
TALENT/INT Course on Nuclear Forces
Exercises and Discussion Questions T1

[Last revised on July 9, 2013 at 19:45:37.]

Tuesday 1: Nuclear forces 1; Scattering theory 2

1. Two minute and discussion questions.

(a) Why is a term like σ1 · τ2 not allowed in the nuclear potential?

(b) Keeping in mind that τ matrices do not commute, is τ1 · τ2 = τ2 · τ1? [Hint: be clear

about what spaces these act in!]

(c) Why do we not consider terms in the potential of the form (σ1 · σ2)n for n > 1 or

(L · S)n for n > 2?

(d) What are the electromagnetic interactions for np and nn scattering?

(e) Add to the list of physical situations where a parameter is taken either to 0 or infinity

to simplify a problem (and then one can expand around this limit).

(f) You will often hear that effective (field) theories exploit a “separation of scales”.

What does this mean?

(g) How high in energy do we need to know NN phase shifts to do nuclear structure?

(h) Why should a strong repulsive short-range potential make (some) many-body

calculations of nuclei more difficult? Would a mean-field approximation be accurate?

(i) You often hear it said that the problem must be nonperturbative because there are

bound states. Why can’t you find bound states in perturbation theory?

(j) Why is the deuteron bound but two neutrons are not bound? Why are two protons

not bound?

2. Two-minute questions on the effective range expansion and phase shifts.

(a) If you had two candidate potentials that had the same effective range expansion

coefficients (out to the order you could measure them), how could you tell them apart

experimentally? [Hint: trick question!]

(b) Find the scattering length and effective range and shape parameter (i.e., the first

three terms of the effective range expansion) for a hard sphere of radius R (that is,

the potential is infinite for r < R and zero for r > R). Are the parameters natural or

unnatural? (E.g., can they all be reasonably estimated by naive dimensional analysis.)

What is the radius of convergence for the expansion in this case? (That is, for what

range of k does the expansion converge?)

1



(c) Why is the deuteron binding energy different from ~2
ma2S

, where aS is the scattering

length?

(d) Which S-waves contribute to np scattering?

(e) The central part of the one-pion-exchange NN potential is given by

VOPE(r) ∼ m2
π e
−mπr/r. Discuss how the pion-mass dependence can explain why the

scattering length in the 1S0 channel is more attractive for np, aS = −23.7 fm, than for

nn, aS = −18.5 fm.

(f) List all coupled channels for J 6 4.

(g) Why do only central interactions contribute to the average P-wave phase shift

(defined in the scattering theory 2 lecture)?

3. Basic skills.

(a) Verify:

eiŜÔe−iŜ = Ô + i[Ŝ, Ô] +
i2

2!
[Ŝ, [Ŝ, Ô]] +

i3

3!
[Ŝ, [Ŝ, [Ŝ, Ô]]] + · · ·

explicitly to this order (or until you run out of patience :).

(b) If U = e−iα·G is a symmetry operation, show that it is necessary and sufficient that

[G, Ô] = 0 for an operator Ô to be invariant under the symmetry.

4. Devise a way to estimate the range of the parts of the NN interaction from pion exchange,

“σ” exchange (which is generated by correlated two-pion exchange at a mass of about

500 MeV), and ω exchange (look up the mass online if necessary). Are your results

consistent with the pictures of the 1S0 potentials in the lecture notes?

5. What do we mean when we say that probes or particles at low energy do not “resolve” fine

detail? What size structure would a 5 MeV neutron resolve? [Hint: recall diffraction.]

6. What is the first (i.e., lowest energy) source of inelasticity in NN scattering? Find an

expression in terms of the pion and nucleon masses for the laboratory energy of the

inelastic threshold. Why are phenomenological potentials typically fit to elastic phase

shifts for 50 MeV above this threshold?

7. The usual plot you see of the central nucleon-nucleon (NN) potential is in the 1S0 channel

(e.g., in the figures shown in the lectures). The notation is 2S+1LJ , with S = 0 (singlet) or

S = 1 (triplet), L = 0, 1, 2, . . . (with the corresponding letter), and J takes on values

consistent with L and S.

