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T1a. Nuclear Forces 1

a. Overview

The quest for an accurate description of the nuclear force spans eight decades, starting from
Yukawa’s meson theory in 1935. From the early days, pion exchange was understood to be critical
and correctly described the longest-ranged part of the NN interaction. In the 1950’s, attempts to
include multi-pion exchange failed but these were eventually supplanted in the 1960’s and 1970’s
by boson-exchange models (in which the heavier �, ⇢, and ! were exchanged in an organization by
range). Then came quantum chromodynamics.

There is now an abundance of evidence that quantum chromodynamics is the correct theory of
the strong interactions, ranging from validated predictions of perturbative QCD to the increasingly
successful results of lattice QCD (LQCD). But even in the early days one could reasonably ask: If
QCD is the theory of the strong interaction, shouldn’t we use quarks and gluons to describe nuclear
forces? Compare the pictures in Fig. 7; the QCD picture is ultimately correct and would appear
to contain much more physics — isn’t that better? For a period in the 1980’s, the goal (for many
nuclear theorists) was to replace hadronic descriptions at ordinary nuclear densities with a quark
description, since (the story went) QCD is the theory and descriptions with pointlike hadrons had
to be inadequate to account for the quark substructure. But in those early days of QCD (first
20 years), one couldn’t do anything much except crude models (e.g., quark cluster models), which
were not quantitative. (There was also a period where soliton (Skyrmion) models based on the
large NC limit of QCD were the rage, but that never led to sustained progress.)
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Figure 7: Cartoons for quark-gluon and pion-exchange representations of the NN force.

The alternative was a detailed phenomenological parametrization of physics as in the picture on
the right (based on boson exchange plus some additional phenomenology), and that became good
enough to fit the relevant NN data to great accuracy (�2/dof ⇡ 1 up to the inelastic threshold)
and do quantitative calculations in light nuclei. This was a pragmatic approach, but could also be
defended as good physics. We understand the strong forces that bind nuclei as the residual colorless
interactions between the quarks and gluons that comprise hadrons. By analogy, the van der Waals
interactions between neutral atoms at low energies are usefully described by potentials rather than
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in terms of the Coulomb interactions between constituent electrons and nuclei (and certainly not
in terms of quantum electrodynamics). With the additional complication of confinement in QCD,
maybe this is the way to go, at least at long distances (with lingering doubts about the short-
distance part).

But now with ever more sophisticated lattice QCD calculations, should we plan to go back to
the left picture? In fact, the plan we advocate is to exploit both pictures in Fig. 7, with the idea
that both are correct at di↵erent levels of resolution and that we can use calculations on the left
to inform the interactions on the right, which in most cases are better suited for nuclear structure
and reactions. (Indeed, as we will see, for some applications the picture becomes even simpler, with
no resolved exchanged particles at all.) Next week we’ll explore the state-of-the-art of LQCD for
nuclear forces and examine what is possible now and in the forseeable future. But we can proceed
with the picture on the right in the absence of direct LQCD input within the framework of e↵ective

theories and use hadronic degrees of freedom (dofs) systematically (as opposed to a model) to do
nuclear structure and reactions and astrophysics. Some scattered preview comments:

• We seek model independence and theory error estimates. It is not enough to do a single
calculation and use the comparison to experiment as the sole judge. We need to know if
we did as well as we should, and how we can improve to a desired accuracy (or if we can
improve). E↵ective field theory (EFT) is a key tool for this program.

• Quark substructure is included through derivative expansions. Much more on this later, but
think about a multipole expansion using point multipoles to systematically represent a charge
distribution. Clearly substructure is included!

• In the future: Use lattice QCD to match via “low-energy constants” (LECs of an EFT of
hadrons) for processes/systems where both are valid. In the meantime, match EFTs to
experimental data to determine LECs.

• Our focus is on low-energy nuclear physics. We definitely need explicit quark dof’s at higher
densities (resolutions) where phase transitions happen or at at very high momentum transfers
(at least for the interaction part; but more on this in the third week).

