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Abstract

The Trojan–Horse method is an indirect approach to determine the energy depen-

dence of S factors of astrophysically relevant two-body reactions. This is accomplished

by studying closely related three-body reactions under quasi-free scattering conditions.

The basic theory of the Trojan–Horse method is developed starting from a post-form

distorted wave Born approximation of the T-matrix element. In the surface approxima-

tion the cross-section of the three-body reaction can be related to the S-matrix elements

of the two-body reaction. The essential feature of the Trojan–Horse method is the effec-

tive suppression of the Coulomb barrier at low energies for the astrophysical reaction

leading to finite cross-sections at the threshold of the two-body reaction. In a modi-

fied plane wave approximation the relation between the two- and three-body cross-sec-

tions becomes very transparent. The appearing Trojan–Horse integrals are studied in

detail.
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1. Introduction

Nuclear reaction rates are an indispensable ingredient of many astrophysical

models. They have to be known with sufficient accuracy in order to understand

quantitatively the evolution of the universe, stars and other objects in the cosmos

[2–4]. Ideally, reaction cross-sections are directly measured in the laboratory. But,

with few exceptions and despite many experimental efforts, the relevant low energy

range cannot be reached in direct experiments [5–7]. Cross-sections for reactions

with charged particles rapidly become very small with decreasing energy of the col-

liding nuclei due to the repulsive Coulomb interaction. Extrapolations of the cross-
section rðEÞ to low energies from results at higher energies accessible to experi-

ments are often needed. This is accomplished with the help of the astrophysical

S factor

SðEÞ ¼ rðEÞE expð2pgÞ; ð1Þ
where E is the c.m. energy and g ¼ Z1Z2 e2=ð�hvÞ is the Sommerfeld parameter which

depends on the charge numbers Z1, Z2 of the colliding nuclei and their relative ve-
locity v in the entrance channel. The S factor shows a much weaker energy depen-

dence than the cross-section rðEÞ because the main effect of the penetrability through

the Coulomb barrier is compensated by the increase of the exponential factor. The

extrapolation process introduces uncertainties and important contributions to the

cross-sections, like resonances, can be missed. Additionally, direct laboratory ex-

periments are affected by electron screening, which effectively reduces the Coulomb

barrier between the nuclei and enhances the measured laboratory cross-section [8–

10]. A correction has to be applied to obtain the cross-section for bare nuclei. This
effect does not seem to be completely understood yet and independent information

on low energy cross-sections is valuable in order to develop a quantitative descrip-

tion of electron screening. In astrophysical applications one has, in addition, to

account for the screening under stellar conditions.

In recent years several indirect methods have been developed to extract cross-sec-

tions relevant to astrophysics from other types of experiments. In these alternative

approaches the astrophysical relevant two-body reaction is generally replaced by a

suitably chosen three-body reaction. The relation between the reactions is established
with the help of nuclear reaction theories. Without doubt, this process will introduce

some uncertainties, but valuable information on the astrophysical reaction can be

obtained. Also, the errors are independent from that of the direct approach. Of

course, the indirect methods have to be validated by studying well-known reactions

before firm conclusions can be drawn from indirect experiments in cases where direct

measurements are not feasible; see also the minireview [11].

The Coulomb dissociation method has become a valuable tool for extracting low-

energy cross-sections of radiative capture reactions aðb; cÞc by studying the inverse
process of photo dissociation cðc; bÞa [12]. Instead of using real photons, the Cou-
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lomb field of a highly charged target X acts as a source of virtual photons during a

scattering process which leads to the breakup reaction X ðc; abÞX with three particles

in the final state. Due to the high flux of virtual photons, cross-sections at the small

relevant energies in the two-body system are strongly enhanced as compared to the

capture reaction. Another approach is the ANC method that tries to extract the as-
ymptotic normalization coefficient of a nuclear ground state wave function by study-

ing various combinations of transfer reactions involving this nucleus at low energies

[13,14]. The coefficient can be used to determine theoretically the astrophysical S fac-

tor for radiative capture reactions at zero energy. However, these indirect ap-

proaches are limited to astrophysically relevant reactions where a photon is involved.

The observation of a similarity between cross-sections for two-body and closely

related three-body reactions under certain kinematical conditions [15] led to the in-

troduction of the Trojan–Horse method (THM) [16], see also [17,18]. The aim of the
THM is to extract the cross-section of an astrophysically relevant two-body reaction

Aþ x! C þ c; ð2Þ

from a suitably chosen reaction

Aþ a! C þ cþ b; ð3Þ

with three particles in the final state assuming that the Trojan–Horse a is composed

predominantly of clusters x and b. The kinematical conditions are chosen such that

the momentum transfer to the nucleus b is small during the reaction. Therefore b can
be considered as a spectator to the reaction of A and x. This process is often referred

to as a quasi-free scattering. In a selected part of the available three-body phase

space it is known to dominate over other reaction mechanism like sequential

breakup processes. In the past, quasi-free scattering has been used to extract in-

formation on momentum distributions of the nucleus a, i.e., the ground state wave
function in momentum space, employing a plane-wave impulse approximation

(PWIA) in the theoretical description [19]. In this approach the cross-section of re-

action (3) factorizes into a kinematical factor, the ground state momentum distri-

bution of nucleus a and an off-shell cross-section of reaction (2) that is assumed to be

known. On the other hand the two-body cross-section can be extracted from the

cross-section of reaction (3) if the momentum distribution of the Trojan–Horse a is

known with sufficient accuracy and a relation between the off-shell and on-shell two-

body cross-sections can be established. The selection of different spectators b and
thus Trojan–Horses a allows additional checks of the underlying assumptions of the

method.

Unlike the Coulomb dissociation method and the ANC method which are limited

to radiative processes, the THM can be applied to reactions where no photon is in-

volved. The essential feature of the THM is the actual suppression of the Coulomb

barrier in the cross-section of the two-body reaction. The cross-section of the three-

body reaction is not reduced when the c.m. energy in the Aþ x system approaches

zero as in reaction (2). The energy in the entrance channel of (3) can be around or
above the Coulomb barrier and effects from electron screening are negligible.

Nevertheless, very small energies in the reaction (2) can be reached.
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The feasibility of the THM was studied in several experiments involving various

reactions during the last years [20–28]. In earlier evaluations of the experiments some

simplifying assumptions were made in the theoretical description. The off-shell two-

body cross-section as appearing in the PWIA was considered as the bare nuclear

cross-section. It was converted to the on-shell two-body cross-section by correcting
for the Coulomb penetration in a heuristic approximation. Basic considerations for

the theoretical description of the THM were developed in [29] but the deduced rela-

tion between the cross-sections for reactions (2) and (3) were not directly applicable

to the experiments.

In this paper the theory of the THM is developed in certain approximations that

allow to establish a simple connection between the cross-sections of the three- and

two-body reactions. In Section 2 the reaction theory is formulated and the relation

of the T-matrix element of the three-body reaction with the S-matrix elements of
the two-body reaction is found. In connection with a plane wave approximation, fun-

damental TH integrals appear that are discussed in Section 3. Technical details con-

cerning the calculation of these integrals are discussed in Appendices A and B. In the

following section expressions for scattering amplitudes and cross-sections are derived

for spinless particles. For completeness, the general case of particles with spin is con-

sidered in Appendix C. The TH Coulomb scattering amplitude that is relevant in the

indirect study of elastic scattering processes is treated in Section 5. Kinematical con-

ditions, the energy dependence of cross-sections, and applications of the THM are
discussed in Section 6. A summary and an outlook are presented in the last section.

The evaluation of actual Trojan–Horse experiments with the present theory is be-

yond the scope of this paper and is subject to a detailed treatment in separate studies.

2. Reaction theory

In the three-body reaction (3) the particle x is transferred from the Trojan–Horse
a to the nucleus A leading to the C þ c final state with the spectator b of the Trojan–
Horse remaining, see Fig. 1. This reaction can be considered as a transfer to the con-

Fig. 1. Transfer of particle x in the Trojan–Horse reaction (3).
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tinuum, where the inelastic reaction Aþ x! C þ c can happen in addition to the

elastic Aþ x scattering. It is customary to describe such a direct reaction, i.e.,

Aþ a! C þ cþ b, with the help of a distorted wave Born approximation. It is

not required in the theoretical approach that Aþ x 6¼ C þ c; elastic scattering pro-

cesses in the two-body system can be treated in the formalism, too. Effects from
the antisymmetrization of the wave functions will be neglected in the present treat-

ment; they are expected to be small.

2.1. Coordinate systems and cross-sections

For the general case of light ion scattering, the masses of the particles A, b, and x
are comparable, so we have to use the complete kinematics; it is not justified, e.g., to

assume infinite target mass mA which would lead to a considerable simplification of

the formulas. This makes the notation unavoidably clumsy.

In a three-body system various sets of Jacobi coordinates are used to specify the

positions of the particles. In the theoretical description we encounter the sets

~rrxb ¼~rrx �~rrb; ~rrAa ¼~rrA �~rra ¼~rrA �
mx~rrx þ mb~rrb
mx þ mb

ð4Þ

in the initial partition and

~rrCc ¼~rrC �~rrc; ~rrBb ¼~rrB �~rrb ¼
mC~rrC þ mc~rrc
mC þ mc

�~rrb ð5Þ

in the final partition. The symbol B denotes the C þ c ¼ Aþ x system. The coordi-
nate vectors are shown in Fig. 2. The corresponding relative momenta and wave

vectors are given by

~ppij ¼ �h~kkij ¼
mj~ppi � mi~ppj
mi þ mj

ð6Þ

Fig. 2. Coordinate vectors in the initial and final partitions of the Trojan–Horse reaction (3).
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for nuclei i and j with masses mi;mj and momenta ~ppi;~ppj in the laboratory system,

respectively. With the help of the kinetic energies

Eij ¼
p2ij
2lij

; ð7Þ

where the reduced masses

lij ¼
mimj
mi þ mj

ð8Þ

appear, energy conservation in the two-body reaction (2) can be expressed as

EAx ¼ ECc � Q2; ð9Þ

with the Q-value

Q2 ¼ ðmA þ mx � mC � mcÞc2 ð10Þ
and similarly

EAa ¼ ECc þ EBb � Q3 ¼ EAx þ EBb þ Q2 � Q3; ð11Þ

with

Q3 ¼ ðmA þ ma � mC � mc � mbÞc2 ð12Þ

in case of the three-body reaction.

The general cross-section for reaction (3) with three particles in the final state de-

pends on the choice of the independent variables and the reference system. In the

c.m. system the energy ECc and the directions of the Jacobi momenta ~ppBb and ~ppCc
completely specify the kinematical conditions for a given projectile energy. Then

the differential cross-section takes the form [30,31]

d3r
dECc dXCc dXBb

¼ Kc:m: Tfið~kkCc;~kkBb;~kkAaÞ
��� ���2; ð13Þ

with the c.m. kinematical factor

Kc:m: ¼
lAalBblCc
ð2pÞ5�h7

pBbpCc
pAa

ð14Þ

and the T-matrix element Tfi. In an actual experiment, the particles C and c are

usually detected in the laboratory system and it is more convenient to use

d3r
dEC dXC dXc

¼ Klab Tfið~kkCc;~kkBb;~kkAaÞ
��� ���2; ð15Þ

with the kinematical factor

Klab ¼
lAamC
ð2pÞ5�h7

pCp2c
pAa

~ppBb
lBb

 "
�~ppCc
mc

!
�~ppc
pc

#�1
: ð16Þ
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The laboratory differential cross-section depends on the scattering angles of the

nuclei C and c and the energy EC. Again, these quantities, together with the beam

energy, specify the kinematical conditions completely. The nuclei A and a can be

projectile and target or vice versa. In case of particles with spin appropriate averages

over initial states and sums over final states have to be considered.