(a) What are the possible channels for L = 0, 1, and 2 for neutron-proton scattering?

(b) Same question, but for neutron-neutron scattering. (Hint: nucleons are fermions, so

the total two-particle wave function must be antisymmetric.)
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(c) Experimental: What are the difficulties and advantages of scattering neutrons from

proton targets versus protons from neutron targets?

8. Questions about nucleon-nucleon phase shift plots (e.g., from NN-Online).

(a) Is the partial wave analysis leading to these graphs model independent? That is, are

there assumptions made? If so, what are they?

(b) Go to the NN-OnLine website linked under Miscellany→Links→Nuclear Resources

and generate graphs of neutron-proton scattering phase shifts from 0 to 350 MeV lab

energy for some different channels.

(c) For the D-wave phase shifts, which ones have attractive interactions and which ones

have repulsive interactions?

(d) Compare 1S0 to 1D2 and use the results to estimate the radial extent of the repulsive

core for a local potential. (Hint: What does the centrifugal barrier in the D state do?

You can use a classical argument.) [It would be great to test out such an argument

with the numerical calculations!]

(e) Extract the scattering lengths (and effective ranges, if possible) from the phase shift

data for np scattering and compare to quoted answers.

(f) Neutrons form Cooper pairs in neutron stars. At low densities/momenta, neutrons

pair in the 1S0 channel where the NN interaction is most attractive. As the S-wave

interaction becomes repulsive with increasing density/momentum, in which channel

are neutrons expected to pair?

9. Repulsive-attractive square well as a test laboratory using the VPA. By this we mean a

combined repulsive square well of radius Rc and height Vc (the “core”) and an attractive

square well of radius R0 and depth −V0. This is already implemented for the VPA in the

Mathematica notebook square well scattering.nb and in an iPython notebook.

(a) Play with the value of Vc with Rc set to a reasonable value (given that we are in units

where R0 = 1); what do you observe?

(b) Convince yourself that a local potential must have a strongly repulsive core to be

consistent the observed sign change of the phase shifts in the NN 1S0 channel.

(c) Suppose we have a momentum dependent potential without a hard core as an

alternative. Can we still get a sign change?

10. How can you generate an infinite positive scattering length with a square well potential? Is

it possible for a potential to lead to an infinite positive scattering length without having a

bound state?

11. Estimate the radius and energy of hydrogen-like atoms using dimensional analysis. This is

on p. 7 of the lecture notes on QCD1 (but we didn’t cover it in the lecture).
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12. We claim the following hierarchy of (three) scales for a hydrogen atom:

• electron mass me ≈ 0.511 MeV

• characteristic momentum p ∼ αme ≈ 3.6 keV

• characteristic energy B ∼ 1
2
α2me ≈ 13.6 eV

Derive the scaling with α and me by simple scaling arguments (that could be applied to

other systems). In particular,

(a) Apply the uncertainty relation to relate the momentum p to the characteristic radius

R (in this case it is the Bohr radius, but we pretend we don’t know it yet).

(b) Use this to eliminate p from the total energy (sum of kinetic and potential) to find

E(R).

(c) Minimize E(R) to find R and therefore p and then the value at the minimum,

verifying the results quoted above.

(d) For this example, why is there a hierarchy? Would there be a hierarchy of the same

type in QCD with the strong coupling αs instead of the fine structure constant?

(e) What is the analogous hierarchy exploited in chiral (i.e., pionful) effective field theory?

13. T -matrix for a separable potential [adapted from Taylor, Scattering Theory]. A separable

potential has the form

V̂ = g|η〉〈η| ,

where we usually choose |η〉 to be a normalized vector given, for example, by its

momentum space function η(k) ≡ 〈k|η〉 (note that we’re not in partial waves here). Recall

the Lippmann-Schwinger equation for the operator T (z) described in the Scattering

Theory 1 notes (long version):

T̂ (z) = V̂ + V̂
1

z − Ĥ0

T̂ (z) = V̂ + V̂
1

z − Ĥ0

V̂ + V̂
1

z − Ĥ0

V̂
1

z − Ĥ0

V̂ + · · · .

