
TALENT/INT Course on Nuclear Forces
Exercises and Discussion Questions M3

[Last revised on July 15, 2013 at 10:21:13.]

Monday 3: Many-body problem and basis considerations; MBPT

There are quite a few problems and questions in this exercise set. Be sure to jump around so

that you try all of the topics in the available time.

1. Two-minute and discussion questions:

(a) Which of the many-body methods discussed could use the Entem-Machleidt N3LO

500 MeV interaction as input and which could not?

(b) What is a reference state and how is it used in MBPT?

(c) Does the diagonalization in a major harmonic-oscillator shell lead to positive and

negative parity states?

(d) Why are only even Nmax results shown in the typical convergence plots with Nmax in

the NCSM?

(e) IM-SRG and Coupled Cluster.

i. In what way are these methods very similar conceptually? (Hint: what do you

decouple in each case?)

ii. What is the role of the reference state in these approaches?

iii. Two possibilities for reference states for closed-shell nuclei are a Hartree-Fock

Slater determinant from the input potential or a Slater determinant with

harmonic oscillator single-particle wave functions. Which do you think will be

more effective (and why)?

(f) At present, the only known way to remove cutoff dependence order-by-order in the

EFT expansion with Weinberg counting is to include the Hamiltonian beyond leading

order perturbatively.

i. Which of the many-body methods we’ve discussed can do that?

ii. How would the fitting procedure to phase shifts have to be changed?

(g) What is the difference between Feynman diagrams and Goldstone diagrams? Which

can you use to calculate ground-state energies?

2. Effects of a harmonic-oscillator basis truncation.

(a) How are the UV and IR cutoffs from using a finite harmonic-oscillator basis analogous

to those for a lattice with finite size and finite spacing?

(b) What sets the scale for the UV and IR cutoffs?
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3. Contractions between creation and annihilation operators are defined by the expectation

values

a†
iaj ≡

〈
Φ
∣∣ a†

iaj
∣∣Φ〉 , aia

†
j ≡

〈
Φ
∣∣ aia†

j

∣∣Φ〉 , . . . (1)

where
∣∣Φ〉 denotes the (arbitrary) reference state.

What are the values of the contractions a†
iaj and aia

†
j if

∣∣Φ〉 is (i) the particle vacuum
∣∣0〉,

(ii) a general Slater determinant, or (iii) a Hartree-Fock Slater determinant? Are there

other non-vanishing contractions in each of the three cases?

4. Derive or justify the normal-ordering factors discussed in the lecture. That is, start from

the second-quantized Hamiltonian with two- and three-body interactions,

H =
∑
12

T12a
†
1a2+

1

(2!)2

∑
1234

〈12|V |34〉a†1a
†
2a4a3+

1

(3!)2

∑
123456

〈123|V (3)|456〉a†1a
†
2a

†
3a6a5a4 , (2)

and normal-order all operators with respect to a finite-density Fermi vacuum |Φ〉 (for

example, the Hartree-Fock ground state or the non-interacting Fermi sea in nuclear

matter), as opposed to the zero-particle vacuum. Show that H can be exactly written as

H = E0 +
∑
12

f12 :a†1a2 : +
1

(2!)2

∑
1234

〈12|Γ|34〉 :a†1a
†
2a4a3 :

+
1

(3!)2

∑
123456

〈123|Γ(3)|456〉 :a†1a
†
2a

†
3a6a5a4 : , (3)

where the zero-, one-, and two-body normal-ordered terms are given by

E0 = 〈Φ|H|Φ〉 =
∑
1

T11n1 +
1

2

∑
12

〈12|V |12〉n1n2 +
1

3!

∑
123

〈123|V (3)|123〉n1n2n3 ,

f12 = T12 +
∑
i

〈1i|V |2i〉ni +
1

2

∑
ij

〈1ij|W |2ij〉ninj ,

〈12|Γ|34〉 = 〈12|V |34〉+
∑
i

〈12i|V (3)|34i〉ni ,

where ni denote the sharp occupation numbers (0 or 1) in the reference state.

5. Wick’s theorem for commutators and products of normal-ordered operators. Wick’s

theorem allows us to expand a product of two normal-ordered operators purely in terms of

external contractions, i.e., each contraction must involve at least one a† or a from either of

the two operators. For example,

:a†
aab : :a†

kal := − :a†
aa

†
kabal : −a†

aal :a†
kab : +aba

†
k :a†

aal : +a†
aalaba

†
k . (4)

(a) Briefly discuss why only external contractions appear in the expansion.

(b) When can 0-body operators appear in the Wick expansion of a product of

normal-ordered K- and N -body operators? Which A-body components are possible in

general?
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(c) Show that the commutator between normal-ordered K− and N -body operators,[
:a†
k1
. . . a†

kK
ak′1 . . . ak′K :, :a†

n1
. . . a†

nN
an′

1
. . . an′

N
:
]

has no (N +K)-body component.

