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Abstract

The Trojan—-Horse method is an indirect approach to determine the energy depen-
dence of S factors of astrophysically relevant two-body reactions. This is accomplished
by studying closely related three-body reactions under quasi-free scattering conditions.
The basic theory of the Trojan—Horse method is developed starting from a post-form
distorted wave Born approximation of the 7-matrix element. In the surface approxima-
tion the cross-section of the three-body reaction can be related to the S-matrix elements
of the two-body reaction. The essential feature of the Trojan—Horse method is the effec-
tive suppression of the Coulomb barrier at low energies for the astrophysical reaction
leading to finite cross-sections at the threshold of the two-body reaction. In a modi-
fied plane wave approximation the relation between the two- and three-body cross-sec-
tions becomes very transparent. The appearing Trojan-Horse integrals are studied in
detail.
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... Kekavppuevor 1. [1]

1. Introduction

Nuclear reaction rates are an indispensable ingredient of many astrophysical
models. They have to be known with sufficient accuracy in order to understand
quantitatively the evolution of the universe, stars and other objects in the cosmos
[2-4]. Ideally, reaction cross-sections are directly measured in the laboratory. But,
with few exceptions and despite many experimental efforts, the relevant low energy
range cannot be reached in direct experiments [5—7]. Cross-sections for reactions
with charged particles rapidly become very small with decreasing energy of the col-
liding nuclei due to the repulsive Coulomb interaction. Extrapolations of the cross-
section ¢(E) to low energies from results at higher energies accessible to experi-
ments are often needed. This is accomplished with the help of the astrophysical
S factor

S(E) = o(E)E exp(2ny), (1)

where E is the c.m. energy and n = Z,Z,¢?/(hv) is the Sommerfeld parameter which
depends on the charge numbers Z;, Z, of the colliding nuclei and their relative ve-
locity v in the entrance channel. The S factor shows a much weaker energy depen-
dence than the cross-section a(E) because the main effect of the penetrability through
the Coulomb barrier is compensated by the increase of the exponential factor. The
extrapolation process introduces uncertainties and important contributions to the
cross-sections, like resonances, can be missed. Additionally, direct laboratory ex-
periments are affected by electron screening, which effectively reduces the Coulomb
barrier between the nuclei and enhances the measured laboratory cross-section [8—
10]. A correction has to be applied to obtain the cross-section for bare nuclei. This
effect does not seem to be completely understood yet and independent information
on low energy cross-sections is valuable in order to develop a quantitative descrip-
tion of electron screening. In astrophysical applications one has, in addition, to
account for the screening under stellar conditions.

In recent years several indirect methods have been developed to extract cross-sec-
tions relevant to astrophysics from other types of experiments. In these alternative
approaches the astrophysical relevant two-body reaction is generally replaced by a
suitably chosen three-body reaction. The relation between the reactions is established
with the help of nuclear reaction theories. Without doubt, this process will introduce
some uncertainties, but valuable information on the astrophysical reaction can be
obtained. Also, the errors are independent from that of the direct approach. Of
course, the indirect methods have to be validated by studying well-known reactions
before firm conclusions can be drawn from indirect experiments in cases where direct
measurements are not feasible; see also the minireview [11].

The Coulomb dissociation method has become a valuable tool for extracting low-
energy cross-sections of radiative capture reactions a(b, y)c by studying the inverse
process of photo dissociation ¢(y, b)a [12]. Instead of using real photons, the Cou-
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lomb field of a highly charged target X acts as a source of virtual photons during a
scattering process which leads to the breakup reaction X (c,ab)X with three particles
in the final state. Due to the high flux of virtual photons, cross-sections at the small
relevant energies in the two-body system are strongly enhanced as compared to the
capture reaction. Another approach is the ANC method that tries to extract the as-
ymptotic normalization coefficient of a nuclear ground state wave function by study-
ing various combinations of transfer reactions involving this nucleus at low energies
[13,14]. The coefficient can be used to determine theoretically the astrophysical S fac-
tor for radiative capture reactions at zero energy. However, these indirect ap-
proaches are limited to astrophysically relevant reactions where a photon is involved.

The observation of a similarity between cross-sections for two-body and closely
related three-body reactions under certain kinematical conditions [15] led to the in-
troduction of the Trojan—Horse method (THM) [16], see also [17,18]. The aim of the
THM is to extract the cross-section of an astrophysically relevant two-body reaction

A+x— C+He, (2)
from a suitably chosen reaction
A+a— C+c+b, (3)

with three particles in the final state assuming that the Trojan—Horse a is composed
predominantly of clusters x and b. The kinematical conditions are chosen such that
the momentum transfer to the nucleus 4 is small during the reaction. Therefore » can
be considered as a spectator to the reaction of 4 and x. This process is often referred
to as a quasi-free scattering. In a selected part of the available three-body phase
space it is known to dominate over other reaction mechanism like sequential
breakup processes. In the past, quasi-free scattering has been used to extract in-
formation on momentum distributions of the nucleus a, i.c., the ground state wave
function in momentum space, employing a plane-wave impulse approximation
(PWIA) in the theoretical description [19]. In this approach the cross-section of re-
action (3) factorizes into a kinematical factor, the ground state momentum distri-
bution of nucleus a and an off-shell cross-section of reaction (2) that is assumed to be
known. On the other hand the two-body cross-section can be extracted from the
cross-section of reaction (3) if the momentum distribution of the Trojan—-Horse a is
known with sufficient accuracy and a relation between the off-shell and on-shell two-
body cross-sections can be established. The selection of different spectators b and
thus Trojan—-Horses a allows additional checks of the underlying assumptions of the
method.