Today we examine what we can say in general about the NN interaction, survey what is currently
available for NN forces, and begin our discussion of e↵ective theories. There is sometimes a tendency
for some EFT practitioners to be dismissive of phenomenological potentials but the latter have
demonstrated successes and valuable insight. There are a lot of ways to think about potentials and
we want to try to make sense of the connections between them. Otherwise nuclear physicists find
themselves talking at cross purposes. An alternative is to be dogmatic, but this is not good physics.
In the course of our survey we can keep in mind an important conceptual question: Is there a best
Hamiltonian for low-energy nuclear physics?

b. Constraints on nuclear NN forces

We start with a conventional discussion of general symmetry constraints on the NN Hamiltonian
as you would find in nuclear physics textbooks, having in mind that the idea of writing the most
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Figure 8: Several phenomenological potentials (S-wave part) and cartoons of the contributions
(from T. Pappenbrock).

general possible Hamiltonian consistent with QCD symmetries will be a key one in our discourse.
There is more than one way to proceed; we can see the same constraints arising from di↵erent
perspectives. Here we consider the NN potential as an operator that acts in the spin, isospin, and
position space Hilbert space. That means that our building blocks are the Pauli matrics for spin,
�i, and isospin, ⌧i, multiplied by functions of the spatial coordinates.

So we can specify the potential operator bV by giving all of the matrix elements
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where si = ±1/2 and ti = ±1/2 are spin and isospin projections. The bras and kets span the
product spaces of the coordinate wave functions and the spin and isospin vector, so this is a
su�cient basis (since it is complete). Suppressing spin and isospin for the moment, the action of
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This evidently has no dependence on the velocities of the particles, but just their positions. It is not
surprising then that we can translate the more general non-locality into a velocity (or momentum
dependence). To do so, we first expand in a Taylor series the primed variables about the unprimed
ones:
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where the “normal-ordering” notation : bO : means here that the derivatives be moved to act only
to the right of the coordinates (and not on the coordinates). Thus,
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So the general form is built from these operators, generally restricted to a low order in momentum
(quadratic), plus the allowed spin and isospin dependence.

But this is too general a formulation: if we allow arbitrary dependence on r
1

,p
1

, r
2

,p
2

we will
violate symmetries like spatial translation invariance. Similarly with possible structure for spin
and isospin. For example, if we let �

0

be the identity matrix, then since the �i, i = 0, 1, 2, 3 form
a complete basis in the spin space of one particle, a general expression for bV is
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So there are 16 Vij functions at this point. Similarly for isospin. But not every combination is
consistent with the symmetries, so in fact there are fewer. What are they?

To decide what combinations are allowed, we recall that symmetry operations are cast as unitary
transformations, which we indicate generically as

U = e�i↵·G (7)

where U †U = UU † = I (the identity operator), G is a Hermitian generator of the transformation,
and ↵ is the “displacement” of the transformation. (We write this as a dot product, but more
generally it can be any rank tensor contraction.) The operation of U on a vector is

| 0
ii = U | ii . (8)

If we have an operator bO, then we have invariance under the symmetry if
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from which it follows that
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From the expansion
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it then follows that [G, bO] = 0 is the condition we should check for symmetry consistency. [Checking

these is an exercise! ]

As an example to get oriented, we will claim that if isospin is a good symmetry, then the
potential will take the form of V = ↵
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space dependences. What does an isospin rotation look like and how does ⌧
1

· ⌧
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stay invariant?
The generator of isospin rotations is T = 1
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Now use [⌧i, ⌧j ] = 2i✏ijk⌧k to find
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by the antisymmetry of ✏ijk.

b.1 Operator structure of NN forces

Let us step through the constraints on eV (r
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time and discrete symmetries (but not yet chiral symmetry). Generically when we use bV (1, 2), the
1 and 2 refer to all of the indices.

1. bH = bT + bV is hermitian and so is bT , therefore bV is hermitian.

2. For identical particles, invariance under interchange of coordinates: V (1, 2) = V (2, 1). This
is connected to the symmetry of the two-particle wave function |1 2i.

