
TALENT/INT Course on Nuclear Forces
Exercises and Discussion Questions M1

[Last revised on July 1, 2013 at 01:07:15.]

Overview of exercises and discussion questions. The problems here range from basic (and

generally quick) to quite sophisticated (quick and not so quick) and are organized according to

the lecture schedule (with new problems each day). Comments on the pedagogy and logistics:

• The underlying philosophy is that students learn most effectively when they actively fill in

details of arguments or explicitly address conceptual questions. Some of the problems here

are designed to lead the student to go back over particular lecture material to make sure it

is understood while others extend the lectures and still others introduce new topics.

• Given the time constraints, we do not attempt to develop the type of problem-solving skills

that require students to struggle over problems. Rather, we point the way rather explicitly

and let the student fill in details. That way they can work through multiple problems in

the time before the next lectures. To further aid this process we will often have a sequence

of hints that can be revealed to those who are stuck on an exercise.

• It is essential to try the exercises and to ask questions incessantly. Not everyone will be

prepared to do all of the exercises completely, but with help from our many instructors

everyone can take away the essential points. If you are unsure of what a word or phrase

means in some context or what a symbol stands for, please ask during the lectures or any

of the instructors afterwards!

• Because most of the problems are new, they have not been tested for how long they will

take to complete. We will make adjustments as we proceed through the course to make

sure it is possible to finish the most relevant exercises before the next lectures. Suggestions

for new or improved problems are always welcome.

• The exercises are divided into categories (sometimes implicitly) according to the type of

problem. We have followed the lead of the “Six Ideas that Shaped Physics” texts by

Thomas Moore, which has: conceptual discussion questions (which should be discussed

with others, including instructors), two-minute questions (if the material was understood,

an answer is possible in a couple of minutes), basic skills problems, synthetic problems

(putting skills together), rich context (real-life problems), and advanced problems (for

those who already have additional background or problems that might take a long time).

• We have decided (tentatively) not to provide written solutions, at least not in the short

term. The exercises are also not graded; you should check your answers against your fellow

participants or with an instructor. In any case, we are not looking for carefully written

solutions — that takes too much time for the pace of this course. (But we will be pleased

to get copies of good solutions.)
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Monday 1: QCD 1 and Scattering theory 1

1. Two-minute exercises and discussion questions on QCD 1.

(a) With respect to what scale(s) are the c, b, t quarks called heavy?

(b) Have you heard about the s quark before? If yes, in what context?

(c) A possible way to “see” quarks and gluons is in jets. What happens in these events?

(d) Using the Particle Data Group website http://pdg.lbl.gov/, discuss which

properties of the neutron and proton are similar and what are differences? What

about for the three pions?

(e) Explore some other hadrons using the Particle Data Group website. Which fit into

your picture of hadrons from the lecture and which don’t?

(f) Which is more important in making a neutron more massive than a proton: the light

quark mass difference or the electromagnetic contribution? Or do you think such

considerations are too simplistic?

(g) What is the evidence for spontaneous chiral symmetry breaking in

i. the mass spectrum of pseudoscalar (Jπ = 0−) mesons;

ii. the mass spectrum of vector and axial vector (Jπ = 1∓) mesons?

(h) What is the evidence for explicit chiral symmetry breaking in the spectrum of

pseudoscalar (Jπ = 0−) mesons?

(i) If you and your friend each do a QCD calculation with the same diagrams but use αs

at different scales, will you get the same answer? If not, how could that happen?

(j) Does the running coupling in QCD mean that the QCD Hamiltonian is not unique?

Would you say that if you used αs at two different scales that you were using two

different Hamiltonians?

(k) If the neutron lifetime is so short, why are there any stable nuclei?

(l) One observes a marked resonance when a π+ pion is scattering off a proton. Which

baryon does this correspond to and at which energy of the π+ does this occur (the

proton is at rest)?

(m) At sufficient energy in proton-proton collisions it is possible to create a pion,

p+ p→ p+ n+ π+. At which energy in the center-of-mass frame does pion

production start?

(n) [From N. Goldenfeld.] Use dimensional analysis to estimate the phase speed v of

waves on shallow water of height h neglecting surface tension and viscous effect.

Consider waves with long wavelength λ� h.

2



2. Two-minute exercises on units and conversions and dimensional analysis.

(a) We typically use units in which ~ = c = 1 and express quantities as powers of MeV or

fm or both, using ~c ≈ 197.33 MeV–fm to convert between them. If we take for the

nucleon mass MN = 939 MeV/c2, what is ~2/MN numerically in terms of MeV and

fm? [Hint: This should be almost immediate if you insert the right factors of c.]

