
TALENT/INT Course on Nuclear Forces
Exercises and Discussion Questions W1

[Last revised on July 3, 2013 at 11:06:35.]

Wednesday 1: Nuclear forces 2; Renormalization and universality

We have grouped all of the two-minute and discussion questions at the beginning, as usual.

However, for today you should only spend about an hour working on questions and then try

some of the other problems as well. When you need a break, go back and try another question!

You might also go back to the T1 problems and do the hydrogen atom as a warm-up for EFT.

1. Two-minute and discussion questions on pionless EFT:

(a) What gives rise to scale and scheme dependence of nuclear forces? (Of course to

answer you must be clear what scale and scheme dependence means!)

(b) Discuss how the C0 contact interaction regulated with a sharp cutoff looks in

coordinate space. Start from the limit of infinite cutoff. What happens as

high-momentum modes are cut off from the Fourier transformation?

(c) If we don’t include an effective range in T0(k) (i.e., we set it to zero), why is there an

“induced” effective range from the regulator (i.e., from putting in a cutoff on our

interaction)?

(d) Compare the running of C0 from the RG equation with the QCD running coupling.

What are similarities and what are differences?

(e) Why can we use a Hamiltonian that has the high-energy (UV) physics completely

wrong and still correctly predict the low-energy observables?

(f) At which order do tensor forces enter in pionless EFT? Use this to estimate the

contribution of the 3D1 channel to the deuteron. For this estimate, take as

momentum scale the deuteron binding momentum kB =
√
mNBd and for the

breakdown scale of pionless EFT the pion mass mπ.

(g) Discuss what happens to the C0 contact interaction across a Feshbach resonance.

2. Two-minute and discussion questions on three-body forces:

(a) What is the definition of a three-body force?

(b) Based on the discussion of the origin of three-body forces and the analogies, what

would you say about the possibility of four-body forces? Even higher-body forces?

(c) What evidence is there that different 3NF’s are needed for different NN interactions?

Can you point to a figure shown in lecture that supports your answer?
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(d) Check that you understand how to apply the power-counting formula for ν to the

various diagrams considered in class (see the lecture notes). What value of ν would a

tree-level (no internal integrations) three-body interaction have?

(e) How can you tell experimentally if there are three-body forces? Why is this not really

a well-posed question until additional information is supplied?

(f) Can you have a three-body contact term among neutrons only?

3. Let’s think about coordinate space with unregulated interactions.

(a) What is the coordinate-space potential corresponding to 〈k|Veff |k′〉 = C0?

(b) What happens if you try to solve the coordinate-space Schrödinger equation for this

potential?

(c) Repeat with C2(k2 + k′2). Is the problem better or worse?

(d) How can you change the potential to fix the “problem”?

4. In the lecture, the leading-order coupling C0(Λ) was derived using sharp cutoffs on

momenta θ(Λ− k). Here we want to derive the leading-order coupling C0(Λ) when

Gaussian regulators f(k/Λ) = exp(−k2/Λ2) are used instead of sharp cutoffs. In this case

the leading-order EFT potential is given by VEFT(k′, k) = C0(Λ)f(k′/Λ)f(k/Λ).

(a) What would the integral for I0(k,Λ) look like now (with the q integral from 0 to ∞)?

(b) Evaluate the integral and compare to the sharp-cutoff regulated result. How does this

change C0(Λ) compared to the result obtained for a sharp cutoff.

(c) Is the difference in C0(Λ) a scale or scheme dependence?

5. When we considered a second-order loop diagram with C0 at each of the two vertices, we

found a linear divergence:

=⇒
∫ Λc d3q

(2π)3

1

k2 − q2 + iε
−→ − ik

4π
+

Λc
2π2

+O(
k2

Λc
) .

Now if we consider the same diagram but with one C0 vertex and one C2 vertex (instead of

two C0 vertices), what type of divergence would it have?

6. Illustration of Fierz transformations and NN contact interactions. Consider spin-1/2

particles with only one “flavor” (e.g., interacting neutrons). Then allowed 2-body contact

interactions (four-fermion operators) are of the form (N †ΓN)(N †ΓN), where the N ’s and

N †’s’ are (anti-commuting) two-component spinor field operators and the Γs are 2× 2

matrices that are appropriately contracted so that the combination is a scalar.

