory energies below approximately 125 MeV. In the A = 3, 4 nucleon systems, the contributions of three-nucleon forces are smaller than for previous parametrizations of chiral interactions. We use NNLO_{opt} to study properties of key nuclei and neutron matter, and we demonstrate that many aspects of nuclear structure can be understood in terms of this nucleon-nucleon interaction, without explicitly invoking three-nucleon forces.

week ending
10 MAY 2013Does one need 3N forces?hercalculations with "optimized"uleidt,7calculations with "optimized"way
USAN²LO NN potential:

maybe 3N forces are small

explicit calculations disagree ¹⁶O: ~10 MeV 3N repulsion, Ca overbound without 3N,...

Three-body forces and magic numbers

Evolution to neutron-rich calcium isotopes

repulsive 3N contributions also key for calcium ground-state energies

mass measured to ⁵²Ca shown to exist to ⁵⁸Ca

Holt, Otsuka, AS, Suzuki (2012)

gs energy flat with N, continuum important for dripline location

new ^{51,52}Ca TITAN measurements

⁵²Ca is 1.75 MeV more bound compared to atomic mass evaluation Gallant et al. (2012)

behavior of 2n separation energy S_{2n} agrees with NN+3N predictions

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wolf¹ & K. Zuber¹⁰

^{53,54}Ca masses measured at ISOLTRAP using new MR-TOF mass spectrometer

establish prominent N=32 shell closure in calcium

excellent agreement with theoretical predictions

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wolf¹ & K. Zuber¹⁰

shell gap of 4 MeV

evolution to Z=20 similar for N=28 and 32

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wolf¹ & K. Zuber¹⁰

3N forces and proton-rich nuclei Holt, Menendez, AS (2013) first results with 3N forces for ground and excited states of N=8, 20

Tensor forces and exotic nuclei Otsuka et al.

attractive tensor force decreases spin-orbit splitting of protons with N

larger relative momentum decreases horizontal overlap: attractive

Figure 2. (a) Change of spin-orbit splitting by the tensor force. (b) Diagram causing the change in (a). Wavy line stands for the tensor force. Modified from Ref. [6].

figures from Otsuka, AS, Nuclear Physics News (2012)