6. In-Medium SRG flow equation. In previous lectures, we encountered the SRG flow

equation in operator form,
d

ds
H(s) =

[
η(s), H(s)

]
. (5)

In the In-Medium SRG, the medium is introduced by choosing a reference state
∣∣Φ〉, and

normal ordering the operators. Let us assume that
∣∣Φ〉 is a Hartree-Fock Slater

determinant in the following. This allows us to construct a basis of the many-body Hilbert

space which consists of
∣∣Φ〉 and all possible particle-hole excitations,

∣∣Φp
h

〉
=:a†

pah :
∣∣Φ〉,∣∣Φpp′

hh′

〉
=:a†

pa
†
p′ah′ah :

∣∣Φ〉, etc.

To determine the system’s ground-state energy, we integrate the flow equation in order to

decouple
∣∣Φ〉 from excitations as s→∞. This defines a unitary transformation between

H(0) and H(∞), or conversely
∣∣Φ〉 and the true ground state. A generator which achieves

the desired decoupling is η =
[
Hd, Hod

]
, where the off-diagonal Hamiltonian that is driven

to zero is defined as

Hod ≡
∑
ph

fph :a†
pah : +

∑
pp′hh′

Γpp′hh′ :a†
pa

†
p′ah′ah : +H.c. (6)

(the s-dependence is suppressed for brevity).

(a) In current applications, we treat η and H as normal-ordered operators containing up

to two-body components. Why is this an approximation?

(b) A two-body Hamiltonian can couple
∣∣Φ〉 to up to 2p-2h excitations. Evaluate the

matrix elements
〈
0
∣∣H ∣∣Φp

h

〉
and

〈
0
∣∣H ∣∣Φpp′

hh′

〉
with Wick’s theorem in order to show

that these are precisely the matrix elements which define Hod.

(c) Use the elementary commutator expressions from the exercise on Wick’s theorem to

derive the IM-SRG flow equation for the ground-state energy (n̄i = 1− ni),

d

ds
E =

∑
ab

(na − nb) ηabfba +
1

2

∑
abcd

nanbn̄cn̄d ηabcdΓcdab (7)

(d) Show that d
ds
E = 0 if Hod vanishes. (Hint: what are the occupation numbers ni for

particle and hole states?)

7. Lattice effective field theory. Here are some results by Epelbaum et al. from lattice EFT

calculations for the ground-state energies of light nuclei:
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nucleus 4He 8Be 12C 16O

LO [Q0] −28.0(3) −57(2) −96(2) −144(4)

NLO [Q2] −24.9(5) −47(2) −77(3) −116(6)

NNLO [Q3] −28.3(6) −55(2) −92(3) −135(6)

experiment −28.30 −56.5 −92.2 −127.6

(a) Why might you expect the structure of these nuclei to be heavily influenced by “alpha

clusters”? Why is lattice EFT well suited to efficiently include the effects of alpha

clusters? Which other methods can do this efficiently?

(b) The numbers in parenthesis are the statistical errors for each calculation. Why don’t

they get smaller as you go to higher order in the EFT expansion? How would you

make them smaller?

(c) If the lattice spacing for these calculations was a = 2 fm and the typical momentum in

these nuclei was about mπ, what would you expect the expansion parameter to be?

How does that compare to the pattern of convergence in the table? Can you explain

the differences from naive expectations?

(d) Why will it be useful to have additional calculations with different cutoffs (i.e.,

different lattice spacings)?

8. Consider the power counting formula for kβF for a uniform, dilute, natural Fermi system

(rules on slide 17, formula on slide 18, diagrams on slide 19 in M3b slides).

(a) Verify for the diagrams that the claimed power of kF is reproduced from the formula.

(b) Why does the formula for β ensure that: i) only a finite number of diagrams

contributes at each order in kF/Λ; ii) β is at least 6; iii) increasing the number of

derivatives at a vetex or increases the number of lines increases β? Argue that this

means we will have a controlled perturbative expansion. (Must it converge?)

(c) Why is this not a good model for infinite nuclear systems (neutron or nuclear matter)

at low densities? What about densities comparable to the interior of heavy nuclei?

9. Brueckner-Bethe-Goldstone (BBG) power counting and MBPT.

(a) Why is it necessary to do G-matrix summations of ladder diagrams for traditional

nucleon-nucleon potentials (such as the local phenomenological potentials)?

(b) How can you use Weinberg eigenvalues to test if this is necessary for softened

potentials (either from chiral EFT with a lower cutoff or RG-softened interactions)?

(c) Why is the MBPT expansion still non-perturbative in terms of G-matrices (rather

than “bare” interactions) for traditional potentials? Why is this not true for softer

potentials?

(d) What is the expansion parameter for the hole-line expansion?
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