2.2. Approximations of the T-matrix element

The T-matrix element Tfi in (13) and (15) contains all the essential information rel-
evant to the scattering process. It has to be calculated in a suitable approximation

that allows to find the connection to the cross-section of the astrophysical relevant

reaction (2).

Before we discuss the various approximations in detail, it is useful to give an over-

view of the different steps in the derivation of the final formulas. Only the distorted

wave Born approximation of the exact T-matrix element and the so-called surface

approximation are essential for the Trojan–Horse method. The DWBA is a well-es-

tablished theoretical framework for the description of direct reactions [32]. Using the
surface approximation the cross-section of the three-body reaction can be related to

the S-matrix elements of the two-body reaction and it becomes possible to extract the

two-body cross-section. However, the expression for the T-matrix element in this

general TH approximation is rather complicated and the calculation requires consid-

erable numerical efforts. Additionally, the special features of the THM are not easily

seen and the connection to the PWIA (see Section 1) is not obvious. We introduce

some additional approximations that lead to simpler formulas which give more in-

sight into the mechanism of the THM without loosing the essential points. In a local
momentum approximation, that is exact for plane waves, the T-matrix element can

be written as a convolution of two factors, a momentum amplitude that is related to

the ground state wave function of the Trojan–Horse and an overlap matrix element

with the two-body scattering wave function. In a further plane wave approximation

the three-body T-matrix element factorizes in momentum amplitude and a modified

two-body scattering amplitude; a form that resembles the PWIA.

The Trojan–Horse reaction (3) has the form of a usual two-body reaction

Aþ a! Bþ b ð17Þ

if the C þ c system is considered as an excited state of the compound system B. The
exact T-matrix element for this reaction is given in the post-form description by

Tfi ¼ exp i~kkBb �~rrBb
� �

/B/bjVBbjW
ðþÞ
Aa ð~kkAa;~rrAaÞ

D E
; ð18Þ

with the exact scattering wave function WðþÞ
Aa ð~kkAa;~rrAaÞ in the initial state and the

potential VBb between B and b in the final state [30]. The wavefunction /i of a nucleus

i depends only on internal coordinates which are not given explicitly. The relative
motion of B and b is described by a plane wave with momentum �h~kkBb. Applying the

Gell-Mann Goldberger transformation [33], the T-matrix element (18) assumes the

form

234 S. Typel, G. Baur / Annals of Physics 305 (2003) 228–265



Tfi ¼ vð�ÞBb ð~kkBb;~rrBbÞ/B/bjVBb
D

� UBbjWðþÞ
Aa ð~kkAa;~rrAaÞ

E
; ð19Þ

which is still an exact relation. For a detailed derivation see [29]. Here, vð�ÞBb ð~kkBb;~rrBbÞ is
a distorted wave for the B–b relative motion generated by a suitably chosen optical

potential UBb that only depends on~rrBb but not on internal coordinates in contrast to
VBb. In the THM the wave function /B does not describe a bound state but a

complete scattering state

/B ¼ Wð�Þ
Cc ð~kkCc;~rrCcÞ; ð20Þ

since the system B ¼ C þ c is in the continuum.

In the post-form distorted-wave Born approximation (DWBA) the T-matrix ele-

ment (19) is replaced by

TDWBA
fi ð~kkCc;~kkBb;~kkAaÞ ¼ vð�ÞBb ð~kkBb;~rrBbÞW

ð�Þ
Cc ð~kkCc;~rrCcÞ/bjVxbjv

ðþÞ
Aa ð~kkAa;~rrAaÞ/A/a

D E
;

ð21Þ
where the exact wave function WðþÞ

Aa ð~kkAa;~rrAaÞ is replaced by a distorted wave

vðþÞAa ð~kkAa;~rrAaÞ for the A–a relative motion. Additionally, the potential VBb–UBb is ap-
proximated by Vxb [29,32]. This is the usual starting point of T-matrix calculations for
direct transfer reactions.

In the next step, the so-called surface approximation is applied which is essential

to the THM. For small distances between the colliding nuclei the optical potentials

are usually strongly absorptive and only reactions at the surface of the nuclei con-

tribute significantly to the matrix element. Therefore the full scattering wave func-

tion Wð�Þ
Cc ð~kkCc;~rrCcÞ can be replaced by its asymptotic form for radii larger than a

suitably chosen cutoff radius R that is larger than the range of the nuclear potential.

It is typically in the range of the sum of the radii of the two colliding nuclei. The in-
terior part of Wð�Þ

Cc ð~kkCc;~rrCcÞ is set to zero. The validity of the surface approximation

was checked in [34]; e.g., it was found to be quite good for the ðd; pÞ reaction at

Ed ¼ 26 MeV. The asymptotic form of the scattering wave function for ra > R, where
a ¼ Ax;Cc; . . . is a possible partition of the system B, is given by

Wð
Þ
Cc;asymð~kkCc;~rrCcÞ ¼

4p
kCc

X
a

X
lm

nð
Þl ðaÞ
ra

ilYlmðr̂raÞY �lmðk̂kCcÞ/a; ð22Þ

with radial wave functions

nðþÞl ðaÞ ¼ 1

2i

ffiffiffiffiffiffi
vCc
va

r
SlaCcu

ðþÞ
l ðga; karaÞ

h
� daCcu

ð�Þ
l ðga; karaÞ

i
; ð23Þ

nð�Þl ðaÞ ¼ nðþÞ�l ðaÞ; ð24Þ
where the Coulomb wave functions [35]

uð
Þl ðg; krÞ ¼ e�irlðgÞ½Glðg; krÞ 
 iFlðg; krÞ� ! exp

�

 i kr
�

� g lnð2krÞ � lp
2

��
ð25Þ
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appear. The Sommerfeld parameter

gij ¼
ZiZj e2

�hvij
ð26Þ

depends on the charge numbers Zi; Zj of nuclei i; j and their relative velocity
vij ¼ pij=lij in the partition a ¼ ij. The Coulomb phase shifts are given by

rlðgÞ ¼ argCð1þ lþ igÞ. The S-matrix elements SlaCc in the radial wave functions

completely describe the two-body scattering process. They are on-shell quantities

and the momenta ka are derived from energy-conservation in the two-body reaction.

E.g., in the a ¼ Ax partition we have kAx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lAxEAx

p
=�h with the energy EAx from

relation (9).

The potential Vxb appearing in the T-matrix element (21) describes the interaction

between x and b in the Trojan–Horse a. Assuming a simple cluster picture of a and
neglecting contributions from excited states of x and b or other partitions in the

ground state, the momentum amplitude W ð~qqÞ of the product

Vxbð~rrxbÞ/að~rrxbÞ ¼
Z

d3q

ð2pÞ3
W ð~qqÞ expði~qq �~rrxbÞ/x/b ð27Þ

can be introduced and the T-matrix element assumes the form

T TH
fi ð~kkCc;~kkBb;~kkAaÞ ¼

Z
d3q

ð2pÞ3
W ð~qqÞ vð�ÞBb ð~kkBb;~rrBbÞW

ð�Þ
Cc;asym

D
� ð~kkCc;~rrCcÞj expði~qq �~rrxbÞvðþÞAa ð~kkAa;~rrAaÞ/A/x

E
: ð28Þ

The assumption W � const: corresponds to the zero-range approximation which is

frequently employed in the calculation of DWBA T-matrix elements. In this case,

the integration over ~qq leads to a d-function in the variable ~rrxb and the actual di-

mension of the appearing integral is reduced from six to three. However, in
general the full momentum dependence of the amplitude W has to be considered.

With the help of the Schr€oodinger equation the momentum amplitude W is related

by

W ð~qqÞ ¼ � ea

�
þ �h2q2

2lxb

�
Uað~qqÞ ð29Þ

to the ground state momentum wave function

Uað~qqÞ ¼ expði~qq �~rrxbÞ/x/bj/að~rrxbÞ
D E

ð30Þ

of the nucleus a. The energy ea ¼ ðmx þ mb � maÞc2 ¼ Q2 � Q3 > 0 is the binding

energy of a with respect to the xþ b threshold.
The integration over the internal coordinates in the matrix element (28) selects the

a ¼ Ax partition of the asymptotic wave function (22) and the T-matrix element in

the TH approximation can be written as
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T TH
fi ð~kkCc;~kkBb;~kkAaÞ ¼

1

2ikCc

ffiffiffiffiffiffi
vCc
vAx

r X
l

ð2lþ 1Þ SlAxCcU
ðþÞ
l ð~kkBb;~kkCc;~kkAaÞ

h

� dAxCcU
ð�Þ
l ð~kkBb;~kkCc;~kkAaÞ

i
: ð31Þ

It resembles a scattering amplitude of the reaction C þ c! Aþ x except for the

functions

U ð
Þ
l ð~kkBb;~kkCc;~kkAaÞ ¼

4pð�iÞl

ð2lþ 1Þ
X
m

Ylmðk̂kCcÞ

�
Z

d3q

ð2pÞ3
W ð~qqÞ vð�ÞBb ð~kkBb;~rrBbÞ

hðrAx � RÞ
rAx

uð�Þl ðgAx; kAxrAxÞ
�

�Ylmðr̂rAxÞj expði~qq �~rrxbÞvðþÞAa ð~kkAa;~rrAaÞ
�

ð32Þ

that describe the angular distribution and the momentum dependence due to the

presence of the spectator b in the reaction (3). The unit step function h accounts for

the surface approximation by eliminating the contributions at small radii. With Eq.

(31) the relation between the cross-section (15) of the three-body reaction (3) and the

S-matrix elements of the two-body reaction is directly established. It is possible to

extract the energy dependence of the S-matrix elements from experimental three-
body cross-sections, at least in principle. The dependence of U ð
Þ

l on kCc or equiv-

alently kAx together with the energy dependence of the two-body S-matrix elements

SlAxCc leads to a finite cross-section of the three-body reaction (3) even when the

threshold of the two-body reaction (2) is reached. This is the essential feature of the

TH method. However this is not readily seen from the general expression (32). A

simplified formulation allows to study the energy dependence more explicitly. The

main problem is the technical evaluation of the appearing matrix element in Eq. (32)

with scattering wave functions in the initial and final states. Even with the surface
approximation, it involves a six-dimensional integration in the Jacobi-coordinates

which is an extensive computational task. For an actual application of the TH

method, it is convenient to introduce additional approximations that lead to a for-

mulation with a direct relation between the cross-sections of the two-body and three-

body reactions similar to the PWIA.