(b) For the scattering of equal mass (nonrelativistic) particles, if the laboratory energy

Elab is related to the magnitude of the relative momentum krel (i.e., the momentum

each particle has in the center-of-mass frame) by Elab = Ck2rel, what is C? If the mass

is MN = 939 MeV, what is the value of C in MeV–fm2?

(c) We write the partial-wave momentum space Schrödinger equation (following the

conventions in Landau, Quantum Mechanics II ) as

k2

2µ
〈klm|ψ〉+

2

π

∑
l′m′

∫ ∞
0
dk′ k′2 〈klm|V |k′l′m′〉〈k′l′m′|ψ〉 = Ek〈klm|ψ〉 ,

what are the units of Vll′(k, k
′) ≡ 〈klm|V |k′l′m〉? In coordinate space the potential is

local, V (r), with units of MeV, and k is given in fm−1. If you see a plot in a journal

article of Vll′(k, k
′) with units of fm, how would you convert it to the units you just

found? [Hint: use part (a).]

(d) In Fig. 18 of the review by S. K. Bogner et al., Prog. Nucl. Part. Phys. 65, 94 (2010)

the momentum-space matrix elements of different chiral effective field theory

potentials are given in units of fm. Consider the value at zero relative momenta. For

the EGM potentials this is given by C̃1S0
, see Eq. (2.5) in EGM, Nucl. Phys. A747,

362 (2005). The values for C̃1S0
are given in Table 2 of that paper in GeV−2. How do

you convert to fm units? Do the values for the matrix elements then match?

3. Scattering review (basic skills and two-minute questions):

(a) What do “on-shell” and “off-shell” mean in the context of scattering?

(b) Under what conditions is a partial-wave expansion of the potential useful?

(c) Derive the standard result:

eiδl(k) sin δl(k)

k
=

1

k cot δl(k)− ik

[Hint 1: First move eiδl to the denominator, then replace it by cos +i sin.]

(d) Given a potential that is not identically zero as r →∞ (e.g., a Yukawa), how would

you know in practice where the asymptotic (large r) region starts?

(e) What is the physical interpretation of the relation between the (partial-wave)

S-matrix and the scattering amplitude? (Note that Sl(k) = 1 + 2ikfl(k).)
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4. Two-minute questions on unitary transformations:

(a) If we transform eigenstates by a unitary transformation |ψ̃〉 = Û |ψ〉, how must an

arbitrary operator Ô transform so that its matrix elements between unitarily

transformed eigenstates are unchanged?

(b) What properties of a bound state will change under a (short-range) unitary

transformation and what will be unchanged? Consider (and justify your answer)

i. the bound-state energy

ii. the wave function (bound or scattering) beyond the range of the potential

iii. the wave function within the potential

iv. the expectation value of the radius squared

5. Exploring the Lippmann-Schwinger equation. [The conventions here follow Taylor.]

(a) Using the Schrödinger equation for the scattering of two particles with mass m,

(H0 + V )|ψE〉 = E|ψE〉 ,

where H0 is the free Hamiltonian, show that the Lippmann-Schwinger equation for

the wave function,

|ψ±E〉 = |φk〉+
1

E −H0 ± iε
V |ψ±E〉 ,

is satisfied. Here E = k2/m and the plane wave state satisfies H0|φk〉 = E|φk〉. Why

do you need the ±iε?

(b) We can define the T -matrix on-shell as the transition matrix that acting on the plane

wave state yields the same result as the potential acting on the full scattering state.

That is, T (±)(E = k2/m)|φk〉 = V |ψ±E〉. What does it mean that the T -matrix is

“on-shell”? (This is a really quick question!)

(c) Show that matrix elements of the T -matrix satisfy the Lippmann-Schwinger equation

〈k′|T (±)(E)|k〉 = 〈k′|V |k〉+

∫
d3p
〈k′|V |p〉〈p|T (±)(E)|k〉

E − p2

m ± iε
.

What normalization is used for the momentum states? [See the Morrison and A.N.

Feldt pedagogical article under Program→References on the webpage.] Are the

matrix elements of the T -matrix on the right side on-shell?

(d) Write the Lippmann-Schwinger equation for the wave function in coordinate space for

a local potential V = V (r). To this end, show first that the free Green’s function

G±(r′, r;E = k2/m) = 〈r| 1

E −H0 ± iε
|r′〉

is given by

G±(r′, r;E = k2/m) = −m
4π

e±ik|r−r
′|

|r− r′|
.
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(e) Show that when the T -matrix is evaluated on-shell, it is proportional to the scattering

amplitude, T+(E = k2/m) = − 1
4π2m

f(k, θ), by analyzing the asymptotic form of the

Lippmann-Schwinger equation and comparing to

〈r|ψ+
E〉

r→∞−→ (2π)−3/2
(
eik·r + f(k, θ)

eikr

r

)
.

