
TALENT/INT Course on Nuclear Forces
Exercises and Discussion Questions Th1

[Last revised on July 4, 2013 at 09:22:17.]

Thursday 1: Cold atoms, QMC; Tensor, SO, deuteron

We have grouped all of the two-minute and discussion questions at the beginning, as usual.

However, for today you should only spend about an hour working on questions and then try

some of the other problems as well. When you need a break, go back and try another question!

1. Two-minute and discussion questions.

(a) What is the average density of a neutron star? Do you expect the density to be

uniform?

(b) Would you consider a neutron star to be hot or cold? What is an appropriate

comparison temperature or energy?

(c) Is a neutron star made entirely of neutrons?

(d) Consider 6Li and 7Li atoms. Which is a fermion and which is a boson?

(e) What are the natural units for a and re for cold atoms?

(f) What is the value of the pairing gap for a normal system?

(g) Why can’t you use a perturbative expansion in kFa to find the gap ∆0
BCS(k)?

(h) Why would you use a pionless EFT as opposed to an EFT with pions, which would

appear to include more physics? Which EFT has the higher resolution?

(i) What do you deduce from the S-wave scattering lengths being negative for anp(
1S0)

and positive for anp(
3S1)? [E.g., recall the diagrams on scattering length and

zero-energy wave functions from the lecture on scattering.]

(j) Why is the deuteron not spherically symmetric?

(k) Why is the deuteron bound but two neutrons are not bound?

(l) Explain how the uncertainty principle can justify replacing contributions from

omitted high-energy states with changes in the coupling constants.

2. Basic skills.

(a) For pure neutron matter, the density is related to the Fermi momentum kF by

ρ =
k3
F

3π2
.

Derive this for a non-interacting Fermi gas and find the analogous expression for the

density for symmetric nuclear matter.
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(b) In the lecture, the average energy of a Fermi gas EFG was related to the Fermi energy

EF by

EFG =
3

5
NEF where EF =

~2k2
F

2m
.

What would the expression be if there were four rather than three space dimensions?

(c) Find the relation between the critical temperature TC and the gap. [That is, look it

up online.]

(d) If you know the energies of three consecutive systems of cold atoms or atomic nuclei,

you can find the gap from the formula

∆(N) = E(N + 1)− 1

2
[E(N) + E(N + 2)] ,

where N is the number of atoms or nucleons. Find a typical pairing gap size for nuclei

in the tin region. [You can use an online table of nuclides to find the energies you

need.]

3. A tensor interaction proportional to S12 arises from one-pion exchange. This interaction

has important consequences for nuclear properties. In what NN partial waves is it

non-zero? (I.e., does it contribute in 1S0 or 3S1?). What NN partial waves does it couple?

(I.e., it does not conserve orbital angular momentum, so there are non-zero matrix

elements between different partial waves.)

4. Tensor matrix elements in different partial waves. Consider this table of matrix elements of

S12(r̂) in different partial waves.

l = J − 1 l = J l = J + 1

l′ = J − 1 −2
3
J−1
2J+1

0 2

√
J(J+1)

2J+1

l′ = J 0 2
3

0

l′ = J + 1 2

√
J(J+1)

2J+1
0 −2

3
J+2
2J+1

(a) What does the sign of the quadrupole moment of the deuteron tell you about the sign

of the T = 0 tensor interaction at low energies?

(b) Using the tensor matrix elements from the table, what do you deduce about the sign

of the T = 1 tensor interaction? Recall that in lecture T1b we could not explain the

attractive 3P0 partial wave (at low energies) with only central and spin-orbit forces.

5. Derive the coordinate space one-pion exchange potential from the momentum-space

version.

(a) Show that the Fourier transform of 1
q2+m2

π
is given by a Yukawa function:∫

d3q

(2π)3

1

q2 +m2
π

eiq·r =
1

4π

e−mπr

r
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Hint: Calculate the radial (dq) integral by appropriately closing the integration

contour in the complex plane.

(b) Now do the same for the spin-dependent part of OPE (ignoring for a moment the

isospin dependence).∫
d3q

(2π)3

(σ1 · q)(σ2 · q)

q2 +m2
π

eiq·r = −m
2
π

12π

e−mπr

r

(
1 +

3

mπr
+

3

(mπr)2

)
S12 −

m2
π

12π

e−mπr

r
σ1 · σ2

where S12 is the tensor operator, Sij = 3(σ1 · r̂12)(σ2 · r̂12)− σ1 · σ2

Initial Hint: write out the cartesian components, pull out momentum derivatives, and

use part (a).