It is useful to expand the distorted wave in the initial state in a Taylor series

vðþÞAa ð~kkAa;~rrAaÞ ¼ 1
�
þ ð~rrAa �~rrAxÞ � ~rrþ � � �

�
vðþÞAa ð~kkAa;~rrAxÞ

� exp ið~rrAa
h

�~rrAxÞ � ~KK
i
vðþÞAa ð~kkAa;~rrAxÞ; ð33Þ

where the wave vector ~KK replaces the derivative �i~rr with respect to the spatial

coordinates. In the so called local momentum approximation [36,37] the modulus of
~KK is determined by the actual kinetic energy of the A� a relative motion at a certain
distance RAa. The direction of ~KK is assumed to be same as the asymptotic momentum
~kkAa. If vðþÞAa is a plane wave and ~KK ¼~kkAa the relation (33) is obviously exact. Con-

sidering the relations
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~rrxb ¼~rrBb � a~rrAx; ~rrAa ¼ b~rrBb þ ð1� abÞ~rrAx ð34Þ
of the Jacobi coordinates with factors

a ¼ mA
mA þ mx

; b ¼ mb
mb þ mx

; ð35Þ

the matrix element in Eq. (28) factorizes and the T-matrix element in the TH ap-

proximation assumes the form

T TH
fi ð~kkCc;~kkBb;~kkAaÞ ¼

Z
d3q

ð2pÞ3
Wð~qq;~kkBbÞMð~qq;~kkCc;~kkAaÞ; ð36Þ

with the generalized momentum amplitude

Wð~qq;~kkBbÞ ¼ W ð~qqÞ vð�ÞBb ð~kkBb;~rrBbÞj expði~QQ �~rrBbÞ
D E

ð37Þ

and the matrix element

Mð~qq;~kkCc;~kkAaÞ ¼ Wð�Þ
Cc;asymð~kkCc;~rrCcÞj expð

D
� ia~QQ �~rrAxÞvðþÞAa ð~kkAa;~rrAxÞ/A/x

E
; ð38Þ

with ~QQ ¼~qqþ b~KK. The integration over the internal coordinates leads to the ex-

pression

Mð~qq;~kkCc;~kkAaÞ ¼
1

2ikCc

ffiffiffiffiffiffi
vCc
vAx

r X
l

ð2lþ 1Þ SlAxCcU
ðþÞ
l ð~qq;~kkCc;~kkAaÞ

h

� dAxCcUð�Þl ð~qq;~kkCc;~kkAaÞ
i
; ð39Þ

with the integrals

Uð
Þl ð~qq;~kkCc;~kkAaÞ ¼
4pð�iÞl

ð2lþ 1Þ

Z
d3rAx

hðrAx � RÞ
rAx

uð
Þl ðgAx; kAxrAxÞ expð�ia~QQ �~rrAxÞ

� vðþÞAa ð~kkAa;~rrAxÞ
X
m

Y �lmðr̂rAxÞYlmðk̂kCcÞ: ð40Þ

Then the functions U ð
Þ
l in the TH T-matrix element (31) assume the form

U ð
Þ
l ð~kkBb;~kkCc;~kkAaÞ ¼

Z
d3q

ð2pÞ3
Wð~qq;~kkBbÞUð
Þl ð~qq;~kkCc;~kkAaÞ ð41Þ

of a convolusion of a momentum amplitude and an overlap matrix element with
scattering wave functions.

2.3. Plane wave approximations

If vð�ÞBb is assumed to be a plane wave, the matrix element in the generalized mo-

mentum distribution (37) leads to a d-function in the variable ~qq

Wð~qq;~kkBbÞ ¼ W ð~qqÞð2pÞ3dð~qq� ~QQBbÞ ð42Þ
with
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~QQBb ¼~kkBb � b~KK: ð43Þ
Then, the~qq-integration is trivial; the T-matrix element (36) factorizes explicitly into a

momentum amplitude and the matrix element (39) where the integrals (40) are

evaluated for ~qq ¼ ~QQBb. This plane-wave approximation for vð�ÞBb is justified when the

energy of the Bb relative motion is large. When the spectator b is a neutron, it is also

often possible to replace vð�ÞBb by a plane wave. On the other hand, when vð�ÞBb is re-

placed by a pure Coulomb scattering wave, e.g., if the Bb relative energy is small, the

matrix element in (37) can be calculated explicitly (see Appendix D). However, in
applications of the THM the c.m. energy in the Bb system is generally large because

of the large projectile energy and Q-value of the reaction and the latter case is not

relevant.

Independently from the treatment of the wave function vð�ÞBb , a plane wave approx-

imation can be introduced for vðþÞAa in the matrix element (38). In this case one finds

Mð~qq;~kkCc;~kkAaÞ ¼ Wð�Þ
Cc;asymð~kkCc;~rrCcÞj expði~QQAa �~rrAxÞ/A/x

D E
ð44Þ

with

~QQAa ¼~kkAa � ab~KK � a~qq: ð45Þ

The quantities (40) reduce to

Uð
Þl ð~qq;~kkCc;~kkAaÞ ¼
4p

kAxQAa
PlðQ̂QAa � k̂kCcÞJ

ð
Þ
l ðR; gAx; kAx;QAaÞ; ð46Þ

with Legendre polynomials Pl and the dimensionless Trojan–Horse integrals

J ð
Þl ðR; gAx; kAx;QAaÞ ¼ kAxQAa
Z 1

R
drAxu

ð
Þ
l ðgAx; kAxrAxÞrAxjlðQAarAxÞ: ð47Þ

The Coulomb wave functions uð
Þl as defined in (25) and the regular spherical Bessel

function jl of order l appear in the radial integral. It is convenient to introduce the

decomposition

J ð
Þl ðR; gAx; kAx;QAaÞ ¼ e�irlðgAxÞ J ðGÞl ðR; gAx; kAx;QAaÞ
h


 iJ ðF Þl ðR; gAx; kAx;QAaÞ
i
ð48Þ

of the TH integrals into contributions with the regular and irregular Coulomb wave

functions. The integrals are discussed in detail in Section 3.

In the following only the plane-wave approximation for both vðþÞAa and vð�ÞBb will be

considered. In this case the T-matrix element has the simple product form

T TH
fi ð~kkCc;~kkBb;~kkAaÞ ¼ W ð~QQBbÞ Wð�Þ

Cc;asymð~kkCc;~rrCcÞj expði~QQAa �~rrAxÞ/A/x
D E

: ð49Þ

This approximation already contains the essential ingredients to see the principles of

the TH method and the connection to the PWIA becomes clear. Generalizations to a
more general treatment with distorted waves are obvious from the above. The ar-

gument of the amplitude W is the momentum
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~QQBb ¼~kkBb �
mb

mb þ mx
~kkAa ð50Þ

assuming that ~KK ¼~kkAa. Neglecting the Fermi motion of b inside the Trojan–Horse,

mb~kkAa=ðmb þ mxÞ is the momentum of b relative to A in the initial state and~kkBb is the
momentum of b relative to B ¼ C þ c in the final state. Thus �~QQBb corresponds to
the momentum transfer to the spectator b. The amplitude W describes the distri-

bution of the transferred momentum due to the Fermi motion. Similarly, the mo-

mentum

~QQAa ¼~kkAa �
mA

mA þ mx
~kkBb ð51Þ

in the argument of the plane wave can be considered as the (negative) momentum

transfer to nucleus A (independent of the choice of ~KK) by the particle x. In the case of

a infinitely heavy nucleus A, Eqs. (50) and (51) reduce to

~QQBb ¼
mb

mb þ mx
~kka �~kkb ¼~kkx �

mx
mb þ mx

~kka; ð52Þ

~QQAa ¼~kkb �~kka ¼ �~kkx ð53Þ

(cf. Fig. 1) and the interpretation becomes simpler. The main task is to calculate the

TH integrals (47) and to find the explicit relation of the three-body cross-section to

the two-body cross-section.

The plane wave approximations for vðþÞAa and vð�ÞBb seem to be crude at first sight but

the TH matrix element (49) still contains the asymptotically correct wave function
Wð�Þ

asymðCc;~kkCcÞ for the C þ c system and thus the complete information on the two-

body scattering process. This is in clear contrast to the PWIA [19] where the effect

of the Coulomb barrier in Aþ x system on the energy dependence is not obvious.

The absorptive feature of the optical potentials is taken into account by the surface

approximation. Additionally, the distorted wave vðþÞAa describes a scattering state with

a much higher (and constant) momentum as compared to the Aþ x system and only

a small part of the three-body phase space is of interest in the reaction. The absolute

cross-section for the three-body process (3) calculated in the plane wave approxima-
tion might be different from the actual value but the energy dependence with respect

to the two-body reaction is expected to be treated correctly.

3. Trojan–Horse integrals

The main difference between the usual expressions for the scattering amplitude for

Aþ x! C þ c scattering and the corresponding T-matrix element (31) in the TH
method is the appearance of the functions U ð
Þ

l . They describe a modification of

the two-body scattering amplitude and lead to the effective removal of the Coulomb

barrier in the quasi-free scattering process. This effect can only be understood if the

energy dependence of these functions is known. In the plane wave approximation the

discussion becomes very transparent. The functions
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U ð
Þ
l ð~kkBb;~kkCc;~kkAaÞ ¼

4p
kAxQAa

W ð~QQBbÞPlðQ̂QAa � k̂kCcÞJ
ð
Þ
l ðR; gAx; kAx;QAaÞ ð54Þ

in Eq. (31) factorize into a momentum amplitude, Legendre polynomials and the TH

integrals (47) which we will study now.The basic Trojan–Horse integral is given by

J ðHÞl ðR; g; k;QÞ ¼ k
Z 1

R
drHlðg; krÞzlðQrÞ; ð55Þ

where Hl is a Coulomb wave function Fl or Gl and zlðxÞ ¼ xjlðxÞ is a Riccati–Bessel

function. Then the integrals J ð
Þl are obtained from Eq. (48). The TH integrals do not

converge in the usual sense, since Hl and zl oscillate with constant amplitude if r goes
to infinity. Convergence is achieved only in the distributional sense after an inte-

gration over Q with a suitable test function. The problem is caused by the fact that
the matrix element in Eq. (28) contains the overlap of continuum wave functions. A

similar problem occurs in the case of Bremsstrahlung matrix elements that have to be

regularized.

We transform the integral (55) into a form that allows a numerical calculation.

Details can be found in Appendix A. By a simple change of variables it is seen that

the TH integrals (55) depend only on three independent parameters. With

n ¼ k
Q

and x0 ¼ QR; ð56Þ

we can write

J ðHÞl ðR; g; k;QÞ ¼ J ðHÞl;redðx0; g; nÞ ¼ n
Z 1

x0

dxHlðg; nxÞzlðxÞ; ð57Þ

with reduced TH integrals which are functions of x0, g, and n. These integrals exhibit
a particular energy-dependence close to the threshold of the two-body reaction. For

R ¼ 0, i.e., x0 ¼ 0, the energy dependence is easily extracted and leads to a simple

scaling behaviour for n ! 0 and g !1. The reduced TH integral with the regular
Coulomb wave function Fl shows an energy dependence according to

J ðF Þl;redð0; g; nÞ / n3=2 expð�pgÞ: ð58Þ

In the case of the TH integral with the irregular Coulomb wave function we find

J ðGÞl;redð0; g; nÞ / n3=2 expðpgÞ: ð59Þ

Fig. 3 shows the dependence of the scaled reduced TH integrals J ðF Þl;redð0; g; nÞn
�3=2

expðpgÞ with l ¼ 0; 1 on n ¼ k=Q for various values of gn ¼ ZAZx e2lAx=ð�h2QÞ which
is a constant for given Q. The scaled TH integrals become constant for small n as

expected. The rapid decrease of the unscaled TH integrals with decreasing n for

constant gn is obvious. The angular momentum barrier leads to a smaller TH in-

tegral with larger l for the same parameters n and gn. This effect is more pronounced
for small gn than for large gn where the Coulomb barrier dominates the n depen-

dence. The approximations (A.20) and (A.21) agree very well with the exact results
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for the TH integrals with l ¼ 0; 1 for large gn and not too large n. The agreement is

less satisfactory for small gn and larger l as one may expect, since then the

angular momentum barrier is getting more important as compared to the Coulomb

barrier.