(f) Start from the momentum-space partial wave expansion of the potential,

〈k′|V |k〉 =
2

π

∑
l,m

Vl(k
′, k)Y ∗lm(Ωk′)Ylm(Ωk)

and a similar expansion of the T -matrix to derive the partial wave version of the

Lippmann-Schwinger equation (with the correct factor for the integral):

Tl(k
′, k;E) = Vl(k

′, k) +
2

π

∫ ∞
0
dp p2

Vl(k
′, q)Tl(q, k;E)

E − p2/m+ iε
.

6. Consider two momentum-space potentials, V1(k,k
′) = V0 e

−(k2+k′2)/µ2 and

V2(k,k
′) = V0 e

−(k−k′)2/µ2 .

(a) Are they local or non-local?

(b) Do they have P-wave projections? (That is, if you wrote it in the partial-wave

expansion would there be an L = 1 term?)

(c) Do they have higher angular momentum projections?

7. Show directly from the Fourier transform expression of a local potential, without specifying

its functional form, that the momentum space version will only depend on the momentum

transfer k′ − k.

8. Discuss why a classical potential energy is measurable but a quantum mechanical potential

is generally not a measurable quantity. When is a potential measurable?

9. Scattering phase shifts for a square well potential.

(a) Calculate the S-wave scattering phase shifts for an attractive square-well potential

V (r) = −V0θ(R− r) and show that

δ0(E) = arctan

[√
E

E + V0
tan(R

√
2µ(E + V0))

]
−R

√
2µE

(b) Let’s consider the analytic structure of the corresponding partial-wave S matrix,

which is given by

S0(k) = e−2ikR
k0 cot k0R+ ik

k0 cot k0R− ik
where E = k2/2µ and k20 = k2 + 2µV0.

i. Show that Sl(k) = e2iδl(k) for l = 0 is satisfied. [Hint: write e2iδ = eiδ/e−iδ.]
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ii. Treat S0(k) as a function of the complex variable k and find its singularities.

iii. Bound states are associated with poles on the imaginary axis in the upper half

plane. Show that the condition for such a pole here gives the same eigenvalue

condition (a transcendental equation) that you would get from a conventional

solution to the square well by matching logarithmic derivatives. [Define k = iκ

with κ > 0 when analyzing such a pole.]

10. Variable phase approach (VPA) for finding phase shifts from a local potential. Here we

consider s-waves. [References: Taylor, Scattering Theory, pp. 197-201, Calogero, The

Variable Phase Approach to Potential Scattering, (Academic Press, New York, 1967).]

(a) Define the truncated potential Vρ(r) by

Vρ(r) = V (r)θ(ρ− r) .

That is, it is the usual potential for r ≤ ρ, but identically zero beyond that. Then we

define δ(k, ρ) as the phase shift for Vρ at momentum k. The phase shift we want is

δ(k) = limρ→∞ δ(k, ρ). The basis of the variable phase method is a differential

equation for δ(k, r) at fixed k (again, this is the s-wave equation):

dδ(k, r)

dr
= −1

k
2MV (r) sin2[kr + δ(k, r)] ,

which is a nonlinear first-order differential equation with initial condition δ(k, 0) = 0.

Think about how you would implement this in your favorite programming language.

(b) The Mathematica notebook square well scattering.nb implements the VPA for a

square well. Changing to a different potential is trivial (see the illustration at the end

with a combined short-range repulsive square well and a mid-range attractive square

well). Show that it reproduces the known phase shifts for the square well result.

(c) (Optional) The derivation of the VPA is outlined in the lecture notes. Fill in the

details and/or generalize to arbitrary (uncoupled) l.

(d) Show from the VPA differential equation that a fully attractive potential gives a

positive phase shift and a fully negative potential gives a negative phase shift.

(e) The VPA automatically builds in Levinson’s theorem about the number of bound

states and the phase shift at zero. How? [Hint: what is the condition imposed on the

phase shift at large energy for Levinson’s theorem? Consider integrating dδ(k, r)/dr

in r from zero to infinity. Use sin2 x ≤ 1 to put a bound on δ(k).]

(f) Things to try numerically with the Mathematica or Python notebooks:

• Try out Levinson’s theorem in practice (e.g., for a square well where the number

of bound states versus depth is easily found in parallel).

• Explore the effective range expansion by looking at k cot δ(k) at small k and

extracting parameters or verifying the connection to bound-state properties.
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• (Advanced) Do a Lepage plot exercise.