3. Translational invariance in space. The unitary transformation for translations by a is

U = e�ia·P , (14)

where P is the total center-of-mass momentum (the generator of translations). It results in
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In the full coordinate-space form (suppressing spin and isospin),
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4. Galilean invariance (more generally Lorentz invariance). Nuclear low-lying states have |p| ⇠
200 MeV, so p/m ⇡ 0.2 and (v/c)2 < 0.1. This is small but not negligible, which suggests we
should treat it as a 1/m expansion. Galilean invariance says that the physics looks the same
from a moving frame, so r0

i = r, p0
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5. Rotational invariance requires [J , V ] = 0, where is the total angular momentum, i.e., J =
L + S. There are three independent scalars from r and p, namely r2, p2, and r · p + p · r.
The latter must appear quadratically because of time-reversal invariance (below), and it is
more convenient to use L2 = (r ⇥ p)2. The only vector to combine with a linear appearance
of S is L to make a spin-orbit interaction. There are only limited choices (see Okubo and
Marshak, Ann. Phys. 4, 166 (1968) for full details).

6. Parity P is space reflection, which has the e↵ect:

r0
i = �ri , k0

i = �k , �0
i = �i , ⌧ 0

i = ⌧i . (21)

If we perform two space reflections we are back where we started, so P 2 = 1 and the eigenval-
ues are ±1. Parity is conserved by the strong interaction but violated by the weak interactions;
however, the parity-violating matrix elements are small (of order ⇠ 0.1 eV). This violation
was first observed in the beta decay of polarized 60Co by Wu et al. in 1957, where the polar-
ization of the nuclear spin defines a direction and a preferential emission of electrons in the
opposite direction of the spin was observed.

7. Time reversal T has the e↵ect:
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i = ��i , ⌧ 0

i = ⌧i . (22)

T is violated in the standard model [from indirect CP violation in K0 decay]. C exchanges
particles and antiparticles. There are active direct searches for T violation by looking for
permanent dipole moments in neutrons, nuclei, and atoms.

8. Baryon and lepton number conservation. B violated by weak interactions. L would be
violated if neutrinos are Majorana, which means they are their own antiparticles.

9. Isospin charge symmetry. p $ n and

Charge independence. Scattering length for 1S
0

:

ann ⇡ (app � Coulomb) ⇡ �18 fm (23)

which is isospin charge symmetry. But anp ⇡ �23.7 fm, which shows that charge independence
breaking is stronger. Both are broken by Coulomb and other e/m plus mu 6= md e↵ects.

In the end, the constraints lead to
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where we have explicitly applied translational and rotational invariance to write these in terms of
r and p (remember that these are operators). We further classify V

1

and V⌧ into central (scalar),
vector (spin-orbit), and tensor, with spin structures of rank 0,1,2:

• central parts:
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• vector parts:
VLS(r,p)L · S , (26)
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• tensor parts:
VT (r,p)S
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with tensor operator
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[Quick question: Why do we subtract o↵ the 2nd term? ]

The full operator form in coordinate space is:
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times scalar operator-like functions of r2, p2, and L2 (rather than r · p). In momentum space, the
full operator form is:
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where q ⌘ p0 � p and k ⌘ (p0 + p)/2, times scalar functions of p2, p02, and p · p0.

b.2 Aside: Henley and Miller’s classification of isospin structure

For completeness, here we consider charge independence, charge symmetry breaking and the like.
We will come back to these later. In the following, the ↵i and �i are position-spin operators. There
are four classes, all but class I has isospin breaking.

• Suppose we have isospin invariance. This falls under Class I:

VI = ↵I + �I⌧1

· ⌧
2

. (31)

• Now suppose we have charge symmetry but charge independence is not good (CIB or charge
independence breaking). The charge symmetry transformation is

P
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This class of potential has the form

VII = ↵II⌧1z⌧2z . (33)

• If charge symmetry is broken but there is no NN isospin mixing we have Class III:

VIII = ↵III(⌧1z + ⌧
2z) . (34)

With this force there are no transitions between T = 0 and T = 1 two-nucleon states.