Unlike the Coulomb dissociation method and the ANC method which are limited
to radiative processes, the THM can be applied to reactions where no photon is in-
volved. The essential feature of the THM is the actual suppression of the Coulomb
barrier in the cross-section of the two-body reaction. The cross-section of the three-
body reaction is not reduced when the c.m. energy in the 4 4+ x system approaches
zero as in reaction (2). The energy in the entrance channel of (3) can be around or
above the Coulomb barrier and effects from electron screening are negligible.
Nevertheless, very small energies in the reaction (2) can be reached.
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The feasibility of the THM was studied in several experiments involving various
reactions during the last years [20-28]. In earlier evaluations of the experiments some
simplifying assumptions were made in the theoretical description. The off-shell two-
body cross-section as appearing in the PWIA was considered as the bare nuclear
cross-section. It was converted to the on-shell two-body cross-section by correcting
for the Coulomb penetration in a heuristic approximation. Basic considerations for
the theoretical description of the THM were developed in [29] but the deduced rela-
tion between the cross-sections for reactions (2) and (3) were not directly applicable
to the experiments.

In this paper the theory of the THM is developed in certain approximations that
allow to establish a simple connection between the cross-sections of the three- and
two-body reactions. In Section 2 the reaction theory is formulated and the relation
of the T-matrix element of the three-body reaction with the S-matrix elements of
the two-body reaction is found. In connection with a plane wave approximation, fun-
damental TH integrals appear that are discussed in Section 3. Technical details con-
cerning the calculation of these integrals are discussed in Appendices A and B. In the
following section expressions for scattering amplitudes and cross-sections are derived
for spinless particles. For completeness, the general case of particles with spin is con-
sidered in Appendix C. The TH Coulomb scattering amplitude that is relevant in the
indirect study of elastic scattering processes is treated in Section 5. Kinematical con-
ditions, the energy dependence of cross-sections, and applications of the THM are
discussed in Section 6. A summary and an outlook are presented in the last section.
The evaluation of actual Trojan-Horse experiments with the present theory is be-
yond the scope of this paper and is subject to a detailed treatment in separate studies.

2. Reaction theory
In the three-body reaction (3) the particle x is transferred from the Trojan—Horse

a to the nucleus A4 leading to the C + ¢ final state with the spectator b of the Trojan—
Horse remaining, see Fig. 1. This reaction can be considered as a transfer to the con-

A C

/ b

Fig. 1. Transfer of particle x in the Trojan—Horse reaction (3).

a
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tinuum, where the inelastic reaction 4 +x — C + ¢ can happen in addition to the
elastic 4 + x scattering. It is customary to describe such a direct reaction, i.e.,
A+a— C+c+ b, with the help of a distorted wave Born approximation. It is
not required in the theoretical approach that 4 + x # C + ¢; elastic scattering pro-
cesses in the two-body system can be treated in the formalism, too. Effects from
the antisymmetrization of the wave functions will be neglected in the present treat-
ment; they are expected to be small.

2.1. Coordinate systems and cross-sections

For the general case of light ion scattering, the masses of the particles 4, b, and x
are comparable, so we have to use the complete kinematics; it is not justified, e.g., to
assume infinite target mass m, which would lead to a considerable simplification of
the formulas. This makes the notation unavoidably clumsy.

In a three-body system various sets of Jacobi coordinates are used to specify the
positions of the particles. In the theoretical description we encounter the sets

- - - - - - - mex + mhfb
Fo =Fe=Th Faa=Ta—Ta=Ta== = - 4)

in the initial partition and
= mC?C + mc’_;c -

Yce =Fc — Fey VBbZ”B—”bZ—m T+ m Ty (5)
C c

in the final partition. The symbol B denotes the C + ¢ = 4 + x system. The coordi-
nate vectors are shown in Fig. 2. The corresponding relative momenta and wave
vectors are given by

- 7 m;p; — m;p;
By =y =, ©
i J

Fig. 2. Coordinate vectors in the initial and final partitions of the Trojan—Horse reaction (3).
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for nuclei i and j with masses m;, m; and momenta p;, p; in the laboratory system,
respectively. With the help of the kinetic energies

p;
= gjy ; (7)
where the reduced masses
1y = % (8)
appear, energy conservation in the two-body reaction (2) can be expressed as
Ey = Ecc — 0o, 9)
with the Q-value
0, = (my +m, —me —m)c? (10)
and similarly
Ejo=Ece+Ep— O3 =Ege + Egp + O — 03, (11)
with
Qs = (my +my — me —me — my)c? (12)

in case of the three-body reaction.

The general cross-section for reaction (3) with three particles in the final state de-
pends on the choice of the independent variables and the reference system. In the
c.m. system the energy E. and the directions of the Jacobi momenta pg, and pc.
completely specify the kinematical conditions for a given projectile energy. Then
the differential cross-section takes the form [30,31]

d’c N
m =Kcm. T/‘i(kCc,kBmkAa) ) (13)

with the c.m. kinematical factor

_ Haalgplee PeoDCe (14)
M n)’H Paa

and the 7T-matrix element 7j. In an actual experiment, the particles C and c are
usually detected in the laboratory system and it is more convenient to use

2

3
4o , (15)

— =K
dEcdQcdQ, — T

Tﬁ (I_C’Cc; ]_C’Bh; ]_C'Aa)

with the kinematical factor

-1

B - - -

Kiap = LA“'?% Pche | Peb _ Pce | Pe| (16)
<2TE) h' Paa Upp me
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The laboratory differential cross-section depends on the scattering angles of the
nuclei C and ¢ and the energy Ec. Again, these quantities, together with the beam
energy, specify the kinematical conditions completely. The nuclei 4 and a can be
projectile and target or vice versa. In case of particles with spin appropriate averages
over initial states and sums over final states have to be considered.