In Fig. 4 the dependence of scaled reduced TH integrals J ðGÞl;redð0; g; nÞn
�3=2

expð�pgÞ with l ¼ 0; 1 on n is shown for the same range of the parameter gn
as in Fig. 3. For small n the scaled TH integrals again become constant. The un-
scaled TH integrals increase dramatically for decreasing n for constant gn and for

increasing gn for constant n, respectively. The effect of the angular momentum

barrier is more pronounced for small gn as in the case of the TH integrals with

the regular Coulomb wave function as one may expect. The agreement between

the approximations (A.23) and (A.24) and the exact TH integrals shows the

same trends as in the case of the TH integrals with the regular Coulomb wave

functions.

In the case of finite R the energy dependence of the TH integrals remains essen-
tially unchanged for n ! 0, only the magnitude of the integrals is modified. At

low energies, both the TH integrals J ð
Þl ðR; g; k;QÞ are dominated by the energy de-

pendence of J ðGÞl ðR; g; k;QÞ.

Fig. 3. Scaled reduced Trojan–Horse integrals �J ðF Þl;redð0; g; nÞn
�3=2 expðpgÞ for parameters gn ¼ 0:01; . . . ;

1:0 as a function of n ¼ k=Q for angular momenta l ¼ 0 (a) and l ¼ 1 (b). The solid lines are the exact

results and the dotted lines are the approximations of Section A.2.
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4. Cross-sections for spinless particles

In order to establish a closer connection of the three- and two-body cross-sections

the Trojan–Horse T-matrix element (49) is recast in the form

T TH
fi ð~kkCc;~kkBb;~kkAaÞ ¼

4p
kAxQAa

W ð~QQBbÞf THð~QQAa;~kkCcÞ; ð60Þ

with the Trojan–Horse scattering amplitude

f THð~QQAa;~kkCcÞ ¼
kAxQAa
4p

Wð�Þ
Cc;asymð~kkCc;~rrCcÞj expði~QQAa �~rrAxÞ/A/x

D E

¼ 1

2ikCc

X
l

ð2lþ 1ÞPlðk̂kCc � Q̂QAaÞ
ffiffiffiffiffiffi
vCc
vAx

r
SlAxCcJ

ðþÞ
l ðR; gAx; kAx;QAaÞ

h

� dAxCcJ
ð�Þ
l ðR; gAx; kAx;QAaÞ

i
: ð61Þ

This amplitude is valid for particles without spin. The case with spin in dealt with in

Appendix C. The amplitude (61) is related to the scattering amplitude for the two-
body reaction

Fig. 4. Scaled reduced Trojan–Horse integrals J ðGÞl;redð0; g; nÞn
�3=2 expð�pgÞ for parameters gn ¼ 0:01; . . . ;

1:0 as a function of n ¼ k=Q for angular momenta l ¼ 0 (a) and l ¼ 1 (b). The solid lines are the exact

results and the dotted lines are the approximations of Section A.2.
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C þ c! Aþ x: ð62Þ

The essential difference is the appearance of the Trojan–Horse integrals (47). The
argument of the Legendre polynomial Pl in Eq. (61) corresponds to the cosine of the

scattering angle #c:m:. It is convenient to decompose the TH amplitude

f TH ¼ f THN þ f TH
C dAxCc ð63Þ

into a nuclear part and a purely Coulomb part. The nuclear contribution

f THN ¼ 1

2ikCc

X
l

ð2lþ 1ÞPlðk̂kCc � Q̂QAaÞ
ffiffiffiffiffiffi
vCc
vAx

r
T lAxCcJ

ðþÞ
l ðR; gAx; kAx;QAaÞ ð64Þ

with

T lAxCc ¼ eirlðgAxÞþirlðgCcÞ SNlAxCc
�

� dAxCc
�

ð65Þ

depends on the nuclear S-matrix element

SNlAxCc ¼ e�irlðgAxÞSlAxCc e
�irlðgCcÞ; ð66Þ

which is obtained from the full S-matrix element by compensating the Coulomb

phase shifts rlðgCcÞ and rlðgAxÞ in the initial and final states, respectively. The

Coulomb contribution

f THC ¼ 1

kCc

X
l

ð2lþ 1ÞPlðk̂kCc � Q̂QAaÞeirlðgCcÞJ
ðF Þ
l ðR; gAx; kAx;QAaÞ ð67Þ

appears only if elastic two-body reactions are studied. It depends only on the TH

integrals with the regular Coulomb wave function and is discussed in Section 5.

If the Trojan–Horse integrals J ð
Þl are replaced by one the scattering amplitudes

reduce to the standard form for the reaction (62). At low energies there are usually
only few contributions to the nuclear scattering amplitude with small angular mo-

menta l due to the increase of the centrifugal barrier with l in the two-body reaction.

The cross-section (15) in the laboratory system can now be expressed in the form

d3r
dEC dXC dXc

¼ Klab W ð~QQBbÞ
��� ���2 16p2

k2AxQ
2
Aa

vCc
vAx

drTH

dX
; ð68Þ

with the two-body Trojan–Horse cross-section

drTH

dX
¼ vAx
vCc

jf THj2: ð69Þ

A corresponding expression holds for the c.m. cross-section (13) with the appro-
priate kinematical factor. This result has a similar structure as in the PWIA, i.e., a

product of a kinematical factor, a momentum distribution and a two-body cross-

section. However, the momentum distribution jW j2 is not directly the ground

state momentum distribution jUaj2 of the Trojan–Horse a and the Trojan–Horse

cross-section (69) contains explicitly the three-body effects. It is a sum
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drTH

dX
¼ drTH

C

dX

�
þ drTH

I

dX

�
dAxCc þ

drTH
N

dX
; ð70Þ

of a Coulomb contribution

drTH
C

dX
¼ f THC
�� ��2; ð71Þ

a Coulomb-nuclear interference contribution

drTH
I

dX
¼
X
l

2lþ 1

kCc
Plðk̂kCc � Q̂QAaÞRe if TH

C

� ��
T lAxCcJ

ðþÞ
l ðR; gAx; kAx;QAaÞ

h i
; ð72Þ

and a nuclear contribution

drTH
N

dX
¼ 1

4k2Cc

X
k

X
ll0
ð2lþ 1Þð2l0 þ 1Þðl0l00jk0Þ2Pkðk̂kCc � Q̂QAaÞ

� T lAxCcT l
0�
AxCcJ

ðþÞ
l ðR; gAx; kAx;QAaÞJ

ð�Þ
l0 ðR; gAx; kAx;QAaÞ: ð73Þ

Again, the expression for the TH cross-section closely resembles the usual c.m. cross-

section for the two-body reaction (62). The appearance of the TH integrals J ð
Þl

accounts for the off-shell effects and the scalar product k̂kCc � Q̂QAa appears as the ar-

gument of the Legendre polynomial instead of the cosine of the two-body c.m.
scattering angle #c:m:. The TH Coulomb scattering amplitude (67) replaces the on-

shell Coulomb scattering amplitude

fC ¼
1

2ikCc

X
l

ð2lþ 1ÞPlðcos#c:m:Þðexp½2irlðgCcÞ� � 1Þ

¼ � gCc
2kCc sin

2ð#c:m:=2Þ
exp 2ir0ðgCcÞ

�
� 2igCcln sin

#c:m:

2

�
ð74Þ

in the usual elastic two-body scattering amplitude.

The expression for the TH cross-section simplifies considerably in special cases. If

Ax 6¼ Cc and only one partial wave lAx contributes to the cross-section the Trojan–

Horse cross-section is given by

drTH

dX
¼ drl

dX
ðCc! AxÞPlðR; gAx; kAx;QAaÞ ð75Þ

with the usual partial on-shell cross-section

drl
dX

ðCc! AxÞ ¼ ð2lþ 1Þ2

4k2Cc
T lAxCc
�� ��2X

k

ðl0l0jk0Þ2Pkðk̂kCc � Q̂QAaÞ ð76Þ

for the two-body reaction (62) and the penetrability factor

PlðR; gAx; kAx;QAaÞ ¼ J ðþÞl ðR; gAx; kAx;QAaÞ
��� ���2: ð77Þ
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In the simple approximation (A.3) of Appendix A it is given by

PlðR; g; k;QÞ ! k2R2 F 2
l ðg; kRÞ

�
þ G2

l ðg; kRÞ
�
z2l ðQRÞ: ð78Þ

From the k-dependence of the TH integrals or the Coulomb wave functions a
k3 expð2pgÞ behaviour of the penetrability factor is found for k ! 0. For the transfer

of a neutron the dependence of Pl on small k is given by k2�2l, see Eq. (A.30), with an

l-dependence determined by the centrifugal barrier.

With the theorem of detailed balance one obtains the direct relation

d3r
dEC dXC dXc

¼ KlabjW ð~QQBbÞj2
16p2

k2CcQ
2
Aa

vCc
vAx

drl
dX

ðAx! CcÞPlðR; gAx; kAx;QAaÞ ð79Þ

of the three-body cross-section to the two-body cross-section for partial wave l. This
equation shows clearly the ‘‘parallelism’’ of the Aþ x reaction and the Trojan–Horse

reaction: The cross-section (79) is proportional to the cross-section for the Aþ x
reaction, modulated by the penetrability factor Pl. The factor Pl is directly related to

the TH integrals (77). It leads in general to an enhancement of the higher partial

waves and it contains the expð2pgÞ factor.
A most convincing beautiful example of this parallelism is the comparison of neu-

tron elastic scattering and the ðd; pÞ reaction on 15N in the same energy range of the

continuum in 16N. There are the same peaks in both spectra, changed in magnitude

according to the factor Pl (g ¼ 0 in the neutron transfer case). Also the s-wave res-

onance which appears as a destructive interference with the l ¼ 0 continuum shows
up nicely in the ðd; pÞ spectrum [15].

5. Trojan–Horse Coulomb scattering amplitude

In case of an inelastic two-body reaction only the nuclear contribution to the TH

scattering amplitude is relevant. For the elastic scattering with Ax ¼ Cc also the TH

Coulomb scattering amplitude (67) contributes to the total TH scattering amplitude.
It depends only on the TH integrals J ðF Þl with the regular Coulomb wave functions.