• Class IV takes the form:
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]3 , (35)

where �IV is a time-reversal odd transformation operator. This class of forces breaks charge
symmetry and does cause isospin mixing in the NN system.
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b.3 Accidental symmetries

The Wigner symmetry is an approximate SU(2) ⇥ SU(2) = SO(4) symmetry reflected in the fact
that the 1S

0

and 3S
1

scattering lengths are both large. The idea is that we can rotate both spin
and isospin and mix them up like a 4-component object rather than two separate 2-component
transformations.

c. Laundry list of interactions on the market

There are three classes of potentials consistent with the symmetry restrictions we just discussed
that are still actively used for nuclear structure calculations. (Many others introduced over the
years have been largely abandoned.)

i) High precision phenomenological NN potentials. These include meson exchange potentials
such as CD-Bonn (see http://nn-online.org/code/nn/ for fortran codes for the Nijmegen po-
tentials), the AV18 potential, and inverse scattering potentials.

ii) Chiral EFT NN potentials. We will consider these in detail later this week and next week.

iii) “Toy” NN potentials.

We’ll briefly consider here some examples of the first and third.

c.1 Boson exchange

Boson (or meson) exchange models are formulated in terms of simple exchanges of mesons corre-
sponding to the allowed Lorentz character of the exchanges. The masses are those of real mesons,
but generally the couplings are free parameters. There is also a high-momentum cuto↵ with each
exchange. We can think of generating a general nonrelativistic interaction by considering all possi-
ble exchanges of bosons with di↵erent spins and isospins. In the non-relativistic limit, this becomes
a sum of Yukawa potentials, e.g.,
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where r
12

⌘ |r
1

�r
2

|. But this is still meant to be evaluated between Dirac four-component spinors.
If one makes a non-relativistic reduction of the simple covariant form of scalars and pseudovectors,
etc. using an on-shell Dirac spinor U :

U(p) /
 

�
� · p

Ep + m�

!

(37)

with � a two-component spinor, you find many terms, including spin-orbit and tensor terms. We’ll
come back to this explicitly when we discuss one-pion exchange in two more days.
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c.2 Argonne V18

The Argonne v
18

potential is one of the most widely used phenomenological NN potentials. It was
designed specifically for use in quantum Monte Carlo applications, which needed an operator basis
(as opposed to a table of matrix elements in a basis, such as partial wave momentum or harmonic
oscillator), with each operator multiplied by a radial function. It consists of V

EM

+V⇡ +V
short range

,
with all functions cut o↵ at small r. We’ll save V

EM

for the next lecture and focus on the strong-
interaction part. We’ve already seen the central part in the 1S

0

channel in Fig. 8. The longest
ranged part is one-pion exchange (which we’ll see in almost every potential),
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r
, (38)

where f2 = 0.075. In practice the expression includes also terms reflecting the di↵erence in neutral
and charged pion masses (called charge-dependent or CD terms). The one-pion exchange potential
is multiplied by short-range cuto↵ functions.

The operator structure of the first 14 terms in the shorter-range potential (and also V⇡) has
central, spin-spin, non-central tensor and spin-orbit parts:

{1, �
1

· �
2

, S
12

,L · S,L2,L2�
1

· �
2

, (L · S)2} ⌦ {1, ⌧
1

· ⌧
2

} . (39)

There are intermediate-range (two-pion-exchange range) and short-range parts, with 40 parameters
to be fit. These are also multiplied by short-range cuto↵ functions. The fit was to the Nijmegen
NN scattering data base from 0 to 350MeV and the deuteron binding energy, with a �2/data point
close to 1.

Some additional comments:

• See Phys. Rev. C 51, 38 (1995) for the full details.

• The cuto↵ function for the OPE part is a Gaussian:

1 � e�cr2 (40)

with c = 2.1 fm�2 and this function appears squared for the tensor part. The cuto↵ function
for the shorter-range parts is a Woods-Saxon form:

W (r) =
h

1 + e(r�r0)/a)

i�1

(41)

with r
0

= 0.5 fm and a = 0.2 fm. Attempts to make the cuto↵ “softer” apparently resulted in
poorer fits.

• AV18 contains a two-pion range piece, but it is not chirally symmetric.