2.2. Approximations of the T-matrix element

The T-matrix element 7 in (13) and (15) contains all the essential information rel-
evant to the scattering process. It has to be calculated in a suitable approximation
that allows to find the connection to the cross-section of the astrophysical relevant
reaction (2).

Before we discuss the various approximations in detail, it is useful to give an over-
view of the different steps in the derivation of the final formulas. Only the distorted
wave Born approximation of the exact 7T-matrix element and the so-called surface
approximation are essential for the Trojan—Horse method. The DWBA is a well-es-
tablished theoretical framework for the description of direct reactions [32]. Using the
surface approximation the cross-section of the three-body reaction can be related to
the S-matrix elements of the two-body reaction and it becomes possible to extract the
two-body cross-section. However, the expression for the 7-matrix element in this
general TH approximation is rather complicated and the calculation requires consid-
erable numerical efforts. Additionally, the special features of the THM are not easily
seen and the connection to the PWIA (see Section 1) is not obvious. We introduce
some additional approximations that lead to simpler formulas which give more in-
sight into the mechanism of the THM without loosing the essential points. In a local
momentum approximation, that is exact for plane waves, the 7-matrix element can
be written as a convolution of two factors, a momentum amplitude that is related to
the ground state wave function of the Trojan—Horse and an overlap matrix element
with the two-body scattering wave function. In a further plane wave approximation
the three-body T-matrix element factorizes in momentum amplitude and a modified
two-body scattering amplitude; a form that resembles the PWIA.

The Trojan—-Horse reaction (3) has the form of a usual two-body reaction

A4+a—B+b (17)

if the C + ¢ system is considered as an excited state of the compound system B. The
exact T-matrix element for this reaction is given in the post-form description by

T; = <CXP (il_éBb : 781)) Ppdy VBb|q]z(<;) U;A”’ 7Aa)>’ "o

with the exact scattering wave function Wﬁt)(EAa,?Aa) in the initial state and the
potential V3, between B and b in the final state [30]. The wavefunction ¢, of a nucleus
i depends only on internal coordinates which are not given explicitly. The relative
motion of B and b is described by a plane wave with momentum 7ikg,. Applying the
Gell-Mann Goldberger transformation [33], the T-matrix element (18) assumes the
form
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T = (1) (s Pn) byl Vi = U | V5 (Bras i) ). (19)

which is still an exact relation. For a detailed derivation see [29]. Here, 75, (Kgp, 7g) is
a distorted wave for the B—b relative motion generated by a suitably chosen optical
potential Up, that only depends on 7y, but not on internal coordinates in contrast to
Vgp. In the THM the wave function ¢, does not describe a bound state but a
complete scattering state

¢B = qj(c‘:) (]_éCw 7CL')’ (20)

since the system B = C + ¢ is in the continuum.
In the post-form distorted-wave Born approximation (DWBA) the T-matrix ele-
ment (19) is replaced by

TRV (ke K Kiaa) = () (s Ton) V) (R P Vil 15 (Rt Pra) 4 b )
(21)

Where the exact wave function ¥'' Aa (kAa, F4.) 1s replaced by a distorted wave
yﬁm (kAmrAa) for the A—a relative motion. Additionally, the potential V3,~Uj, is ap-
proximated by ¥y, [29,32]. This is the usual starting point of 7-matrix calculations for
direct transfer reactions.

In the next step, the so-called surface approximation is applied which is essential
to the THM. For small distances between the colliding nuclei the optical potentials
are usually strongly absorptive and only reactions at the surface of the nuclei con-
tribute significantly to the matrix element. Therefore the full scattering wave func-
tion ?’(C;)(I?CC,FCC) can be replaced by its asymptotic form for radii larger than a
suitably chosen cutoff radius R that is larger than the range of the nuclear potential.
It is typically in the range of the sum of the radii of the two colliding nuclei. The in-
terior part of 'I’(CC (ka Pce) 1s set to zero. The validity of the surface approximation
was checked in [34]; e.g., it was found to be quite good for the (d,p) reaction at
E, =26 MeV. The asymptotic form of the scattering wave function for r, > R, where
o = Ax,Cc, ... is a possible partition of the system B, is given by

P e Fed) = 2 ZZ@ Vi)Y, ke )b, (22)
with radial wave functions

670 = 5 oSttt ) = Gl i) 23)

&7 (@) = &7 (@), (24)

where the Coulomb wave functions [35]

uy ™ (n; kr) = 70 (G (n; kr) £ F) (n; k)] — exp [ * i<kr — n1n(2kr) — lfnﬂ

(25)
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appear. The Sommerfeld parameter

ZZ; ¢
Ny = hu;; (26)
depends on the charge numbers Z;,Z; of nuclei i,j and their relative velocity
vij = pij/t; in the partition o =ij. The Coulomb phase shifts are given by
o/(n) = arg'(1 + [ +in). The S-matrix elements S’ in the radial wave functions
completely describe the two-body scattering process. They are on-shell quantities
and the momenta k, are derived from energy-conservation in the two-body reaction.
E.g., in the o = Ax partition we have ky, = \/2p, E4. /i with the energy E4, from
relation (9).