The summation over l in Eq. (67) poses no serious problem but it is convenient to

reformulate the expression as in the case of the TH integrals in order to see the re-

duction of the Coulomb barrier more clearly. For that purpose the TH Coulomb

scattering amplitude is written as a difference

f THC ¼ f THC0 � f TH
CR ð80Þ

of a contribution (suppressing the indices of the momenta)

f THC0 ¼ 2gk2Q
k2 � Q2

X
l

ð2lþ 1ÞPlðk̂k � Q̂QÞeirlðgÞM�1
ll ðFl; g; k;QÞ ð81Þ

where the cutoff radius R is set to zero and a finite range contribution

f THCR ¼
X
l

ð2lþ 1ÞPlðk̂k � Q̂QÞeirlðgÞLlðR; g; k;QÞ ð82Þ
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with the integrals

LlðR; g; k;QÞ ¼
Z R

0

drFlðg; krÞzlðQrÞ: ð83Þ

These are easily calculated numerically and decrease rapidly with increasing l leading
to a rapid convergence of the sum (82). Similar to relation (61) for the full TH

scattering amplitude, the contribution (81) to the TH Coulomb scattering amplitude

can be expressed as a matrix element

f THC0 ¼ kQ
4p

Wð�Þ
Coulð~kkÞj expði~QQ �~rrÞ

D E
ð84Þ

with the pure Coulomb scattering wave function

Wð
Þ
Coulð~kkÞ ¼ e�ðp=2ÞgCð1
 igÞ expði~kk �~rrÞ1F1ð�ig; 1;
i½kr �~kk �~rr�Þ ð85Þ

where 1F1 denotes a confluent hypergeometric function. This form allows an ana-

lytical calculation with the result

f THC0 ¼ � 2gk2Q
Q2 � k2

C0ðgÞ
ð~QQ�~kkÞ2

exp ir0ðgÞ
(

þ ig ln
Q2 � k2

ð~QQ�~kkÞ2

" #)
ð86Þ

as explained in Appendix D. Contrary to the usual Coulomb scattering amplitude

(74) there is no divergence for k ! 0 since Q remains finite. In this limit, the energy

dependence of the TH Coulomb scattering amplitude is given by kC0ðgÞ. The ap-

pearance of the C0ðgÞ factor in the amplitude causes a strong reduction at small k.

6. Applications of the Trojan–Horse method

Several reactions have been studied with the TH method recently. They are listed

in Table 1 with 2H and 6Li (¼ aþd) as typical ‘‘Trojan–Horses.’’ These nuclei allow

to study the transfer of protons, neutrons, deuterons and a-particles, which covers

most of the cases of astrophysical interest for the two-body reaction.

6.1. Kinematical conditions

The Trojan–Horses employed so far have a dominant s-wave configuration in

their gound state. Their momentum distribution W ð~QQBbÞ has a maximum around

zero. Correspondingly, the equation

Table 1

Projectile energy Epro and corresponding quasi-free energy Eqf
Ax for pairs of two-body and Trojan–Horse

reactions

Two-body reaction Trojan–Horse reaction Epro (MeV) Eqf
Ax (MeV) Ref.

2H(6Li,4He)4He 6Li(6Li,4He4He)4He 6.0 0.029 [20–22]
7Li(p,4He)4He 2H(7Li,4He4He) 19.0–21.0 0.161–0.412 [23–26]
12C(4He,4He)12C 6Li(12C,4He12C)2H 12.0–18.0 1.527–3.027 [27,28]
6Li(p,3He)4He 2H(6Li,3He4He) 25.0 1.362 [38]
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~QQBb ¼ 0 ð87Þ
defines the so-called quasi-free condition. In this region of the three-body phase

space the cross-section for the quasi-free reaction will reach a maximum. From this

condition the corresponding quasi-free c.m. energy

Eqf
Ax ¼ EAa 1

�
� lAa

lBb

l2
bx

m2
x

�
� ea ð88Þ

in the initial channel of the two-body reaction (2) is derived from energy conser-

vation (11) assuming the plane wave approximation. It is obvious that even with a

large c.m. energy EAa in the entrance channel of the three-body reaction (3) a small

energy EAx can be reached if a suitable Trojan–Horse a is chosen. This is confirmed in
Table 1 where the projectile energy in the laboratory system and the quasi-free en-

ergy are shown for several reactions.

The relation between Eqf
Ax and EAa is purely a kinematical consequence. It is not

related to the Fermi motion of particle x inside the Trojan–Horse a which would in-

volve a dependence on the width of the momentum amplitude. However, in an actual

experiment a cutoff in the momentum transfer ~QQBb is chosen to select the region

where the quasi-free process dominates the cross-section. This procedure limits the

range in energies EAx that are within reach in the experiment for a chosen projectile
energy Epro.

In case of the quasi-free condition, all nuclei in the final state of reaction (3) are

emitted in the same plane. The momentum of the spectator b is in beam direction

which makes it difficult to detect b in the experiment. In the laboratory system the

nuclei C and c are emitted under angles #C and #c on opposite sides of the beam axis.

If the scattering angle #c:m: in the c.m. system of the two-body reaction is given, the

angles #C, #c, the so-called quasi-free angles, are completely specified for a fixed

beam energy from kinematical considerations.
As a consequence, the quasi-free condition determines the setup of the experi-

ment. If a particular two-body reaction (2) is to be studied close to a c.m. energy

EAx and if the Trojan–Horse a is selected, then from Eq. (88) the appropriate beam

energy can be extracted. Since the momentum amplitude W has a finite width it is

possible to study the two-body reaction in a certain energy window around EAx.
The c.m. scattering angle #c:m: determines the arrangement of the detectors close

to the pair of quasi-free angles.

When EBb is zero in (11) the maximum energy

Emax
Ax ¼ EAa � ea ð89Þ

in the two-body system is reached for a fixed c.m. energy EAa in the entrance channel

of the three-body reaction. In this case ~kkBb ¼ 0 and ~QQAa ¼~kkAa. The momenta of all

nuclei C, c, and b in the final state are parallel to the beam momentum in the lab-

oratory system. Since ea > 0 it follows that the relation

kAx <
ffiffiffiffiffiffiffi
lAx
lAa

r
QAa < QAa ð90Þ

holds in all kinematically allowed regions of the phase space.

248 S. Typel, G. Baur / Annals of Physics 305 (2003) 228–265



6.2. Threshold behaviour of cross-sections

The energy dependence of the two-body cross-section

dr
dX

ðAx! CcÞ ¼ 1

4k2Ax

X
k

X
ll0
ð2lþ 1Þð2l0 þ 1Þðl0l00jk0Þ2Pkðcos#ÞSlAxCcSl

0�
AxCc

ð91Þ
for the inelastic Aþ x! C þ c reaction above the reaction threshold is governed by

the 1=k2Ax factor and energy dependence

SlAxCc / expð�pgAxÞ ð92Þ
of the relevant S-matrix element. The Coulomb barrier leads to a strong suppression

of the the cross-section

dr
dX

ðAx! CcÞ / k�2Ax expð�2pgAxÞ ð93Þ

for kAx ! 0 due to the decreasing exponential factor. This behaviour motivates the

introduction of the astrophysical S factor (1). In the TH cross-section drTH=dX, that

appears in Eq. (68), the factor k�2Ax is replaced with k�2Cc and the TH integrals J ðþÞl

appear. Their energy dependence for small kAx is determined by kAx=C0ðgAxÞ �
kAx expðpgAxÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2pgAx

p
from the contribution of the irregular Coulomb wave func-

tion. This leads to a kAx dependence of the three-body cross-section (68) according to

d3r
dEC dXC dXc

/ k�2Ax v�1Ax expð�2pgAxÞk2Ax
expð2pgAxÞ

2pgAx
¼ ð2pgAxvAxÞ

�1 ¼ const:

ð94Þ
in the lowest order of kAx; cf. also Eq. (79) with the kAx dependence of the penetra-

bility factor Pl / k3Ax expð2pgAxÞ. As a result the cross-section does not vanish at the

threshold but takes on a finite value. Of course, the same considerations apply to the

case when the spins of the particles are considered. Also in the case of the transfer of

neutron, like in a ðd; pÞ stripping reaction, it is well known that the cross-section is

finite at the threshold En ¼ 0 [17,18]. The reason is the same as in the case of charged

particles.

6.3. Extraction of astrophysical S factors

In an actual TH experiment the measured cross-section of the three-body reaction

depends on the geometry of the setup, the chosen Trojan–Horse, and the energy of

the projectile. The differential three-body cross-section (68) or (79) can be projected

onto a simple cross-section

dr
dE

¼
Z

dEC dXC dXc
d3r

dEC dXC dXc
dðEAx � EÞF ðEC;XC;XcÞ ð95Þ

depending on the Aþ x c.m. energy E. The efficiency function F takes cut-offs in

particle energies, momenta (e.g., ~QQBb), the detector geometry etc. into account. The
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experimental spectrum (95) can be compared to a corresponding theoretical cross-

section from a simulation of the experiment assuming a certain energy dependence of

the relevant on-shell S-matrix elements of the two-body reaction, e.g., from a R-

matrix parametrization. By a variation of the parameters, the best fit to the exper-

iment is found and the on-shell two-body cross-section can be calculated. If there is
only a contribution of one partial wave, the procedure becomes simpler. The ratio of

the measured cross-section (95) to the corresponding simulated cross-section directly

gives the energy dependence of the S factor relative to the energy dependence as-

sumed in the theoretical S factor of the two-body reaction. Due to the uncertainties

in the description of the reaction mechanism it is expected to be difficult to extract

absolute values of the cross section. So it is better to normalize the cross-section to

results from direct experiments at higher energies. However, we expect that the en-

ergy dependence of the cross-section (S factor) can be extracted much more reliably.
For recent applications of the TH method with detailed information on the exper-

imental realisation we refer to the references [20–26].

6.4. Elastic scattering with the Trojan–Horse method

The main aim for applying the TH method is the extraction of the energy depen-

dence of cross-sections or astrophysical S factors for inelastic two-body reactions.

But also the indirect investigation of elasting two-body scattering Aþ x! Aþ x
can be rewarding. In the direct two-body scattering process the cross-section is dom-

inated by the contribution of the Coulomb scattering amplitude (74) at low energies

that diverges with k�2Ax . By way of contrast, the TH Coulomb scattering amplitude

(67) vanishes for kAx ! 0 due to the appearance of the TH integrals with the regular

Coulomb wave function Fl. The nuclear contribution to the TH cross-section (70)

becomes dominant because of the TH integrals with the irregular Coulomb wave

functions in Eq. (73). This allows the study of nuclear effects in the scattering at small

energies, e.g., the influence of sub-threshold or low energy resonances. First attempts
in this direction were made in recent experiments [27,28].

7. Summary and outlook

In this paper the basic theory of the Trojan–Horse method was developed starting

from a distorted wave Born approximation of the T-matrix element. The essential

surface approximation allows to find the relation between the cross-section of the
three-body reaction and the S-matrix elements of the astrophysically relevant two-

body reaction. In the modified plane wave approximation the relation between the

three- and two-body cross-sections becomes very transparent. The three-body

cross-section is a product of a kinematical factor, a momentum distribution and

an off-shell two-body cross-section. Off-shell effects are expressed in terms of so-

called TH integrals that were studied in detail. Their energy dependence leads to a

finite cross-section of the three-body reaction at the threshold of the two-body reac-

tion without the suppression by the Coulomb barrier. This allows to extract the en-
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ergy dependence of astrophysical cross-sections from the three-body breakup reac-

tion to very low energies without the problems of electron screening and extremely

low cross-section. A comparison of results for S factors from direct and indirect ex-

periments can improve the information on the electron screening effect. However,

dedicated Trojan–Horse experiments are necessary in order to achieve a precision
comparable to direct measurements.