6. One-boson-exchange interaction for σ exchange. For the exchange of a scalar-isoscalar “σ”

meson (JP = 0+, T = 0), the interaction Hamiltonian is given by the same form as for the

coupling of a pion to a nucleon (see lecture notes), except in the case of a “σ” meson the

coupling to a nucleon is replaced by:

i
gA
2fπ

σ · q τ −→ gS

(
1− σ · k′ σ · k

4m2

)
where gS is a scalar coupling and m is the nucleon mass.

Following the derivation for one-pion exchange, show that the exchange of a

scalar-isoscalar “σ” meson leads to a one-boson-exchange potential given by:

Vσ = −g2
S

1

q2 +m2
σ

(
1− k · k′

2m2
− i

4m2
(σ1 + σ2) · (k′ × k) +O

(
(k or k′)4

))
What type of interactions do the terms in Vσ correspond to?

[Hint: A useful expression for the product of two Pauli matrices is σiσj = δij + iεijkσ
k.]

7. Mechanics of DMC.

(a) Derive the expression for the 3N -dimensional Gaussian free-particle Green’s function:

G0(R,R′) = 〈R|e−T∆τ |R′〉 =

[√
m

2π~24τ

]3N

exp

[
−m(R−R′)2

2~24τ

]
. (1)

[Extended Hint: Start with the one-dimensional one-particle analogue,

G0(x, x′) = 〈x|exp(− ~2
2m

∂2

∂x2
∆τ)|x′〉, insert two resolutions of the identity, complete the

square, and do the gaussian integral.]

(b) One possible short-time (Trotter) approximation for the many-body interacting

propagator amounts to using e−V∆τ/2e−T∆τe−V∆τ/2 instead of e−H∆τ . Taylor expand

e−H∆τ and then separately do the same thing for e−V∆τ/2e−T∆τe−V∆τ/2 to see up to

which order the two expressions match. What is the structure of the first terms that

begin to disagree in the two approaches?
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(c) Prove that the mixed estimate leads to the ground-state expectation value in the limit

of large imaginary times. In others words show that

〈H〉M ≡
〈ΨV |H|Ψ(τ)〉
〈ΨV |Ψ(τ)〉

→ 〈Ψ(τ)|H|Ψ(τ)〉
〈Ψ(τ)|Ψ(τ)〉

(2)

8. Spin-orbit force in momentum space.

(a) Show that the Fourier transform of a spin-orbit force,

V = V (r)S · (r×∇/i)

is of the following form in momentum space

Ṽ = 〈k|V |k′〉 ∼ iS · (k× k′)

where k and k′ are the relative momenta and plane waves 〈r|k〉 = (2π)−3/2eik·r.

(b) Can you re-write the result for Ṽ in terms of the two new momenta q = k− k′ and

p = (k + k′)/2?

9. The quadrupole moment of the deuteron Qd is given by the matrix element in the deuteron

Qd = 〈ψdM = J = 1|
√

16π

5
e
r2

4
Y20(θ, φ)|ψdM = J = 1〉 ,

where the deuteron wave function |ψd〉 has an S-wave radial part u(r) and a D-wave radial

part w(r) with normalization ∫ ∞
0
dr [u(r)2 + w(r)2] = 1 .

The goal here is to derive Qd in terms of u and w:

Qd =
e

20

∫ ∞
0
dr r2w(r)[

√
8u(r)− w(r)] .

(a) Decouple the total angular momentum (l, S)J,M to the l,ml, S,mS basis. This

involves a Clebsch-Gordan coefficient for each deuteron wave function.

(b) Use the following formula to carry out the integral over the angles,

∫ 2π

0
dφ

∫ π

0
dθ sin θ Yl1,m1(θ, φ)Yl2,m2(θ, φ)Y ∗l3,m3

(θ, φ) =

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
Cl30
l10l20C

l3m3
l1m1l2m2

,

where CLMl1m1l2m2
are Clebsch-Gordan coefficients.

(c) Use Mathematica, MATLAB, or anything else to sum over the ml and mS quantum

numbers in the Clebsch-Gordan coefficients.
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