The potential V}, appearing in the 7-matrix element (21) describes the interaction
between x and b in the Trojan—Horse a. Assuming a simple cluster picture of @ and
neglecting contributions from excited states of x and b or other partitions in the
ground state, the momentum amplitude W (q) of the product

d3q
(2n)’

can be introduced and the T-matrix element assumes the form

Vin(Fu) o (o) = / W (@) explid - 7). (27)

Lo Eq .
Tt (ke Ky k) = / (2n) W(q)<xgih)(k3b7er)qj(Cc?asym

X (ks Peo)| exp(id - Fu) s R Faa) b9 ). (28)

The assumption W = const. corresponds to the zero-range approximation which is
frequently employed in the calculation of DWBA T-matrix elements. In this case,
the integration over ¢ leads to a oJ-function in the variable 7, and the actual di-
mension of the appearing integral is reduced from six to three. However, in
general the full momentum dependence of the amplitude W has to be considered.
With the help of the Schrodinger equation the momentum amplitude W is related
by

2 2
- q —
W(g =—<8a—|— )d’aq 29
@ 3o )0 (29)
to the ground state momentum wave function
() = (exp(id - 7o) b, $olbuFor)) (30)

of the nucleus a. The energy &, = (m, +m, —m,)c*> = 0, — Q3 > 0 is the binding
energy of a with respect to the x + b threshold.

The integration over the internal coordinates in the matrix element (28) selects the
o = Ax partition of the asymptotic wave function (22) and the 7-matrix element in
the TH approximation can be written as
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. L fue Ko Koo K
T (kce, kaws kaa) = Dikee U_szl:(zl +1) {SfllxccU;H (Ko kce, Kaa)

- 5AchU[(_)(l;Bb7];Cc>]}'Aa):|- (31)

It resembles a scattering amplitude of the reaction C + ¢ — 4 + x except for the
functions

o 4m(—i)’ .
U o) = gy S inlhe)

d? o/ o~ . 0(rs—R
8 / q3 W(q)<xi?b)(k3bar3b) Bras = R) )“ﬁ)(’ux;k/:xmx)
(27'[) Vgx

xnmxnexp(ﬁ-m>x;t)<l?Aa,7Aa>> (32)

that describe the angular distribution and the momentum dependence due to the
presence of the spectator b in the reaction (3). The unit step function 6 accounts for
the surface approximation by eliminating the contributions at small radii. With Eq.
(31) the relation between the cross-section (15) of the three-body reaction (3) and the
S-matrix elements of the two-body reaction is directly established. It is possible to
extract the energy dependence of the S-matrix elements from experimental three-
body cross-sections, at least in principle. The dependence of Ul(i> on k¢, or equiv-
alently k4, together with the energy dependence of the two-body S-matrix elements
S . leads to a finite cross-section of the three-body reaction (3) even when the
threshold of the two-body reaction (2) is reached. This is the essential feature of the
TH method. However this is not readily seen from the general expression (32). A
simplified formulation allows to study the energy dependence more explicitly. The
main problem is the technical evaluation of the appearing matrix element in Eq. (32)
with scattering wave functions in the initial and final states. Even with the surface
approximation, it involves a six-dimensional integration in the Jacobi-coordinates
which is an extensive computational task. For an actual application of the TH
method, it is convenient to introduce additional approximations that lead to a for-
mulation with a direct relation between the cross-sections of the two-body and three-
body reactions similar to the PWIA.
It is useful to expand the distorted wave in the initial state in a Taylor series

X;:)(%AaaFAa) = <1 + (7Aa - ?Ax) : 6 +--- )X,E]:)(];Am?Ax)
~ exp |:1(?Aa - ;:AX) : 12i| X;Z)U_éAw ?Ax)7 (33)

where the wave vector K replaces the derivative —iV with respect to the spatial
coordinates. In the so called local momentum approximation [36,37] the modulus of
K is determined by the actual kinetic energy of the 4 — a relative motion at a certain
distance R ,,. The direction of K is assumed to be same as the asymptotic momentum
Kiq. If XE;) is a plane wave and K = ky, the relation (33) is obviously exact. Con-
sidering the relations
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Pap =Ty — 04y,  Faa = P + (1 — off)Fux (34)
of the Jacobi coordinates with factors
nmy my

(35)

= b = )
my + my, my, + my

the matrix element in Eq. (28) factorizes and the 7-matrix element in the TH ap-
proximation assumes the form
3

L d - L
T e Faniu) = | s W ) MG R o), (36)
T
with the generalized momentum amplitude
WG Fss) = W(@) 1y o, Fan)| exp(iQ - 7)) (37)

and the matrix element
MG, e Baa) = (P g e Fee) | exp( = 00 7o) 1) (Baar Fa)bah, ), (38)

with Q = g+ BK. The integration over the internal coordinates leads to the ex-
pression

L7 1 Ve L -
MG Fee: ) = g [y D02+ )[40 (@ e )
c X i

- 5Achu§_) (‘?7 ]}'Ccv iéAa):| 9 (39)

with the integrals

R 4n(—i) 0(rsx — R Lo
ugi) (qa kCc7kAa) = (+ i) /d3rAx¥u§i)(77Ax§kAxrAX) exp(—uxQ : rAX)

(21 x
x Xi;:) (Ko, Fix) Z Yy (Fotx) Yo (kce). (40)
Then the functions U, ,&) in the TH T-matrix element (31) assume the form
S d’ - [
Ul(i) (kaakCCakAa) = / (2 ?3 W(q’th)ugi) (q, kCCakAa) (41)
n

of a convolusion of a momentum amplitude and an overlap matrix element with
scattering wave functions.

