
TALENT/INT Course on Nuclear Forces
Exercises and Discussion Questions T3

[Last revised on July 16, 2013 at 10:40:14.]

Tuesday 3: MBPT, operators; Neutron matter and astrophysics

We have again grouped all of the two-minute and discussion questions toward the beginning.

But remember to spend only about an hour working on questions and then try some of the other

problems as well. When you need a break, go back and try another question!

1. Two minute and discussion questions:

(a) Why is it important that once we renormalize our Hamiltonian in free space to

remove sensitivity to the high-momentum cutoff that no further renormalization is

needed at finite density? (What would we have to do to an input chiral EFT

interaction in an NCSM calculation is this were not true?)

(b) Which of the following make neutron and nuclear matter more perturbative: large

scattering length, effective range, large cutoffs, short-range tensor forces, Pauli

blocking, low density?

(c) What goes wrong when replacing the two-body potential VNN by the

density-dependent two-body interaction Γ(2) that includes the VNN plus the

contribution from V3N from normal ordering? Why doesn’t this include the 3N force

contributions correctly?

(d) Are there density-dependent Hamiltonians before normal ordering?

(e) How is it possible that different NN interactions at N2LO (see the AFDMC results) or

different NN interactions at N3LO (see the perturbative calculations) vary in their

perturbativeness, although they’re at the same order in the power counting?

(f) What part(s) of the chiral EFT three-body force contributes to pure neutron matter?

(g) We found that the leading and subleading 3N forces are repulsive in neutron matter.

Should this apply for other 3N forces as well?

(h) What is a “resolution dependent” observable? Describe an operational test of whether

an observable is resolution dependent. Of the following, which are resolution

dependent and which are independent of resolution: bound-state energies, excitation

spectra, cross sections, ANCs, momentum distributions, spectroscopic factors, charge

radii, point proton radii, charge form factors, beta decay rates.

(i) In an EFT, how do you ensure that operators are consistent with the EFT

Hamiltonian? How do you do it when you have a phenomenological Hamiltonian?

(j) Does every Hermitian operator correspond to an observable?
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(k) In the lecture, a graph of the quadrupole moment as a function of the renormalization

group showed it wasn’t constant. Which scale gives the correct answer? (Be careful of

trick questions!)

(l) Why do neutron stars not only consist of neutrons? Why is the proton fraction in

neutron stars so small (Z/(N + Z) ∼ 0.1, smaller than in any atomic nucleus)?

(m) Discuss the neutron star mass-radius plot. What varies along the M −R curve?

What happens to neutron stars for M > Mmax or R < R(M = Mmax)?

2. Brueckner-Bethe-Goldstone (BBG) power counting and MBPT.

(a) Why is it necessary to do summations of ladder diagrams into G-matrices for

traditional nucleon-nucleon potentials (such as the local phenomenological potentials)?

(b) How can you use Weinberg eigenvalues to test if this is necessary for softened

potentials (either from chiral EFT with a lower cutoff or RG-softened interactions)?

(c) Why is the MBPT expansion still non-perturbative in terms of G-matrices (rather

than “bare” interactions) for traditional potentials but not for softer potentials?

(d) What is the expansion parameter for the hole-line expansion? Do we need this for soft

potentials?

(e) Soft potentials were known long ago but were abandoned because the energy of

nuclear matter didn’t have a minimum at “saturation density” (about the density

inside a heavy nucleus). Can you guess what changes that result in our modern

calculations with low-momentum potentials?

3. For the neutron matter calculations, we showed bands at second- and (particle-particle/

hole-hole) third-order in MBPT for either a free single-particle spectrum εp = p2/2m or a

Hartree-Fock spectrum εp = p2/2m+ ΣHF(p), with Hartree-Fock self-energy ΣHF. How is

this a measure of uncertainty of the many-body calculation?