The validity of the Trojan–Horse method can be tested by comparing the cross-

sections extracted from the indirect experiment with results from direct measurements

of well-studied reactions. In principle it is possible to assess systematic uncertainties

of the Trojan–Horse method by studying various combinations of projectile energies,

spectators in the Trojan–Horse and scattering angles. Furthermore, different theoret-

ical approximations can be compared, e.g., full DWBA calculations with and without

the surface approximation and simpler modified plane wave approximations.
One may also envisage applications of the Trojan–Horse method to exotic nuclear

beams. An unstable projectile hits a Trojan–Horse target allowing to study specific

reactions on exotic nuclei. A study of low-energy elastic scattering with the Trojan–

Horse method opens another application which can lead to improved information

relevant to the theoretical description of nuclear reactions at low energies.
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Appendix A. Calculation of the Trojan–Horse integrals

With the differential equation for the Coulomb wave functions

0 ¼ 1

k2
d2

dr2
HlðkrÞ þ 1

�
� 2g
kr
� lðlþ 1Þ

k2r2

�
HlðkrÞ; ðA:1Þ

the TH integral (55) becomes

J ðHÞl ðR; g; k;QÞ ¼ k
Z 1

R
dr

2g
kr

�
þ lðlþ 1Þ

k2r2
� 1

k2
d2

dr2

�
Hlðg; krÞzlðQrÞ: ðA:2Þ

After partial integration and with help of the differential equation for zl

0 ¼ 1

Q2

d2

dr2
zlðQrÞ þ 1

�
� lðlþ 1Þ

Q2r2

�
zlðQrÞ; ðA:3Þ

the expression

J ðHÞl ðR; g; k;QÞ ¼ k
k2 � Q2

2gkI ðHÞl ðR; g; k;QÞ
h

þ kH 0
lðg; kRÞzlðQRÞ

� QHlðg; kRÞz0lðQRÞ
i
; ðA:4Þ
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with the converging integral

I ðHÞl ðR; g; k;QÞ ¼
Z 1

R
drHlðg; krÞr�1zlðQrÞ ðA:5Þ

is obtained. The prime denotes the differentiation with respect to the argument. We

disregard the contribution from the upper bound (infinity). This corresponds to the

regularization procedure mentioned above. Relation (A.4) cannot be used if k ¼ Q
but this case will never occur since k < Q from kinematical considerations (see

Section 6.1). The integral (A.5) can be written as

I ðHÞl ðR; g; k;QÞ ¼ kQM�1
ll ðH ; g; k;QÞ �

Z R

0

drHlðg; krÞr�1zlðQrÞ; ðA:6Þ

with the integral

M�k
l1l2
ðH ; g; k;QÞ ¼ 1

kQ

Z 1

0

drHl1ðg; krÞr�kzl2ðQrÞ: ðA:7Þ

because I ðHÞl is still finite in the limit R! 0. The functions M�k
l1l2

are special cases of

the radial matrix elements in the quantum mechanical theory of Coulomb excitation

[39]. A more general form also appears in the general theory of transfer reactions to

the continuum [40]. In the THM only monopole matrix elements (k ¼ 1) are needed.

They can be calculated explicitly for both the regular and irregular Coulomb wave

functions (see Appendix B for details). The TH integrals with the regular Coulomb

functions are given by

M�1
00 ðF ; g; k;QÞ ¼

C0ðgÞ
2gkQ

sin f; ðA:8Þ

M�1
11 ðF ; g; k;QÞ ¼

3C1ðgÞ
4gkQð1þ g2Þ

Q
k

��
þ k
Q

�
sin f� 2g cos f

�
ðA:9Þ

for l ¼ 0; 1. The argument of the trigonometric functions is f ¼ g ln z1 with z1 ¼
ðQþ kÞ=ðQ� kÞ. The constants ClðgÞ are recursively defined by [35]

C0ðgÞ ¼
2pg

expð2pgÞ � 1

� �1=2

; ClðgÞ ¼
ðl2 þ g2Þ1=2

lð2lþ 1Þ Cl�1ðgÞ: ðA:10Þ

The case with the irregular Coulomb wave functions is slightly more intricate and

leads to

M�1
00 ðG; g; k;QÞ ¼

C0ðgÞ
2gkQ

ð1� cos fÞ þ p
2kQC0ðgÞ

½1� S0�; ðA:11Þ

M�1
11 ðG; g; k;QÞ ¼

3C1ðgÞ
4gkQð1þ g2Þ

Q
k

��
þ k
Q

�
ð1� cos fÞ � 2g sin f

�

þ p
12kQC1ðgÞ

Q
k

��
þ k
Q

�
ð1� S0Þ þ 2gS1

�
; ðA:12Þ
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with the series

S0 ¼
2g
p

X1
n¼1

1� z�n1
n2 þ g2

; S1 ¼
2

p

X1
n¼1

nz�n1
n2 þ g2

: ðA:13Þ

Explicit expressions for larger l are obtained from the recursion relation (l > 0)

2lþ 1

2

k
Q

�
þ Q
k

�
M�1
ll ¼ jlþ igjM�1

l�1l�1 þ jlþ 1þ igjM�1
lþ1lþ1; ðA:14Þ

which is valid for Hl ¼ Fl and Hl ¼ Gl. It can be derived in a similar manner as in

Coulomb excitation theory [39]. However, for a numerical calculation the question

of stability of (A.14) arises. In the case of Hl ¼ Fl only the backward recurrence is

stable. Starting with, e.g., M�1
LL ðH ; g; k;QÞ ¼ 0 and M�1

L�1L�1ðH ; g; k;QÞ ¼ 1 for large

L� l a backward recursion gives integrals for l ¼ 0; 1; 2; . . . after normalizing to the

known value (A.8). In the case of Hl ¼ Gl the upward recurrence can be used with

the known starting values M�1
00 ðG; g; k;QÞ and M�1

11 ðG; g; k;QÞ. The remaining inte-
gral from 0 to R in Eq. (A.6) is easily performed numerically.

When g becomes large (and k small) it is not favorable to calculate the integral

I ðGÞl ðR; g; k;QÞ from Eq. (A.6). The irregular Coulomb wave functions becomes very

large for small radii r and a difference of large numbers has to be evaluated with loss

of accuracy. In this case it is more convenient to use Eq. (A.5) directly because Gl
becomes small with increasing r > R very rapidly.

A.1. Limiting cases

In the case of R! 0 the surface contributions in Eq. (A.4) vanish only if Hl ¼ Fl.
This can be seen from the approximations [35]

Flðg; xÞ !
ð2lþ 1Þ!ClðgÞ

ð2gÞlþ1
ffiffiffiffiffiffiffi
2gx

p
I2lþ1ð2

ffiffiffiffiffiffiffi
2gx

p
Þ � ClðgÞxlþ1 ðA:15Þ

and zlðxÞ ! xlþ1=ð2lþ 1Þ!! for x ¼ kR! 0. In this case the expression for TH inte-

gral with the regular Coulomb wave function reduces to the simple form

J ðF Þl ð0; g; k;QÞ ¼ 2gk3Q
k2 � Q2

M�1
ll ðFl; g; k;QÞ: ðA:16Þ

Using the approximation [35]

Glðg; xÞ !
2ð2gÞl

ð2lþ 1Þ!ClðgÞ
ffiffiffiffiffiffiffi
2gx

p
K2lþ1ð2

ffiffiffiffiffiffiffi
2gx

p
Þ � x�l

ð2lþ 1ÞClðgÞ
ðA:17Þ

for small x one obtains for Hl ¼ Gl the result

J ðGÞl ð0; g; k;QÞ ¼ kQ
k2 � Q2

2gk2M�1
ll ðGl; g; k;QÞ

"
� ðQ=kÞl

ð2lþ 1Þ!!ClðgÞ

#
; ðA:18Þ

with a remaining contribution from the surface terms.

In the special case where the transferred particle x is a neutron, the Coulomb func-

tions uð
Þl ðxÞ reduce to Hankel functions x½�ylðxÞ 
 ijlðxÞ� ¼ 
ixhð
Þl ðxÞ with the
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spherical Neumann and Bessel functions yl and jl, respectively [35]. There is no con-

tribution from the term with the integral I ðHÞl and the TH integral simplifies to

J ð
Þl ðR; 0; k;QÞ ¼ 
ik2QR2

k2 � Q2
khð
Þl�1ðkRÞjlðQRÞ
h

� Qhð
Þl ðkRÞjl�1ðQRÞ
i
; ðA:19Þ

so that J ðþÞl ðR; 0; k;QÞ is ik2Q times the Il integral in the stripping enhancement

factors Fl of [41]. For the neutral particle, there is, for l 6¼ 0, still a barrier, the an-

gular momentum barrier with its lðlþ 1Þ=r2 radial dependence. The enhancement is
due to the Hankel functions hð
Þl ðxÞ with a x�ðlþ1Þ behaviour for x! 0. The mathe-

matical treatment of the Coulomb functions is much more involved.

A.2. Energy dependence of the Trojan–Horse integrals

In order to investigate the behaviour of J ðHÞl for k ! 0 it is useful to study the case

R ¼ 0 first. From the explicit expressions for the integrals M�1
ll ðFlÞ the approxima-

tions

J ðF Þ0 ð0; g; k;QÞ ¼ J ðF Þ0;redð0; g; nÞ ! �C0ðgÞn2 sinð2gnÞ; ðA:20Þ

J ðF Þ1 ð0; g; k;QÞ ¼ J ðF Þ1;redð0; g; nÞ ! �C0ðgÞn2 sinð2gnÞ
2gn

�
� cosð2gnÞ

�
ðA:21Þ

for the integrals with the regular Coulomb functions F0 and F1 are found. Here, we

used the reduced variables defined in Eq. (56). Because the recursion relation (A.14)

for M�1
ll reduces to the recursion relation of the Riccati–Bessel functions we have the

approximation

J ðF Þl ð0; g; k;QÞ ¼ J ðF Þl;redð0; g; nÞ ! �C0ðgÞn2zlð2gnÞ ðA:22Þ

for all l in the limit k ! 0. The argument 2gn ¼ 2gk=Q is independent of k for

constant Q and the entire k dependence is determined by C0ðgÞn2 independent of l.
The TH integrals with the irregular Coulomb wave functions reduce in the limit

k ! 0 to the form

J ðGÞ0 ð0; g; k;QÞ ¼ J ðGÞ0;redð0; g; nÞ !
n

C0ðgÞ
½1� 2gnf ð2gnÞ�; ðA:23Þ

J ðGÞ1 ð0; g; k;QÞ ¼ J ðGÞ1;redð0; g; nÞ !
n

C0ðgÞ
1

gn

�
� f ð2gnÞ � 2gngð2gnÞ

�
; ðA:24Þ

with functions

f ðxÞ ¼
Z 1

0

dt
e�xt

t2 þ 1
¼ CiðxÞ sin x� SiðxÞ

h
� p

2

i
cos x; ðA:25Þ

gðxÞ ¼
Z 1

0

dt
t e�xt

t2 þ 1
¼ �CiðxÞ cos x� SiðxÞ

h
� p

2

i
sin x; ðA:26Þ
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that can be expressed in terms of the sine and cosine integrals SiðxÞ and CiðxÞ [35].
The expressions inside the brackets in Eqs. (A.23) and (A.24) are constants and the

k-dependence of the TH integrals with the irregular Coulomb wave functions is

determined by n=C0ðgÞ.
In the case of finite R the energy dependence of the TH integrals for n ! 0 can be

extracted with the help of the approximations (A.15) and (A.17) which are valid for