2.3. Plane wave approximations

If 4\, is assumed to be a plane wave, the matrix element in the generalized mo-
mentum distribution (37) leads to a d-function in the variable ¢

W(G, ks) = W (§)(2m)*5(G — Ogs) (42)
with
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Op = ky — PK. (43)
Then, the g-integration is trivial; the 7T-matrix element (36) factorizes explicitly into a
momentum amplitude and the matrix element (39) where the integrals (40) are

5 A . : . . (=) s - N
evaluated for ¢ = Qp,. This plane-wave approximation for y;,’ is justified when the
energy of the Bb relative motion is large. When the spectator b is a neutron, it is also
; (=) (=) s _
often possible to replace y,,’ by a plane wave. On the other hand, when y,,’ is re
placed by a pure Coulomb scattering wave, e.g., if the Bb relative energy is small, the
matrix element in (37) can be calculated explicitly (see Appendix D). However, in
applications of the THM the c.m. energy in the Bb system is generally large because
of the large projectile energy and Q-value of the reaction and the latter case is not
relevant.
Independently from the treatment of the wave function ,{Bb , a plane wave approx-
imation can be introduced for ,{ Aa in the matrix element (38). In this case one finds

M(G e Faa) = (¥ (e Pee) | exp (0. - F1) b ) (44)
with
QAa = ic‘Aa - dﬁK - th' (45)

The quantities (40) reduce to

ugi) (‘?» iéCca iéAa)

POy - ko) Ty (R, e, Koty Oa),s (46)

kA\r Aa

with Legendre polynomials P, and the dimensionless Trojan—Horse integrals

J;i) (R) nAx’ kAxv QAa) - kAxQAa / drAxugi) (17Ax§ kAxrAx)rijl(QAarAx)- (47)

The Coulomb wave functions u, ) as defined in (25) and the regular spherical Bessel
function j, of order / appear in the radial integral. It is convenient to introduce the
decomposition

J[(i) (R7 ’1Ax7 kAxa QAa) = e¥i01(’14x) |:J1<G) (Ra nA)m kAx7 QAa) j: i‘—]](F) (Ra ’1Axa kAxa QAa)
(48)

of the TH integrals into contributions with the regular and irregular Coulomb wave
functions. The integrals are discussed in detail in Section 3.

In the following only the plane-wave approximation for both ;{ifa) and X/(;b) will be
considered. In this case the 7T-matrix element has the simple product form

T3 (e ani Baa) = W (Oan) (P by (s P | XP (100 - 1) b ) (49)

This approximation already contains the essential ingredients to see the principles of
the TH method and the connection to the PWIA becomes clear. Generalizations to a
more general treatment with distorted waves are obvious from the above. The ar-
gument of the amplitude W is the momentum
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- - my -
=kpy — ——kua 50
QBb Bb my, + m, A ( )
assuming that K = Ko Neglecting the Fermi motion of b inside the Trojan—Horse,
myk 4,/ (my + my) is the momentum of b relative to 4 in the initial state and kg, is the
momentum of b relative to B = C + ¢ in the final state. Thus —Qp, corresponds to
the momentum transfer to the spectator 4. The amplitude W describes the distri-
bution of the transferred momentum due to the Fermi motion. Similarly, the mo-
mentum
- - my -
=k ———k 51
QA A m, + m, Bb ( )
in the argument of the plane wave can be considered as the (negative) momentum
transfer to nucleus 4 (independent of the choice of K) by the particle x. In the case of
a infinitely heavy nucleus 4, Eqgs. (50) and (51) reduce to
my, - - my -

Opp = —2 kb —Fy =k —— 2
QBb mb+mx ka kb kx mb+mx ka7 (5 )

QAa :]_éb_l_{; - _]_éx (53)

(cf. Fig. 1) and the interpretation becomes simpler. The main task is to calculate the
TH integrals (47) and to find the explicit relation of the three-body cross-section to
the two-body cross-section.

The plane wave approximations for xﬁfa) and xg;) seem to be crude at first sight but
the TH matrix element (49) still contains the asymptotically correct wave function
W;;;m(cc,ié&) for the C + ¢ system and thus the complete information on the two-
body scattering process. This is in clear contrast to the PWIA [19] where the effect
of the Coulomb barrier in 4 + x system on the energy dependence is not obvious.
The absorptive feature of the optical potentials is taken into account by the surface
approximation. Additionally, the distorted wave Xi;:) describes a scattering state with
a much higher (and constant) momentum as compared to the 4 + x system and only
a small part of the three-body phase space is of interest in the reaction. The absolute
cross-section for the three-body process (3) calculated in the plane wave approxima-
tion might be different from the actual value but the energy dependence with respect
to the two-body reaction is expected to be treated correctly.

3. Trojan—Horse integrals

The main difference between the usual expressions for the scattering amplitude for
A+ x — C + c scattering and the corresponding 7-matrix element (31) in the TH
method is the appearance of the functions Ul(i . They describe a modification of
the two-body scattering amplitude and lead to the effective removal of the Coulomb
barrier in the quasi-free scattering process. This effect can only be understood if the
energy dependence of these functions is known. In the plane wave approximation the
discussion becomes very transparent. The functions
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_An
kAx QAa

in Eq. (31) factorize into a momentum amplitude, Legendre polynomials and the TH
integrals (47) which we will study now.The basic Trojan—Horse integral is given by

U (kg ke, kaa) W (Om)Pi (O - kice) I (R Mans Kot Q) (54)

TR0k, Q) = k / " drH (s kr)z1(0r), (55)

where H, is a Coulomb wave function F; or G; and z;(x) = xj,(x) is a Riccati-Bessel
function. Then the integrals in) are obtained from Eq. (48). The TH integrals do not
converge in the usual sense, since H, and z; oscillate with constant amplitude if » goes
to infinity. Convergence is achieved only in the distributional sense after an inte-
gration over O with a suitable test function. The problem is caused by the fact that
the matrix element in Eq. (28) contains the overlap of continuum wave functions. A
similar problem occurs in the case of Bremsstrahlung matrix elements that have to be
regularized.