4. Hellmann-Feynman (or Feynman-Hellmann) theorem. If λ is a parameter in the

Hamiltonian Hλ (could be a mass or a coupling constant or a parameter you add by hand),

then
dE(λ)

dλ
= 〈Ψ(λ)|∂Ĥλ

∂λ
|Ψ(λ)〉 where Ĥλ|Ψ(λ)〉 = E(λ)|Ψ(λ)〉 .

(a) Prove it. (Hint: use 〈Ψ(λ)|Ψ(λ)〉 = 1.) [Note: The story is that this was proven by

Feynman in his undergraduate thesis at MIT in 1939.]

(b) It is usually sufficient in practice to approximate dE(λ)/dλ by a simple difference

formula. Explain which of the following is better to use (and why):

dE(λ)

dλ
≈ E(λ+ ε)− E(λ)

ε
or

dE(λ)

dλ
≈ E(λ+ ε/2)− E(λ− ε/2)

ε
,

where ε is a small (but nonzero) value.
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(c) Show that if you want to know the expectation value of any operator Ô, you can add

it to the Hamiltonian: Ĥ → Ĥ + λÔ and then use

〈Ψ|Ô|Ψ〉 =
dE(λ)

dλ

∣∣∣∣
λ=0

.

(d) Explain how to use the Hellmann-Feynman theorem to find the expectation value of

part of the three-body force in a nucleus or nuclear matter if g3 is the coupling

constant for this part.

5. Suppose Ô = a†qaq for fixed q = |q|.

(a) Prove that the one-body part of an operator like Ô does not change during SRG

evolution with Gs = Trel.

(b) What will the Ô operator look like (in form, not detail) after evolving?

(c) Will there be 3-body operator contributions to the deuteron?

(d) If we take the matrix element of the unevolved Ô in the unevolved deuteron wave

function, the entire contribution will, of course, be from the one-body operator Ô. If

we now take the matrix element of the evolved Ô in a deuteron wave function with

both evolved to λ� q, what type of operator will give the leading contribution (and

how will the full result compare to before evolution)?

6. We can extend the microscopic results for neutron matter to matter containing both

neutrons and protons. To this end we use for the energy per particle ε of asymmetric

nuclear matter an expression that interpolates between the properties of symmetric nuclear

matter and neutron matter. For ε we take the kinetic energy plus an expression for the

interaction energy that is quadratic in the neutron excess 1− 2x:

ε(n̄, x) = T0

(
3

5

[
x5/3 + (1− x)5/3

]
(2n̄)2/3

− [(2α− 4αL)x(1− x) + αL] n̄+ [(2η − 4ηL)x(1− x) + ηL] n̄γ
)
, (1)

where n̄ = n/n0 and x = np/n denote the density in units of the saturation density and the

proton fraction, respectively. T0 = (3π2n0/2)2/3~2/(2m) = 36.84 MeV is the Fermi energy

of symmetric nuclear matter at the saturation density. The parameters α, η, αL and ηL can

be determined from the saturation properties of symmetric nuclear matter combined with

results for neutron matter. For γ = 4/3 and empirical saturation properties of symmetric

nuclear matter,

ε(n̄ = 1, x = 1/2) = −16 MeV and
∂ε

∂n̄
(n̄ = 1, x = 1/2) = 0 , (2)

this results in α = 5.87 and η = 3.81. (Show this.) The fit to the neutron matter

calculations discussed in the lecture gives central values for αL = 1.4 and ηL = 0.9. The
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proton fraction x for matter in beta equilibrium is determined by minimizing in x, the

energy per particle ε plus the contribution from electrons Ee

Ne
= 3

4
x (3π2xn)1/3. (This

neglects the difference of neutron and proton rest masses.)

(a) Determine the proton fraction for matter in beta equilibrium at saturation density.

(b) Determine the central values for the symmetry energy Sv and its density derivative L,

Sv =
1

8

∂2ε(n̄, x)

∂x2

∣∣∣∣
n̄=1,x=1/2

and L =
3

8

∂3ε(n̄, x)

∂n̄∂x2

∣∣∣∣
n̄=1,x=1/2

. (3)
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