• (Advanced) Check that a sample unitary transformation does not change the

phase shifts. To use our VPA implementation for this exercise we’ll need to

restrict attention to transformations that don’t introduce non-localities into the

potential. [Look up the UCOM potential for ideas on how to build such a

transformation.]

(g) (Advanced) Is it possible to generalize the LPA to coupled channels and non-local

potentials? Yes! Think about how to do it, but probably just check your ideas against

the references.

11. Numerically solving the partial-wave Lippmann-Schwinger equation in momentum space

based on the discussion in Landau’s Quantum Mechanics II book, Section 18.3. You should

follow along with one of the sample implementations of this procedure, even if you don’t fill

in all the details. The discussion applies directly to uncoupled channels; we can discuss the

extension to coupled channels if there is interest.

(a) We will solve for what Landau calls the R-matrix (known as the K-matrix in other

contexts or sometimes also the T-matrix despite the boundary conditions). The

Lippmann-Schwinger (LS) equation for Rl is

Rl(k
′, k;E) = Vl(k

′, k) +
2

π
P
∫ ∞
0

dq
q2Vl(k

′, q)Rl(q, k;E)

E − Eq
,

where Ek ≡ k2/2µ, µ = m/2, and we work in units where ~2/m = 1

(= 41.47105 MeV-fm2 for np). We get the desired phase shift from

Rl(k0, k0;Ek0) = −tan δl(k0)

2µk0
= − 1

2µ

1

k0 cot δl(k0)
.

The usual LS equation for the T-matrix for outgoing boundary conditions has +iε in

the denominator. What kind of boundary conditions are the ones here? (Hint: the

principal value is half the sum of incoming and outgoing waves.) Why might we prefer

to solve this equation numerically instead of the one for the T-matrix?

(b) We want to evaluate the integral equation on a discrete mesh of momenta, but we

need to deal with the principal value. The “trick” is to add and subtract to the

integral (we’ve now explictly set ~2/m = 1):

2

π
P
∫ ∞
0
dq
q2Vl(k

′, q)Rl(q, k; k20)

k20 − q2
=

2

π

∫ ∞
0
dq
q2Vl(k

′, q)Rl(q, k; k20)− k20Vl(k′, k0)Rl(k0, k)

k20 − q2

+
2

π
k20Vl(k

′, k0)Rl(k0, k, k
2
0)P

∫ ∞
0
dq

1

k20 − q2
.

Why can we remove the P from the first term? Show that the integral in the second

term is zero. What would it be if the integrals were up to a cutoff Λ instead of ∞?
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(c) Now we can solve the integral equation numerically by replacing the continuous

momentum in the integral by a set of N discrete momenta {ki} and weights {wi},
i = 1, N , that correspond to gaussian quadrature points and weights. We also define

kN+1 = k0. Show that the LS equation for (N + 1)× (N + 1) matrix R becomes

Rij = Vij +
2

π

N∑
l=1

k2l VilRljwl
k20 − k2l

− 2

π

(
N∑
l=1

wl
k20 − k2l

)
k20Vi,N+1RN+1,j .

(d) Show that this can be written as

Rij +
N+1∑
l=1

VilDlRlj = Vij ,

where

Di ≡


2
π
wik

2
i

k2i−k20
i = 1, N

− 2
πk

2
0

(∑N
l=1

wl

k2l−k
2
0

)
i = N + 1

We see that this can be written as a matrix equation (with implied sum over l):

(δil + VilDl)Rlj ≡ FilRlj = Vij ,

which can be solved to find R = F−1V . Then the matrix element we want is RN+1N+1.

12. More on the Lippmann-Schwinger (LS) equation.

(a) In the “Exploring the LS equation” problem we used the momentum space matrix

elements of the operator LS equation (we omit the hats here):

T (±)(E) = V + V
1

E −H0 ± iε
T (±)(E) .

Show that this can also be written as

T (±)(E) = V + V
1

E −H ± iε
V ,

where now the full Green’s function appears (it has H instead of H0). Do this by

repeating the derivation but now using the alternative LS equation for the wave

function (show that it works!):

|ψ±E〉 = |φk〉+
1

E −H ± iε
V |φk〉 .

(b) Now use the “spectral representation”

1

E −H ± iε
=
∑
n

|ψn〉〈ψn|
E − En

+

∫
d3p

|ψ+
p 〉〈ψ+

p |
E − p2/m± iε

,

which follows by inserting a complete set of bound and scattering eigenstates of H, to

show that as a function of energy E, the momentum-space T -matrix has simple poles

at the bound-state energies En with separable residues 〈k′|V |ψn〉〈ψn|V |k〉.
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