We transform the integral (55) into a form that allows a numerical calculation.
Details can be found in Appendix A. By a simple change of variables it is seen that
the TH integrals (55) depend only on three independent parameters. With

&= k and x) = OR, (56)
0
we can write
(#) ) [T .
IRk ©) = J{ 0, €) = € [ s 00, (57)

with reduced TH integrals which are functions of x, #, and . These integrals exhibit
a particular energy-dependence close to the threshold of the two-body reaction. For
R =0, i.e., xo = 0, the energy dependence is easily extracted and leads to a simple
scaling behaviour for ¢ — 0 and # — oo. The reduced TH integral with the regular
Coulomb wave function F; shows an energy dependence according to

JiE(0,m, &) o &% exp(—mn). (58)

In the case of the TH integral with the irregular Coulomb wave function we find
Jicea0,1, €) o &% exp(mn). (59)

Fig. 3 shows the dependence of the scaled reduced TH integrals J,fe)d(O,n, geE?
exp(mn) with I = 0,1 on ¢ = k/Q for various values of n¢ = Z,Z.e*u, /(#*Q) which
is a constant for given Q. The scaled TH integrals become constant for small ¢ as
expected. The rapid decrease of the unscaled TH integrals with decreasing & for
constant n¢ is obvious. The angular momentum barrier leads to a smaller TH in-
tegral with larger / for the same parameters ¢ and n&. This effect is more pronounced
for small #¢ than for large #& where the Coulomb barrier dominates the ¢ depen-
dence. The approximations (A.20) and (A.21) agree very well with the exact results
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Fig. 3. Scaled reduced Trojan-Horse integrals —J", (0,7, &)~ exp(my) for parameters ¢ = 0.01,...,
1.0 as a function of ¢ = k/Q for angular momenta / =0 (a) and / = 1 (b). The solid lines are the exact
results and the dotted lines are the approximations of Section A.2.
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for the TH integrals with / = 0, 1 for large n¢ and not too large £. The agreement is
less satisfactory for small #¢ and larger / as one may expect, since then the
angular momentum barrier is getting more important as compared to the Coulomb
barrier.

In Fig. 4 the dependence of scaled reduced TH integrals Jl(.rGe)d(O,n,é)f’y2
exp(—my) with /=0,1 on ¢ is shown for the same range of the parameter né
as in Fig. 3. For small ¢ the scaled TH integrals again become constant. The un-
scaled TH integrals increase dramatically for decreasing ¢ for constant #¢ and for
increasing n¢ for constant &, respectively. The effect of the angular momentum
barrier is more pronounced for small #¢ as in the case of the TH integrals with
the regular Coulomb wave function as one may expect. The agreement between
the approximations (A.23) and (A.24) and the exact TH integrals shows the
same trends as in the case of the TH integrals with the regular Coulomb wave
functions.

In the case of finite R the energy dependence of the TH integrals remains essen-
tially unchanged for ¢ — 0, only the magnitude of the integrals is modified. At
low energies, both the TH integrals J,(i)(R, 1, k, Q) are dominated by the energy de-
pendence of J,(G) (R,n,k, Q).
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results and the dotted lines are the approximations of Section A.2.

4. Cross-sections for spinless particles
In order to establish a closer connection of the three- and two-body cross-sections
the Trojan—Horse T-matrix element (49) is recast in the form

4r
kAxQAa

with the Trojan—Horse scattering amplitude

T (Kee, Kaps o) = W (0)f ™ (Ota k), (60)

Vg (R Fee) | XD (00 - Fuc) b6, )

kaxQua <

fTH (QAka() 4

1 e
- 21kC Z(ZI + l)PI (kCc ’ QAa) ; |:S/:'CCLJ " (Rv Mg kAxa QAa)
¢ 1

5Ach (R nAxa kAx; QAa):| . (61)

This amplitude is valid for particles without spin. The case with spin in dealt with in
Appendix C. The amplitude (61) is related to the scattering amplitude for the two-
body reaction
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CH+c—A+x (62)

The essential difference is the appearance of the Trojan-Horse integrals (47). The
argument of the Legendre polynomial P, in Eq. (61) corresponds to the cosine of the
scattering angle 9., . It is convenient to decompose the TH amplitude

fTH = JH +ng5Ach (63)

into a nuclear part and a purely Coulomb part. The nuclear contribution

1 ~ ~ Uce
]\TH = ZikCc Z(ZZ + I)PI (kCC : QAa) A/ D_AXYZ;chJ;Jr) (R7 Maxs kAxa QAa) (64)

with
T/ich = ei(fl(ﬂ,;x)ﬂﬂz(ﬂc(-) [S/ZI\ZCC - 5Ach] (65)

depends on the nuclear S-matrix element

SQV)fCC — e 1o1(4r) S/luCc e*ial(ﬂ&)’ (66)

which is obtained from the full S-matrix element by compensating the Coulomb
phase shifts o,(n..) and a,(y,,) in the initial and final states, respectively. The
Coulomb contribution

1 7 A i) (1
¢ 213(21 + DPilke. - Q40) €T (R, 1y, Kar, ) (67)

appears only if elastic two-body reactions are studied. It depends only on the TH
integrals with the regular Coulomb wave function and is discussed in Section 5.

