Importance of 3N forces for spectra of p-shell nuclei

large-basis Hamiltonian diagonalization

using "No-Core Shell Model" Navratil et al., Phys. Rev. Lett. 99, 042501 (2007).

NN interactions at N³LO and 3N interactions at N²LO

agreement supports chiral EFT interactions

3N forces: ¹⁰B 1⁺ vs. 3⁺, spin-orbit splitting $p_{3/2}$ - $p_{1/2}$ in ¹³C

c_D, c_E fit to triton binding energy and beta-decay half-life Gazit, Quaglioni, Navratil (2009)

FIG. 2 (color online). $c_D - c_E$ trajectories fitted to reproduce ³H and ³He experimental BE. The dotted lines show the region for which $|1 - \langle E_1^A \rangle_{\text{theor}} / \langle E_1^A \rangle_{\text{emp}}|$ is within the ±0.54% error bars.

FIG. 21 (color online). The ratio $\langle E_1^A \rangle_{\text{theo}} / \langle E_1^A \rangle_{\text{emp}}$ that determines the ³H half-life as a function of the low-energy coupling c_D , which relates the leading two-body axial currents and 3NFs (see Fig. 20). The empirical range is given by the horizontal band. Results are shown based on different N³LO NN potentials and including N²LO 3NFs and consistent two-body axial currents. For comparison, the result without 3NFs and without two-body currents (no MEC, no 3NF) is given. For details, see Gazit, Quaglioni, and Navrátil (2009).

(d) Why Bother?: Big-Bang Nucleo-Synthesis and $np \rightarrow d\gamma$ Chen/Savage 1999, Rupak 2000

 $E_{\rm typ} \approx 0.02 - 0.2 \, {\rm MeV}$, light-element abundances sensitive to baryon density.

Accurate theoretical determination necessary: error-estimate! $np \rightarrow d\gamma$ biggest uncertainty, but "impossible" to measure.

EFT(π) to N⁴LO in closed form: accuracy $\leq 1\%$. Rupak 1999

slide from H. Griesshammer

slides from E. Epelbaum

Electromagnetic currents

(one-photon exchange approximation)

for Compton scattering see talks by Harald Grießhammer and Winfried Leidemann

Electromagnetic exchange currents

• More recent calculations, general kinematics $\omega \sim M_{\pi}^2/m$, $|\vec{q}| \sim M_{\pi}$ TOPT: Pastore, Schiavilla, Girlanda, Viviani; UT: Kölling, Krebs, EE, Meißner

Notice: 3N diagrams do not yield currents at this order...

Em currents and the deuteron form factors Kölling, EE, Phillips '12

1N form factors from Belushkin, Hammer, Meißner '07

• \overline{d}_9 , L_2 fitted to the deuteron magnetic moment and FF for q < 400 MeV:

 $\bar{d}_9 = -0.01 \dots 0.01 \text{ GeV}^{-2}$ $L_2 = 0.28 \dots 0.48 \text{ GeV}^{-4}$ (NNLO WF) Pion photoproduction: $\bar{d}_9 = -0.06 \text{ GeV}^{-2}$ Gasparyan, Lutz '10

Deuteron photodisintegration

Rozpedzik, Golak, Kölling, EE, Skibinski, Witala, Nogga '11

Cross section and photon analyzing power at E_{γ} =30 MeV

large sensitivity to MEC; short-range & 1π -exchange terms still to be included

Magnetic moments w/ χEFT exchange currents

Hybrid calculations using AV18+IL7 wave functions and χ EFT exchange currents developed in:

Pastore, Schiavilla, & Goity, PRC 78, 064002 (2008) ; Pastore, et al., PRC 80, 034004 (2009)

slide from R. Wiringa

M1 transitions w/ $\chi \rm EFT$

- dominant contribution is from OPE
- five LECs at N3LO
- d_2^V and d_1^V are fixed assuming Δ resonance saturation
- d^S and c^S are fit to experimental μ_d and $\mu_S({}^{3}\text{H}/{}^{3}\text{He})$
- c^V is fit to experimental $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$
- $\Lambda = 600 \text{ MeV}$

Pastore, Pieper, Schiavilla & Wiringa (in preparation)

The oxygen anomaly

The oxygen anomaly - not reproduced without 3N forces

The shell model - impact of 3N forces

- include 'normal-ordered' 2-body part of 3N forces (enhanced by core A)
- leads to repulsive interactions between valence neutrons
- contributions from residual three valence-nucleon interactions suppressed by $E_{ex}/E_F \sim N_{valence}/N_{core}$ ¹⁶O core Friman, AS (2011)

Oxygen isotopes - impact of 3N forces

- include 'normal-ordered' 2-body part of 3N forces (enhanced by core A)
- leads to repulsive interactions between valence neutrons
- contributions from residual three valence-nucleon interactions suppressed by $E_{ex}/E_F \sim N_{valence}/N_{core}$ ¹⁶O core Friman, AS (2011)

 $d_{3/2}$ orbital remains unbound from ¹⁶O to ²⁸O

microscopic explanation of the oxygen anomaly Otsuka et al. (2010)

New ab-initio methods extend reach

impact of 3N forces confirmed in large-space calculations:
Coupled Cluster theory with phenomenological 3N forces Hagen et al. (2012)
In-Medium Similarity RG based on chiral NN+3N Hergert et al. (2013)
Green's function methods based on chiral NN+3N Cipollone et al. (2013)