(a) Show that T (z) is given explicitly by

T (z) =
g |η〉〈η|

1− g∆(z)
,

where

∆(z) = 〈η| 1

z −H0
|η〉 =

∫
d3k
|η(k)|2

z − Ek
with Ek = k2/2µ. [Hint: substitute the separable form for V̂ into the Born series for

T (z) and note the form of each term.]

(b) Show that the Born series for T (z) is convergent for g small but divergent for g large.

(c) The poles of T (z) as a function of complex energy z tells of about the bound states of

the potential (see the end of the Scattering Theory 1 notes). Show that the separable

potential has either one or no bound states.
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14. [Advanced] Deriving the Coulomb potential from QED by actually integrating out the

photon field. (This is an alternative to matching QED and potential calculations of

scattering, which we could also do.) Consider the QED Lagrangian including gauge-fixing:

LQED =
1

2
Aµ[gµν∂λ∂

λ − (ξ−1 − 1)∂µ∂ν ]Aν − jµeAµ + ψ(i/∂ −m)ψ

=
1

2
Aµ[Dµν

F ]−1Aν − jµeAµ + ψ(i/∂ −m)ψ ,

with electromagnetic current (charge e) jµe = eψγµψ. (The second line defines DF as the

inverse of the operator in the first line, where F means to use Feynman boundary

conditions.) The physics of electrons and photons can be derived (e.g., Feynman diagrams)

from the functional (path) integral:

Z =

∫
DψDψDA exp[iS(ψ,ψ,A)]

(after adding external sources, which we omit here). But suppose we “integrate out” the

photon field Aµ (which we can do because it appears at most quadratically):

exp[iSeff(ψ,ψ)] =

∫
DA exp[iS(ψ,ψ,A)] .

(a) Complete the square to show (with jµe = eψγµψ)

Seff =

∫
d4xψ(x)(i/∂ −m)ψ(x) +

1

2

∫
d4x d4y jµe (x)DFµν(x− y)jνe (y) ,

where

[gµν∂λ∂
λ − (ξ−1 − 1)∂µ∂ν ]Dνρ

F (x− y) = iδµ
ρδ(4)(x− y)

or (after a Fourier transform)

[−k2gµν + (1− 1

ξ
)kµkν ]Dνρ

F (k) = iδµ
ρ

which leads to (check that this works!)

Dµν
F (k) =

−i
k2 + iε

(
gµν − (1− ξ)k

µkν

k2

)
.

(b) Can we directly identify the last term in Seff as (with particle density ρ = ψ†ψ)

−1

2

∫
dt

∫
d3x d3y ρ(x, t)V (x− y)ρ(y, t)

and in doing so identify the potential V ? (Think a bit about it but then come back to

this part after doing the next two sections.)

(c) If we consider a classical static distribution jµe → e(ρ,0), show that

V (x− y) = −e2

∫
dt′
∫

d4k

(2π)4

e−ik
µ(x−y)µ

k2
0 − k2 + iε

= e2

∫
d3k

(2π)3

eik·(x−y)

k2
=

e2

4π|x− y|
,

which is the Coulomb interaction. Is making the distribution static a big assumption?
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(d) Really the current density is a quantum-mechanical operator. What does this imply

for defining V (x− y) quantum mechanically? Where are the ambiguities in defining

V ?

(e) Suppose we were exchanging a massive boson instead of a massless photon? How

would the derivation change? Do we always get a local potential?

15. Discussion questions for those who have had a quantum field theory course. (To be

explained to those who haven’t!)

(a) In what ways is nonrelativistic quantum mechanical scattering simpler than what you

learn in relativistic quantum field theory?

(b) In what ways is the nonrelativistic quantum mechanical bound state problem simpler

than solving for bound state in relativistic QFT? For example, you might consider

solving for positronium in QED versus using an effective potential. [Hint: Look up

the Bethe-Salpeter equation.]
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