(a) Argue why allowing Γ to run over the identity and the Pauli matrices forms a complete

set. Therefore we have (N †N)(N †N) and (N †σa1N)(N †σa2N). Add the indices to the

Γ’s and to the N and N †’s and indicate their range (i.e., i runs from 1 to ???).
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(b) This result would seem to imply there are two independent low-energy constants to

find, one to multiply each of the two terms. However, these terms are not actually

independent. Here we’ll show how to relate them using Fierz relations. The idea is to

change the pattern of contraction by noting that NiN
†
j = c0δij + c · σij, because the

left side is a two-by-two matrix and the right side has a complete set with c0 and c to

be determined. Find c0 and c by multiplying the equation first by the identity and

then by σ and in each case taking the trace. The only tricky part is that the Ns and

N †s anti-commute, so you pick up minus signs when you do this trace.

(c) Now write (N †N)2 = N †
iNiN

†
jNj and apply the result of the last part to the NiN

†
j in

the middle. This will give you a relation between the two contact terms. Start again

with (N †σN)2 and verify that you get the same result.

(d) Generalize to include isospin as well. That is, allow τ1 · τ2. Instead of four possible

terms, you should show there are only two independent ones.

7. The most general spinless, S-wave zero-range two-body interaction at order k2 that is

consistent with the symmetries discussed in lecture is V (k, k′) = C2(k2 + k′2). Now

consider the interaction at order k4.

(a) Which of the following terms: C4(k2 + k′2)2/4, C ′
4(k4 + k′4), C̃4(k2 − k′2)2, C̃ ′

4(k2k′2),

C4(k4 − k′4) are allowed?

(b) How many of these candidate terms are independent?

(c) Consider C̃4(k2 − k′2)2 in 2–2 scattering at tree level (Born approximation or no

loops). Evaluate this diagram. [Hint: you shouldn’t need to worry about getting the

sign correct.] Why is this called an “off-shell” vertex?

(d) Now consider a tree-level 3–3 scattering diagram with one C̃4 vertex and one C0

vertex (include diagram). Show that the internal propagator (or the energy

denominator) cancels with the C̃4 vertex, leaving a single three-body vertex.

Therefore argue that it is possible to trade-off three-body vertices (at least of this

type) against off-shell two-body vertices.

(e) Discuss whether this result can be generalized to eliminate all three-body forces by

taking advantage of off-shell freedom. (Note: the extent to which this is possible is an

open question.)

8. Why is the sky blue? We want to construct an effective theory to understand why the sky

is blue. To construct such a theory, we need to analyze the relevant scales of the problem

first. The wavelength of visible light (∼ 500 nm) is much larger than the size of atoms

(∼ 0.1 nm). Thus, the photon is insensitive to the details of the electrically neutral atoms

it scatters off. Hence, we can construct the leading-order Hamiltonian simply as that of the

Hydrogen atom

H
(0)
eff =

p2

2m
+ eφ ,
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where there is no interaction with the photon field.

In order to construct an effective interaction with photons, we only demand that the

Hamiltonian H
(1)
eff fulfills all symmetry requirements: it must be gauge invariant, scalar

under rotations, and even under both parity and time reversal transformations.

(a) Construct all possible operators – relevant for the leading-order interaction –

involving E, B, φ and A, which are consistent with these symmetry requirements.

(b) We can write the interaction as a perturbation to the free Hamiltonian

H
(1)
eff = −1

2
cEE

2 − 1

2
cBB

2 ,

where cE and cB are low-energy constants. Show by dimensional analysis that

cE = kEa
3
0 and cB = kBa

3
0, where kE, kB are dimensionless and a0 is the Bohr radius.

(c) For photons with four-momentum qµ = (ω, q) and polarization ε̂ we can identify

A = ε̂ exp(iq · x). Show that

dσ

dΩ
∝
∣∣∣〈final|H(1)

eff |initial〉
∣∣∣2 ∼ ω4a6

0 .

Why does this explain that the sky is blue? (Hint: consider what scatters more

according to the crosssection., blue light or red light?)
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