
TALENT/INT Course on Nuclear Forces
Exercises and Discussion Questions F1

[Last revised on July 5, 2013 at 10:48:33.]

Friday 1: QMC, local chiral EFT; 3N forces and halo nuclei

We have again grouped all of the two-minute and discussion questions toward the beginning.

But remember to spend only about an hour working on questions and then try some of the other

problems as well. When you need a break, go back and try another question!

1. Student project: “Nuclear Forces and their impact on my research”. Your task in the

coming days is to prepare a short presentation that relates some of the topics discussed in

this course to the research you are doing now or are preparing to do. Some of you who are

more advanced in your research will present next week but most of you will present in the

third week.

(a) The outcome will be a ten-minute talk including a few minutes for questions and

discussion.

(b) Prepare no more than 3 slides that give an overview of your research area with the

focus on how nuclear forces are relevant. Any further explanations will be on the

blackboard.

(c) Within your talk identify and present a discussion question about nuclear forces (new

or from the exercises) that pertains to some aspect of your research.

(d) You are encouraged to discuss your ideas with your fellow participants and the

instructors.

2. If you haven’t had a chance and have time, it would be great to go over the following

problems of the first week: Monday 5), Tuesday 13), Wednesday 6), and Thursday 5).

Also, don’t forget to try the Mathematica (or iPython) notebook on scattering.

3. Two-minute exercises and discussion questions:

(a) The factor

2A
A!

Z!(A− Z)!

describes the scaling with nucleon number A and proton number Z of the spin and

isospin part of the state vector in a GFMC calculation of a nucleus. Let’s dissect it.

i. How many spin states are there?

ii. How many isospin states are there? Why isn’t this the same as for the spin?

iii. How much larger is the factor for 12C than for 4He? How about 16O? How about
40Ca? Why is this a problem?
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(b) The “AF” in AFDMC stands for “auxiliary field”. What is an auxiliary field?

(c) Why do QMC methods like GFMC or AFDMC need local potentials? Why has this

been a problem for chiral EFT?

(d) Why can we apply pionless EFT to atomic gases?

(e) Why is there only one Q0 short-range three-body force for nucleons? (In general, we

could construct several possible combinations of spin and isospin.) Is there a Q0

short-range three-body force for neutrons only?

(f) Show that the operator

A123 = (1 + P12P23 + P13P23)(1− P23)

= 1− P12 − P13 − P23 + P12P23 + P13P23 (1)

is the antisymmetrizer in the three-body system. Why are the two ways of writing

A123 equal?

(g) What is a limit cycle? What are the consequences for observables?

(h) Find all halo nuclei with proton number Z < 8. What is their evidence for a halo?

Are they Borromean?

4. More two-minute exercises: Consider these figures in the context of three-body forces.

(a) If our low-energy pionful theory does not include nucleon resonances (an excited state

of the nucleon represented on the left by a heavy line and N∗), why do we get a

three-body force?

(b) The right Feynman diagram includes an anti-nucleon (N) state. (This is called a

“Z-graph”.) Why does this diagram lead to a three-body force in our low-energy

EFT? (Hint: what is the energy of the intermediate state?)

(c) The exchanged mesons can be either pions or heavier mesons (e.g., ρ or ω). For each

combination, what are the ranges of the three-body forces (choosing among

short-range, mid-range, and long-range)? Draw the corresponding diagrams in the

chiral EFT that has pions but no heavy mesons or nucleon resonances or

anti-nucleons.
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5. Applying the exponential of a matrix e−(H−ET )τ to a trial ground-state vector. Consider a

vector |Ψvar.〉 and its expansion in eigenstates of the Hamiltonian matrix H:

|Ψvar.〉 =
∑
k

Ck|ψk〉 where H|ψk〉 = Ek|ψk〉 ,

where (for example) |Ψvar.〉 is a variational guess for the ground-state wave function.

(a) Show in general that f(H)|ψk〉 = f(Ek)|ψk〉 (where f is specified by a power series).

(b) Apply imaginary time propagation e−iHt with τ = it to show

|Ψ(τ →∞)〉 = lim
τ→∞

e−(H−ET )τ |Ψvar.〉
τ→∞−→ C0e

−(E0−ET )τ |ψ0〉

That is, we project out the ground state.

(c) Note the use of the trial energy ET . Why put that in? If I change ET , how can I

extract E0?

(d) Why do we, in practice, break up the imaginary time into small intervals to be able to

calculate: e−(H−ET )τ = Π∆τe
−(H−ET )∆τ rather than just apply the exponential?

6. When discussing the AFDMC method we started from a two-particle operator:

VSD =
1

2

∑
j,α,k,β

σj,α Aj,α;k,β σk,β , (2)

where roman indices are particle labels and greek indices are cartesian components. We

then jumped to the result that this can be expressed as the square of a one-body operator

VSD =
1

2

3N∑
n=1

(On)2λn , (3)

where n runs over the distinct one-body operators. Here we provide more details.

(a) Write down the equation defining the real eigenvalues and eigenvectors of the 3N by

3N symmetric matrix A, ∑
k,β

Aj,α;k,β ψ
k,β
n = λnψ

j,α
n . (4)

(b) The operators O are a combination of the spin matrix and the eigenvectors. Write

them out explicitly as a sum over one particle label and one cartesian component.

(c) Using the eigendecomposition A = QΛQ−1 reach the following result:

V2 = VSI +
1

2

∑
j,α,k,β,n

σj,α ψ
j,α
n λn σk,β ψ

k,β
n (5)

and from there arrive at the result shown in the slide (and above) in terms of the

square of a one-body operator.
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