If the Trojan—Horse integrals J,&) are replaced by one the scattering amplitudes
reduce to the standard form for the reaction (62). At low energies there are usually
only few contributions to the nuclear scattering amplitude with small angular mo-
menta / due to the increase of the centrifugal barrier with / in the two-body reaction.

The cross-section (15) in the laboratory system can now be expressed in the form

d’o o 2 16n% v da™
————— = K| W _—— , 68
dEcdQcdQ. Q) k2.0 v dQ (68)
with the two-body Trojan—Horse cross-section
doTH .
o= A pTH (69)

dQ Uce

A corresponding expression holds for the c.m. cross-section (13) with the appro-
priate kinematical factor. This result has a similar structure as in the PWIA, i.e., a
product of a kinematical factor, a momentum distribution and a two-body cross-
section. However, the momentum distribution |W|2 is not directly the ground
state momentum distribution |®,|> of the Trojan—Horse a and the Trojan—Horse
cross-section (69) contains explicitly the three-body effects. It is a sum
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dg™ def! doM dgtH
aa { do " de }5“0” T4 (70)
of a Coulomb contribution
dGTH
o = [, (71)
a Coulomb-nuclear interference contribution
de™ 2041 . R .
L_ — Pl(kCC : QAa)Re[(l gH) AxCLJl<+ (R ”AxakAxv QAa) ) (72)
dQ ~ ke

and a nuclear contribution

doy :
o a k2 2221+ )21+ 1)(

1

20)°P; (kee - Qo)

X T/fch T/fr*CLJ[ (R N axs kAX7 QAG) (R Naxs kAX7 QAa) (73)

Again, the expression for the TH cross-section closely resembles the usual c.m. cross-
section for the two-body reaction (62). The appearance of the TH integrals J
accounts for the off-shell effects and the scalar product k. - O, appears as the ar-
gument of the Legendre polynomial instead of the cosine of the two-body c.m.
scattering angle ... The TH Coulomb scattering amplitude (67) replaces the on-
shell Coulomb scattering amplitude

1 .
fc - ZikCc' Z(zl * 1)PI (COS ﬂc‘m')(exp[ZIO-l(nCc)] - 1)
Nee . .
= T exp |2ice(ne) — 2ine ”
2kCc Sinz(ﬁc,m‘/2) p |: 0(’1&) 1/’CL ( )

in the usual elastic two-body scattering amplitude.

The expression for the TH cross-section simplifies considerably in special cases. If
Ax # Cc and only one partial wave /,, contributes to the cross-section the Trojan—
Horse cross-section is given by

de™  dg,

de — de (

Cec — AX)P[(R Naxs kAx; QAa) (75)

with the usual partial on-shell cross-section

do 21+ . R
d—Q’(Cc — Ax) = (44 7! | Z (101070)*P; (kce - O,,) (76)

for the two-body reaction (62) and the penetrability factor

2
PI(Ra nAxa kA)m QAa) - ’J/(Jr) (R7 7]A)m kA)m QAa)
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In the simple approximation (A.3) of Appendix A it is given by
Pi(R,n,k, Q) — KR*[F} (n; kR) + G} (1: kR)] 2} (OR). (78)

From the k-dependence of the TH integrals or the Coulomb wave functions a
k* exp(2mn) behaviour of the penetrability factor is found for £ — 0. For the transfer
of a neutron the dependence of P; on small & is given by k>~%, see Eq. (A.30), with an
I-dependence determined by the centrifugal barrier.

With the theorem of detailed balance one obtains the direct relation

d’e S, lem? Uce do;

dEcdQedQ, = Kian| W (Qss)| kécQAa o, dQ (Ax — CAPI(R, N4y kaxs Ona)  (79)

of the three-body cross-section to the two-body cross-section for partial wave /. This
equation shows clearly the “parallelism” of the 4 + x reaction and the Trojan—Horse
reaction: The cross-section (79) is proportional to the cross-section for the 4 + x
reaction, modulated by the penetrability factor P,. The factor P, is directly related to
the TH integrals (77). It leads in general to an enhancement of the higher partial
waves and it contains the exp(2nn) factor.

A most convincing beautiful example of this parallelism is the comparison of neu-
tron elastic scattering and the (d, p) reaction on "N in the same energy range of the
continuum in '"*N. There are the same peaks in both spectra, changed in magnitude
according to the factor P, (7 = 0 in the neutron transfer case). Also the s-wave res-
onance which appears as a destructive interference with the / = 0 continuum shows
up nicely in the (d, p) spectrum [15].

5. Trojan—Horse Coulomb scattering amplitude

In case of an inelastic two-body reaction only the nuclear contribution to the TH
scattering amplitude is relevant. For the elastic scattering with Ax = Cc also the TH
Coulomb scattering amplitude (67) contributes to the total TH scattering amplitude.
It depends only on the TH integrals J,(F) with the regular Coulomb wave functions.
The summation over / in Eq. (67) poses no serious problem but it is convenient to
reformulate the expression as in the case of the TH integrals in order to see the re-
duction of the Coulomb barrier more clearly. For that purpose the TH Coulomb
scattering amplitude is written as a difference

- )

of a contribution (suppressing the indices of the momenta)

0 = MQ Z 20+ )P (k- Q) "M, (Fy,n, k. O) (81)

where the cutoff radius R is set to zero and a finite range contribution

& = QI+ 1Pk Q)" " Li(R,n,k,Q) (82)