2g � nx0. The energy dependence of the differences

J ðF Þl ð0; g; k;QÞ � J ðF Þl ðR; g; k;QÞ ¼ J ðF Þl;redð0; g; nÞ � J
ðF Þ
l;redðx0; g; nÞ

� ð2lþ 1Þ!ClðgÞn
ð2gÞlþ1

�
Z x0

0

dx
ffiffiffiffiffiffiffiffiffiffi
2gnx

p
I2lþ1ð2

ffiffiffiffiffiffiffiffiffiffi
2gnx

p
ÞzlðxÞ ðA:27Þ

and

J ðGÞl ð0; g; k;QÞ � J ðGÞl ðR; g; k;QÞ ¼ J ðGÞl;redð0; g; nÞ � J
ðGÞ
l;redðx0; g; nÞ

� 2ð2gÞln
ð2lþ 1Þ!ClðgÞ

�
Z x0

0

dx
ffiffiffiffiffiffiffiffiffiffi
2gnx

p
K2lþ1ð2

ffiffiffiffiffiffiffiffiffiffi
2gnx

p
ÞzlðxÞ ðA:28Þ

is entirely given by the factor in front of the integrals since gn ¼ gk=Q is constant for

constant Q. For large g and small n it is found that the energy dependence of the

finite range correction to the TH integral with the regular and irregular Coulomb

functions is given by n2C0ðgÞ and n=C0ðgÞ, respectively. The finite range correction

essentially leads to a change in the absolute value of the integral but the energy

dependence of J ð
Þl ðR; g; k;QÞ and J ð
Þl ð0; g; k;QÞ is the same for small k.
When the Sommerfeld parameter g increases, the coefficient C0ðgÞ becomes very

small and the TH integral with Gl is much larger than the TH integral with Fl.
The integrals J ð
Þl are therefore dominated by J ðGÞl at low energies.

In the case where a neutron is transferred in reaction (3) the reduced TH integrals

can be written as

J ð
Þl ðR; 0; k;QÞ ¼ J ð
Þl;redðx0; 0; nÞ

¼ 
in2x20
n2 � 1

nhð
Þl�1ðnx0Þjlðx0Þ
h

� hð
Þl ðnx0Þjl�1ðx0Þ
i

ðA:29Þ

in the variables x0 ¼ QR and n ¼ k=Q with g ¼ 0. For n ! 0 we find the approxi-

mation

J ð
Þl;redðx0; 0; nÞ !
ð2l� 1Þ!!
ðnx0Þl�1

jl�1ðx0Þ; ðA:30Þ

with a characteristic l-dependence due to the centrifugal barrier.
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A.3. Simplified approximation of TH integrals

The dominance of the contribution with the irregular Coulomb wave function Gl
in the TH integrals J ð
Þl at low energies also motivates a simple approximation in the

limit k ! 0 that has been used in applications of the THM to reactions with Ax 6¼ Cc.
In this case the integral is completely determined by the contributions at radii close

to R and the integrand decreases very fast with increasing r. If we assume that a gen-

eral function f ðrÞ decreases exponentially, the integral of f ðrÞ from R to infinity can

be calculated fromZ 1

R
drf ðrÞ ¼ f ðRÞ

Z 1

R
dr exp

�
� r

DR

�
¼ DRf ðRÞ; ðA:31Þ

with DR ¼ �f ðRÞ=f 0ðRÞ and ReðDRÞ > 0. In the TH integral J ð
Þl the appropriate

value of DR is determined by

DR � � kG0lðg; kRÞ
Glðg; kRÞ

�
þ Qz

0
lðQrÞ

zlðQrÞ

��1
; ðA:32Þ

neglecting the small contribution of Fl for k ! 0. From the approximation (A.17) of

the irregular Coulomb wave function for kR� 2g we find

DR � �
ffiffiffiffiffiffiffiffi
2gk
R

r
K 0

2lþ1ð2
ffiffiffiffiffiffiffiffiffiffi
2gkR

p
Þ

K2lþ1ð2
ffiffiffiffiffiffiffiffiffiffi
2gkR

p
Þ

"
þ Qz

0
lðQrÞ

zlðQrÞ

#�1
; ðA:33Þ

independent of k because gk is constant and Q is practically independent of k for

small k. Applying this result to the TH integral leads to the approximation

J ð
Þl ðR; g; k;QÞ ¼ k
Z 1

R
druð
Þl ðg; krÞzlðQrÞ � kDRuð
Þl ðg; kRÞzlðQRÞ: ðA:34Þ

Since we are only interested in the k-dependence, the TH integral can be replaced by

the value of the integrand,

J ð
Þl ðR; g; k;QÞ ! kRuð
Þl ðg; kRÞzlðQRÞ; ðA:35Þ

at the cutoff radius R with the factor R instead of DR. The energy dependence for

small k in this simple approximation agrees with the exact result for the TH integrals.

Appendix B. Analytical calculation of radial integrals

The radial integrals

M�1
ll ðH ; g; k;QÞ ¼ 1

kQ

Z 1

0

drHlðg; krÞr�1zlðQrÞ ðB:1Þ

appearing in Eq. (A.6) can be calculated explicitly by using the integral represen-

tation
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Flðg; krÞ þ iGlðg; krÞ ¼
iðkrÞlþ1

ð2lþ 1Þ!ClðgÞ

Z iþ1

i
dse�krsðs� iÞl�igðsþ iÞlþig ðB:2Þ

of the combined Coulomb function Hl ¼ Fl þ iGl. This form has been obtained from

the representation in [35] by the substitution t ¼ krðs� iÞ. The integration path in the

variable s is a parallel to the real axis in the complex plane. Since the recursion re-

lation (A.14) connects integrals of three successive l-values, only the basic integrals

with l ¼ 0 and l ¼ 1 are needed for the explicit calculation of M�1
ll for all l. With

z0ðxÞ ¼ sin x and z1ðxÞ ¼ sin x=x� cos x the integration over the radial coordinate r is
easily performed and one finds

M�1
00 ðH ; g; k;QÞ ¼ i

C0ðgÞ

Z iþ1

i
ds
ðsþ iÞigðs� iÞ�ig

k2s2 þ Q2
ðB:3Þ

and

M�1
11 ðH ; g; k;QÞ ¼ ikQ

3C1ðgÞ

Z iþ1

i
ds
ðsþ iÞ1þigðs� iÞ1�ig

ðk2s2 þ Q2Þ2
: ðB:4Þ

The substitution s ¼ iðt þ 1Þ=ðt � 1Þ leads to the expressions

M�1
00 ðH ; g; k;QÞ ¼ �2

C0ðgÞðQ2 � k2Þ I0ðg; zÞ; ðB:5Þ

M�1
11 ðH ; g; k;QÞ ¼ 4kQ

3C1ðgÞðQ2 � k2Þ2
d

dz
I0ðg; zÞ ðB:6Þ

with the integral

I0ðg; zÞ ¼
Z
C
dt

tig

t2 � 2tzþ 1
: ðB:7Þ

The contour C is the straight line from 1 to 1þ i1 parallel to the imaginary axis in

the complex plane. The integral depends on the variable

z ¼ Q
2 þ k2

Q2 � k2 ðB:8Þ

which is always larger than 1 for the conditions of the TH method. The integrand has

two poles at z1 ¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
> 1 and z2 ¼ z�

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
< 1 on the real axis. In the

next step the path of integration is deformed to lie on the real axis and the integrand

is broken into partial fractions. This yields

I0ðg; zÞ ¼
Z 1

1

dt
tig

t2 � 2tzþ 1
� piResz1

tig

t2 � 2tzþ 1

¼ 1

z1 � z2
I1
h

� I2 � pizig1
i

ðB:9Þ
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with the contribution of the residue at the pole z1. The remaining integrals

Ii ¼
Z 1

1

dttig
1

t � zi

�
� 1

t

�
ðB:10Þ

for i ¼ 1; 2 are evaluated with the help of the geometric series and the relation [35]

pg
tanhðpgÞ ¼ 1þ 2g2

X1
n¼1

1

n2 þ g2
: ðB:11Þ

Collecting all contributions we find

I0ðg; zÞ ¼
i

2g
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p C2
0ðgÞ z

ig
1

�"
� 1
�
� 2g2

X1
n¼1

z�n1 � 1

n2 þ g2
� pg

#
ðB:12Þ

for the fundamental integral (B.7). Separating real and imaginary parts, the explicit

expressions of the integrals M�1
00 ðH0; g; k;QÞ and M�1

00 ðG0; g; k;QÞ are found with Eq.

(B.5). In the case l ¼ 1 the derivative of I0ðzÞ with respect to z has to be calculated

first.

Appendix C. Cross-sections for particles with spin

For the application of the THM to a particular reaction one has to consider that

the nuclei participating in the reactions (2) and (3) usually carry a spin. In this case

the definition of the relevant quantities becomes more intricate but the general pro-
cedure remains the same as in the spinless case. Spins of an individual particle i will
be denoted in the following by si with projection mi.

Here, the channel spin basis in the derivation of the expressions is used. In the

two-particle reaction the spins sA and sx in the initial state are coupled to the

channel spin sAx. Similarly, in the final state sC and sc are coupled to the channel

spin sCc. Coupling sCc with the spin of the spectator sb gives the angular momen-

tum sf of the three-body final state. The initial state of reaction (3) is character-

ized by the angular momentum si which is obtained from coupling the spins sA
and sa.

The cross-section of reaction (3) in the laboratory system

d3r
dEC dXC dXc

¼ Klab

ð2sA þ 1Þð2sa þ 1Þ

�
X
sisf

X
mimf

X
sCc

Tfið~kkCc;~kkBb; sCcsf mf ;~kkAa; simiÞ
��� ���2 ðC:1Þ

is obtained by summing over final spin states and averaging over initial spin states
with the three-body T-matrix element Tfi that carries now both momentum and spin

indices. In the modified plane wave approximation it is given by
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T TH
fi ð~kkCc;~qqBb; sCcsf mf ;~qqAa; simiÞ ¼ expði~qqBb �~rrBbÞWð�Þ

asymðCc
D

� b;~kkCc; sf mf Þ

� jVxbj expði~qqAa �~rrAaÞ/AaðsimiÞ
E

ðC:2Þ

with the asymptotic wave function

Wð�Þ
asymðCc� b;~kkCc; sCc; sf mf Þ

¼
X
mCcmb

ðsCcmCcsbmbjsf mf ÞWð�Þ
asymðCc;~kkCc; sCcmCcÞ/bðsbmbÞ; ðC:3Þ

where

Wð
Þ
asymðCc;~kkCc; sCc; mCcÞ ¼

4p
kCc

X
asa

X
JM

X
lalCc

� 1

ra
nJð
ÞlasalCcsCc

ða; karaÞYlasaJM ða; r̂raÞZ
lCcsCcmCc�
JM ðk̂kCcÞ ðC:4Þ

for ra � R and Wð
Þ
asym ¼ 0 for ra < R. The vector spherical harmonics

YlsJMða; r̂rÞ ¼
X
mm

ðlmsmjJMÞilYlmðr̂rÞ/aðsmÞ ðC:5Þ

and the angular distribution functions

Zlsm
JMðk̂kÞ ¼

X
m

ðlmsmjJMÞYlmðk̂kÞ: ðC:6Þ

are obtained by coupling the channel spins s with the corresponding orbital angular
momenta l to the total angular momentum J . The radial wave functions

nJðþÞlasalCcsCc
ða; karaÞ ¼

1

2i

ffiffiffiffiffiffi
vCc
va

r
SJaCclasalCcsCc

uðþÞla ðga; karaÞ
h

� daCcdlalCcdsasCcu
ð�Þ
la ðga; karaÞ

i
ðC:7Þ

and

nJð�ÞlasalCcsCc
ða; karaÞ ¼ nJðþÞ�lasalCcsCc

ða; karaÞ ðC:8Þ

contain the general S-matrix elements SJaCclasalCcsCc
for a transition from a channel with

quantum numbers lCcsCC in the partition Cc to the channel lasa in partition a.
The T-matrix in the modified plane wave approximation