• The last four of the terms in AV18 are CD and CSB terms, which are small but needed to
get �2/dof ⇡ 1 for np, nn, and pp scattering. The potential fit without these terms is called
AV14.
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• The nonrelativistic kinetic energy used with the AV18 potential takes the form (for the ith

nucleon):

Ki = KCI
i + KCSB
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4

✓

1

mp
� 1

mn
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⌧zir2

i , (42)

which has charge-independent (CI) and charge-symmetry-breaking (CSB) components (here
⌧i is the isospin of nucleon i. The CSB part arises because of di↵erent proton and neutron
masses.

• You may hear about AV8, AV8’, AV6 and so on. These use more limited sets of operators.
They are used for tests or to evaluate the importance of di↵erent components. AV8 has the
first 8 terms in Eq. (39), which are most important to reproduce the S and P phase shifts.
AV8’ omits some electromagnetic terms. AV6’ deletes the spin-orbit terms (and adjusts the
potential to preserve the deuteron binding energy).

Figure 9: Energy spectra in light nuclei with AV18 compared to experiment (and an added three-
body force). Note: Steve Pieper and Bob Wiringa won the APS Bonner prize for this and related
work. We’ll come back to this later; the point now is that three-body forces are needed for a
quantitative (and in some cases qualitative) reproduction of the spectra.

Figure 9 is a preview that a two-body NN interaction such as AV18, although near perfect for NN
phase shifts, will be inadequate for precision (say 1%) calculations of energies and level splittings
in light nuclei (but how well does JISP16 do?). This implies three-nucleon forces are needed.

d. Structure of a local three-nucleon force

We will have much more to say about three-nucleon forces, but for now we just note the most general
structure for a local three-nucleon force as it appeared recently in a paper by Krebs, Gasparyan,
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and Epelbaum (arXiv:1302.2872). The building blocks are ⌧
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The Fi functions are derivable in chiral perturbation theory, with the long-range terms being
parameter-free predictions.

�Most general structure of a local 3NF
Krebs, Gasparyan, EE, arXiv:1302.2872 [nucl-th]
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where we made a change of variable P �� = P �P in the last line. This equation has the form of Eq. (5.39) with
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VI. CHIRAL EXPANSION OF THE LONG-RANGE TAIL OF THE 3NF

With these preparations we are now in the position to address the convergence of the chiral expansion for the long-
range tail of the 3NF. It is clear that all arguments of the previous section can also be applied to operators in
coordinate space. Here and in what follows, we use the following basis of 22 operators:

G̃1 = 1 ,

G̃2 = ⌧ 1 · ⌧ 3 ,

G̃3 = ��1 · ��3 ,

G̃4 = ⌧ 1 · ⌧ 3 ��1 · ��3 ,

G̃5 = ⌧ 2 · ⌧ 3 ��1 · ��2 ,

G̃6 = ⌧ 1 · (⌧ 2 ⇥ ⌧ 3)��1 · (��2 ⇥ ��3) ,

G̃7 = ⌧ 1 · (⌧ 2 ⇥ ⌧ 3)��2 · (r̂12 ⇥ r̂23) ,

G̃8 = r̂23 · ��1 r̂23 · ��3 ,

G̃9 = r̂23 · ��3 r̂12 · ��1 ,

G̃10 = r̂23 · ��1 r̂12 · ��3 ,

G̃11 = ⌧ 2 · ⌧ 3 r̂23 · ��1 r̂23 · ��2 ,

G̃12 = ⌧ 2 · ⌧ 3 r̂23 · ��1 r̂12 · ��2 ,

G̃13 = ⌧ 2 · ⌧ 3 r̂12 · ��1 r̂23 · ��2 ,

G̃14 = ⌧ 2 · ⌧ 3 r̂12 · ��1 r̂12 · ��2 ,

G̃15 = ⌧ 1 · ⌧ 3 r̂13 · ��1 r̂13 · ��3 ,

G̃16 = ⌧ 2 · ⌧ 3 r̂12 · ��2 r̂12 · ��3 ,

G̃17 = ⌧ 1 · ⌧ 3 r̂23 · ��1 r̂12 · ��3 ,

G̃18 = ⌧ 1 · (⌧ 2 ⇥ ⌧ 3)��1 · ��3 ��2 · (r̂12 ⇥ r̂23) ,

G̃19 = ⌧ 1 · (⌧ 2 ⇥ ⌧ 3)��3 · r̂23 r̂23 · (��1 ⇥ ��2) ,

G̃20 = ⌧ 1 · (⌧ 2 ⇥ ⌧ 3)��1 · r̂23 ��2 · r̂23 ��3 · (r̂12 ⇥ r̂23) ,

G̃21 = ⌧ 1 · (⌧ 2 ⇥ ⌧ 3)��1 · r̂13 ��3 · r̂13 ��2 · (r̂12 ⇥ r̂23) ,

G̃22 = ⌧ 1 · (⌧ 2 ⇥ ⌧ 3)��1 · r̂23 ��3 · r̂12 ��2 · (r̂12 ⇥ r̂23) , (6.43)

where r̂ij ⌘ �rij/|�rij| and �rij = �ri ��rj denotes the position of nucleon i with respect to nucleon j. The 3NF is a linear

combination of the operators G̃i with the coe�cients given by scalar functions Fi(r12, r23, r31). These functions have
the dimension of energy and can be interpreted as the potential energy between three static nucleons projected onto
the corresponding operator. The profile functions Fi receive contributions from the long-range and the intermediate-
range 3NF topologies and are predicted (at long distances) in terms of the chiral expansion. In order to explore the
convergence, we plot these functions for the equilateral triangle configuration of the nucleons given by the condition

r12 = r23 = r31 = r . (6.44)

Restricting ourselves to this particular configuration allows us to stay with simple one-dimensional plots. We em-
phasize, however, that the conclusions about the convergence of the chiral expansion for the 3NF drawn in this
section apply to this particular configuration. We begin with the longest-range 2⇡ exchange topology. Projecting the
coordinate-space expressions given in section II onto the operators in Eq. (6.43) and evaluating the three-dimensional
integrals in Eqs. (2.8) and (2.13) numerically we compute the corresponding contributions to the profile functions
F (3)(r), F (4)(r) and F (5)(r) at N2LO, N3LO and N4LO, respectively. Our results for the 3NF profile functions
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Figure 10: Three-body force coordinates.

d.1 Inverse scattering potentials

These potentials are derived directly from the scattering data and possible other input. The JISP
potentials are most extensively used, particularly in combination with the no-core shell model
(NCSM). It is a two-body potential based on a separable expansion that uses additional few-body
experimental data (binding energies) to fix the two-body o↵-shell behavior. As a result, it does a
good job of reproducing energies of light nuclei without a three-body force. See Ref. ??? for more
details and examples of how well it works. We’ll discuss the implications of this success further
next week.

d.2 Toy potentials

By “toy” we mean model potentials that are not high precision and lack the full spin and isospin
dependence we know is need for fully quantitative calculations of nuclei. They are useful for test
calculations. Some of these are
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• The Minnesota model is a purely central potential that is a sum of three Gaussian terms of
di↵erent ranges and strengths, adjusted to roughly reproduced some specific properties of (for
example) the alpha particle. An example of recent uses is for comparative studies of neutron
drops calculated with various ab initio methods and with a microscopic density functional
approach (we’ll talk about this later).

• The Malfliet-Tjon potential is another purely central potential that is the sum of two Yukawa
potential. Various parameter sets exist that reproduce properties such as the binding energy
of the deuteron.

• It is also sometimes useful to consider one-dimensional potentials for proof-of-principle cal-
culation. An example is the sum of two Gaussians introduced by Negele et al. with scaled
parameters chosen to mimic features of three-dimensional nuclear matter.

e. Motivation and background for EFT

e.1 Problems with phenomenological potentials

The best potential models (such as AV18) can describe with �2/dof ⇡ 1 all of the NN data (about
6000 points) below the pion production threshold. [What energy is this? Exercise!] So what more
do we need? Some limitations of these potentials:

• They usually have a very strong repulsive short-range part that requires special (non-systematic)
treatment in (some types of) many-body calculations of nuclear structure.

• It is di�cult to estimate the theoretical error in a calculation and the range of applicability
(i.e., where should it fail?).