T TH
fi ð~kkCc;~qqBb; sCcsf mf ;~qqAa; simiÞ ¼

4p
kAxQAa

W ð~QQBbÞFTHð~QQAa;~kkCc; sCcsf mf simiÞ ðC:9Þ

again factorizes into a form with the momentum amplitude W and the scattering

amplitude
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FTHð~QQAa;~kkCc;sCcsf mf simiÞ ¼
1

2ikCc

X
J

X
sAx

X
lAxlCc

ð2J þ1ÞPJlAxsAxlCcsCcðk̂kCc;Q̂QAa;sf mf simiÞ

�
ffiffiffiffiffiffi
vCc
vAx

r
SJAxCclAxsAxlCcsCc

J ðþÞlAx
ðR;gAx;kAx;QAaÞ

h

�dAxCcdlAxlCcdsAxsCcJ
ð�Þ
lAx
ðR;gAx;kAx;QAaÞ

i
ðC:10Þ

which is a matrix in spin space. The angular distribution is determined by the

function

PJlAxsAxlCcsCcðk̂kCc; Q̂QAa; sf mf simiÞ ¼
4p

2J þ 1

X
mxmb

X
mAma

X
mCcmCc

X
mAxmAx

�
X
M

YlCcmCcðk̂kCcÞY �lAxmAxðQ̂QAaÞ

� ðsxmxsbmbjsamaÞðsAmAsamajsimiÞ

� ðsCcmCcsbmbjsf mf ÞðlAxmAxsAxmAxjJMÞ

� ðsAmAsxmxjsAxmAxÞðlCcmCcsCcmCcjJMÞ

¼ 4p
X
mAxmCc

X
jm

ðsimijmjsf mf Þ

� ðlCcmCcjmjlAxmAxÞYlCcmCcðk̂kCcÞY �lAxmAxðQ̂QAaÞ

� X Jjsisf
lAxsAxlCcsCc

ðsx; sb; sa; sAÞ; ðC:11Þ

with

X Jjsisf
lAxsAxlCcsCc

ðsx; sb; sa; sAÞ ¼ ð�1ÞsAx�sx�sA�j

� ð�1ÞsAxþJþlCcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sAx þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lAx þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sa þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2si þ 1

p
ð2jþ 1Þ � ð2sAx þ 1Þ

�
sx sA sAx
si sb sa

� �
sAx sb si
sf j sCc

� �
sAx J lAx
lCc j sCc

� �
: ðC:12Þ

The Trojan–Horse scattering amplitude is a sum

FTH ¼ FTH
N þ FTH

C dAxCc ðC:13Þ
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of the pure Coulomb contribution

FTH
C ¼ 1

kCc

X
J

X
sAx

X
lAxlCc

ð2J þ 1Þ

� PJlAxsAxlCcsCcðk̂kCc; Q̂QAa; sf mf simiÞe
irlAx ðgCcÞJ ðF ÞlAx

ðR; gAx; kAx;QAaÞdlAxlCcdsAxsCc

¼ f THC dmimf dsisf ð�1Þ
sxþsAþsbþsf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sCc þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sa þ 1

p sx sA sCc
sf sb sa

� �

ðC:14Þ

and the nuclear contribution

FTH
N ¼ 1

2ikCc

X
J

X
sAx

X
lAxlCc

ð2J þ 1ÞPJlAxsAxlCcsCcðk̂kCc; Q̂QAa; sf mf simiÞ

�
ffiffiffiffiffiffi
vCc
vAx

r
T JAxCclAxsAxlCcsCc

J ðþÞlAx
ðR; gAx; kAx;QAaÞ ðC:15Þ

with

T JAxCclAxsAxlCcsCc
¼ eirlAx ðgAxÞþirlCc ðgCcÞ SJAxCcNlAxsAxlCcsCc

h
� dAxCcdlAxlCcdsAxsCc

i
ðC:16Þ

depending on the nuclear S-matrix element SJAxCcNlAxsAxlCcsCc
.

The unpolarized cross-section for the three-body reaction in the laboratory

system

d3r
dEC dXC dXc

¼ KlabjW ð~QQBbÞj2
16p2

k2AxQ
2
Aa

vCc
vAx

drTH

dX
ðC:17Þ

has the same form as in the case for spinless particles. The TH cross-section

drTH

dX
¼ 1

ð2sA þ 1Þð2sa þ 1Þ
X
sisf

X
mimf

X
sCc

vAx
vCc

jFTHj2

¼ drTH
C

dX

�
þ drTH

I

dX

�
dAxCc þ

drTH
N

dX
ðC:18Þ

again decomposes into a pure Coulomb contribution

drTH
C

dX
¼ 1

ð2sA þ 1Þð2sa þ 1Þ
X
sisf

X
mimf

X
sCc

FTH
C

�� ��2 ¼ f THC
�� ��2 ðC:19Þ
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an interference contribution

drTH
I

dX
¼ 1

ð2sA þ 1Þð2sa þ 1Þ
X
sisf

X
mimf

X
sCc

2Re F TH�
C FTH

N

� �

¼ 1

ð2sA þ 1Þð2sx þ 1Þ
X
J

X
lCc

X
sCc

� 2J þ 1

kCc
Re if TH

C

� ��
T JCcCclCcsCclCcsCc

J ðþÞlCc
ðR; gAx; kAx;QAaÞ

h i
PlCcðk̂kCc � Q̂QAaÞ

ðC:20Þ
and a nuclear contribution

drTH
N

dX
¼ 1

ð2sA þ 1Þð2sa þ 1Þ
X
sisf

X
mimf

X
sCc

vAx
vCc

FTH
N

�� ��2

¼ 1

ð2sA þ 1Þð2sx þ 1Þ
1

4k2Cc

X
k

X
JJ 0

X
sAxsCc

X
lAxlCc

�
X
l0Axl

0
Cc

ð�1ÞsAx�sCcZJJ 0lAxl0Ax
ðksAxÞZJJ

0

lCcl0Cc
ðksCcÞPkðQ̂QAa � k̂kCcÞ

� T JAxCclAxsAxlCcsCc
T J

0AxCc�
l0AxsAxl

0
CcsCc

J ðþÞlAx
ðR; gAx; kAx;QAaÞJ

ð�Þ
l0Ax
ðR; gAx; kAx;QAaÞ; ðC:21Þ

with factors

ZJJ
0

ll0 ðksÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J þ 1Þð2J 0 þ 1Þð2lþ 1Þð2l0 þ 1Þ

p
ðl0l00jk0Þ l k l0

J 0 s J

� �
ðC:22Þ

for the angular momentum coupling. The Coulomb contribution is the same as in the
case of spinless particles. Notice the change from sa to sx in the spin degeneracy

factors.

If only one orbital angular momentum l ¼ lAx ¼ l0Ax contributes in the Ax partition
to the inelastic two-body reaction Aþ x! C þ c, the TH cross-section

drTH

dX
¼ ð2sC þ 1Þð2sc þ 1Þ
ð2sA þ 1Þð2sx þ 1Þ

drl
dX

ðCc! AxÞPlðR; gAx; kAx;QAaÞ ðC:23Þ

is directly related to the usual on-shell cross-section

drl
dX

ðCc! AxÞ

¼ 1

ð2sC þ 1Þð2sc þ 1Þ
1

4k2Cc

X
k

X
JJ 0

X
sAxsCc

�
X
lCcl0Cc

ð�1ÞsAx�sCcZJJ 0ll ðksAxÞZJJ
0

lCcl0Cc
ðksCcÞPkðQ̂QAa�k̂kCcÞT JAxCclsAxlCcsCc

T J
0AxCc�

lsAxl0CcsCc
;

ðC:24Þ
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with the penetrability factor (77). In (C.23) the only difference to the case with

spinless particles is the appearance of the spin degeneracy factors. Applying the

theorem of detailed balance the simple relation

d3r
dEC dXC dXc

¼ Klab W ð~QQBbÞ
��� ���2 16p2

k2CcQ
2
Aa

vCc
vAx

drl
dX

� ðAx! CcÞPlðR; gAx; kAx;QAaÞ ðC:25Þ

is found which is the same as in the spinless case. The increase of the factor Pl at
small kAx compensates the decrease of the two-body cross-section ðdrl=dXÞ
ðAx! CcÞ.

Appendix D. Trojan–Horse Coulomb scattering amplitude

Recalling the procedure to derive the radial integrals (B.1), the contribution f THC0
to the Coulomb scattering amplitude can be written as

f THC0 ¼ gk2Q
2pðk2 � Q2Þ Wð�Þ

Coulð~kkÞjr�1j expði~QQ �~rrÞ
D E

: ðD:1Þ

by considering the Schr€oodinger equations for the Coulomb scattering wave Wð
Þ
Coul

and the plane wave. The matrix element can be evaluated by employing the

integral representation of the confluent hypergeometric function [35] in the Cou-

lomb scattering wave function (85). After the integration over the spatial coor-
dinates, an integral remains that represents a hypergeometric function [35]. This

technique is similar to the evaluation of Bremsstrahlung matrix elements [42,43].

One obtains

Wð�Þ
Coulð~kkÞjr�1j expði~QQ �~rrÞ

D E
¼ 4pe�ðp=2Þg

ð~QQ�~kkÞ2
Cð1þ igÞ2F1ð1;�ig; 1; xÞ ðD:2Þ

with the argument

x ¼ �2
~kk � ð~QQ�~kkÞ
ð~QQ�~kkÞ2

ðD:3Þ

in the hypergeometric function 2F1 which reduces to the simple form

2F1ð1;�ig; 1; xÞ ¼ ð1� xÞig ðD:4Þ

for the given parameters. Combining the above results the scattering amplitude as-

sumes the form (86) when the relation

Cð1þ igÞ ¼ C0ðgÞ exp
p
2

g
�

þ ir0

�
ðD:5Þ

with the Coulomb phase r0 is used.
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One application of this formula is the calculation of the modified momentum am-

plitude (37) with a Coulomb scattering wave function. In this case one finds

Wð~qq;~kkÞ ¼ �W ð~qqÞ 8pgk
Q2 � k2

C0ðgÞ
ð~QQ�~kkÞ2

exp ir0ðgÞ
(

þ ig ln
Q2 � k2

ð~QQ�~kkÞ2

" #)
; ðD:6Þ

where the indices Bb of g and k have been suppressed for clarity.
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