• Three-nucleon forces (3NF) are largely included as under-constrained and non-systematic
models. How can we define consistent 3NF’s and operators (e.g., including-meson exchange
currents)?

• Models are largely unconnected to QCD (e.g., chiral symmetry is only respected in part).
They don’t connect NN and other strongly interacting processes (e.g., ⇡⇡ and ⇡N). Lattice
QCD will be able to predict NN, 3N observables for high pion masses. How can we extrapolate
to physical pion masses?

To address these limitations, we seek a systematic alternative: e↵ective (field) theory. We’ll finish
this lecture with an introduction to the philosophy and principles.

e.2 E↵ective theories: Appeal to authority :)

A recommended (though in some respects dated) reference is H. Georgi, Ann. Rev. Nucl. Part.
Sci. 43, 209 (1993). [This reference also includes an interesting discussion of how dimensional



Nuclear Forces 1 (last revised: July 2, 2013) T1a–13

regularization modifies ultraviolet physics, which is obvious for the more physical case of an en-
ergy/momentum cuto↵ but not for dimensional regularization.] Some relevant quotes about e↵ec-
tive theories:

• One of the most astonishing things about the world in which we live is that there seems to be

interesting physics at all scales.

• To do physics amid this remarkable richness, it is convenient to be able to isolate a set

of phenomena from all the rest, so that we can describe it without having to understand

everything. Fortunately, this is often possible. We can divide up the parameter space of the

world into di↵erent regions, in each of which there is a di↵erent appropriate description of the

important physics. Such an appropriate description of the important physics is an “e↵ective

theory.”

• The common idea is that if there are parameters that are very large or very small compared

to the physical quantities (with the same dimension) that we are interested in, we may get

a simpler approximate description of the physics by setting the small parameters to zero and

the large parameters to infinity. Then the finite e↵ects of the parameters can be included as

small perturbations about this simple approximate starting point.

Any time there is a hierarchy of (separated) energy scales, think EFT! What do we mean when
we say that we exploit the “separation of scales”? Fast and slow, Born-Oppenheimer. Move to
E↵ective theories section.

Examples from our physics experiences and this program of such e↵ective theories (you give
more!):

• non-relativistic quantum (or classical) mechanics: c ! 1;

• size of a charge distribution ! 0 (multipole expansion);

• mass of the proton in a hydrogen atom ! 1;

• asphericity of a cow ! 0;

• number of colors in QCD ! 1;

• chiral e↵ective field theory (EFT): m⇡ ! 0, MN ! 1.

You add some!

e.3 Principles of low-energy e↵ective theories

Summary of the basic principles:

• If system is probed at low energies, fine details are not resolved.

• So we can use low-energy variables for low-energy processes (as they can be easier, more
e�cient, . . . ).
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Figure 11: Left: high-resolution, with wavelength of probe short compared to characteristic size of
probed structure. Middle: low-resolution probe doesn’t resolve the details (because of di↵racton).
Right: low-energy theory takes advantage and replaces short-distance with long-distance degrees
of freedom.

• The short-distance structure can be replaced by something simpler (and wrong at short dis-
tances!) without distorting low-energy observables. It is important that being wrong at short
distances (“incorrect UV behavior”) doesn’t matter but also cautions us that when it works
for long distances, we should not conclude that we know about the UV.

• This is systematically achieved by the e↵ective field theory.

There are some basic physics principles underlying any low-energy e↵ective model or theory. A
high-energy, short-wavelength probes sees details. E.g., electron scattering at Je↵erson Lab resolves
the quark substructure of protons and neutrons in a nucleus. But at lower energies, details are not
resolved, and one can replace short distance structure, as in a multipole expansion of a complicated
charge or current distribution. So it is not necessary to do full QCD. It is not obvious that this will
work in quantum mechanics as it does for pixels or point dots or the classical multipole expansion,
because virtual states can have high energies that are not, in reality, simple. Renormalization theory
says it can be done! (More tomorrow!) It doesn’t say that we are insensitive to all short-distance
details, only that there e↵ects at low energies can be accounted for in a simple way. E↵ective field

theory is a systematic approach to carrying out this program using a local Lagrangian framework.