!
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with the integrals
R
LR,k Q) = [ drfiloi )z (00). (83)
0

These are easily calculated numerically and decrease rapidly with increasing / leading
to a rapid convergence of the sum (82). Similar to relation (61) for the full TH
scattering amplitude, the contribution (81) to the TH Coulomb scattering amplitude
can be expressed as a matrix element

kO / () = =
&t =5 (Peu(®)lexp(i0 7)) (84)
with the pure Coulomb scattering wave function
Vou(R) = 0 (1 £ i) exp(ik - 7)1 A (Fin, 1; ilkr 5 K - 7) (85)

where |F, denotes a confluent hypergeometric function. This form allows an ana-
Iytical calculation with the result

k20 Co(n) . . O —k?
TH = — ——=—5 €X 10| +1 ln — =5 86
Cc0 Q2 ) (Q - k)z P 0(11) n (Q _ k)z ( )
as explained in Appendix D. Contrary to the usual Coulomb scattering amplitude
(74) there is no divergence for k£ — 0 since Q remains finite. In this limit, the energy

dependence of the TH Coulomb scattering amplitude is given by kCy(#). The ap-
pearance of the Cy(n) factor in the amplitude causes a strong reduction at small k.

6. Applications of the Trojan—Horse method

Several reactions have been studied with the TH method recently. They are listed
in Table 1 with 2H and °Li (= «+d) as typical “Trojan-Horses.” These nuclei allow
to study the transfer of protons, neutrons, deuterons and o-particles, which covers
most of the cases of astrophysical interest for the two-body reaction.

6.1. Kinematical conditions

The Trojan-Horses employed so far have a dominant s-wave configuration in
their gound state. Their momentum distribution W (Qg,) has a maximum around
zero. Correspondingly, the equation

Table 1
Projectile energy E,,, and corresponding quasi-free energy Ejﬁ for pairs of two-body and Trojan-Horse
reactions

Two-body reaction Trojan—Horse reaction Epo (MeV) Eji (MeV) Ref.

2H(°Li,*He)*He °Li(°Li,*He*He)*He 6.0 0.029 [20-22]
"Li(p,*He)*He 2H('Li,*He*He) 19.0-21.0 0.161-0.412 [23-26]
12C(*He,*He)"*C °Li(**C,*He"?C)*H 12.0-18.0 1.527-3.027 [27,28]

SLi(p,"He)*He H(°Li,*He*He) 25.0 1.362 [38]
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O =0 (87)

defines the so-called quasi-free condition. In this region of the three-body phase
space the cross-section for the quasi-free reaction will reach a maximum. From this
condition the corresponding quasi-free c.m. energy

qf _ Haa :u_ix) o
Ei. =FE4x (1 1y 2 & (88)
in the initial channel of the two-body reaction (2) is derived from energy conser-
vation (11) assuming the plane wave approximation. It is obvious that even with a
large c.m. energy E,, in the entrance channel of the three-body reaction (3) a small
energy E,, can be reached if a suitable Trojan—Horse a is chosen. This is confirmed in
Table 1 where the projectile energy in the laboratory system and the quasi-free en-
ergy are shown for several reactions.

The relation between Eji and E,, is purely a kinematical consequence. It is not
related to the Fermi motion of particle x inside the Trojan—Horse a which would in-
volve a dependence on the width of the momentum amplitude. However, in an actual
experiment a cutoff in the momentum transfer QB[, is chosen to select the region
where the quasi-free process dominates the cross-section. This procedure limits the
range in energies E 4, that are within reach in the experiment for a chosen projectile
energy Epp,.

In case of the quasi-free condition, all nuclei in the final state of reaction (3) are
emitted in the same plane. The momentum of the spectator b is in beam direction
which makes it difficult to detect b in the experiment. In the laboratory system the
nuclei C and ¢ are emitted under angles ¥¢ and 9, on opposite sides of the beam axis.
If the scattering angle 9., in the c.m. system of the two-body reaction is given, the
angles V¢, ., the so-called quasi-free angles, are completely specified for a fixed
beam energy from kinematical considerations.

As a consequence, the quasi-free condition determines the setup of the experi-
ment. If a particular two-body reaction (2) is to be studied close to a c.m. energy
E,. and if the Trojan—Horse a is selected, then from Eq. (88) the appropriate beam
energy can be extracted. Since the momentum amplitude W has a finite width it is
possible to study the two-body reaction in a certain energy window around E,,.
The c.m. scattering angle 9., determines the arrangement of the detectors close
to the pair of quasi-free angles.

When Ep, is zero in (11) the maximum energy

EN™ =E,, —¢, (89)
in the two-body system is reached for a fixed c.m. energy £, in the entrance channel
of the three-body reaction. In this case kg, = 0 and QAa = k4,. The momenta of all

nuclei C, ¢, and b in the final state are parallel to the beam momentum in the lab-
oratory system. Since ¢, > 0 it follows that the relation

lquQAa < QAa (90)

ke <

holds in all kinematically allowed regions of the phase space.
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6.2. Threshold behaviour of cross-sections

The energy dependence of the two-body cross-section

d / !
dQ(Ax—>Cc k22221+121 1)(101

i

v )ZPA(COS ﬂ)S,{GCCSI{II;Cc

o1

for the inelastic 4 + x — C + ¢ reaction above the reaction threshold is governed by
the 1/k7 factor and energy dependence

Shace 0 Xp(—Tur,) (92)

of the relevant S-matrix element. The Coulomb barrier leads to a strong suppression
of the the cross-section

do
dQ

for k4, — 0 due to the decreasing exponential factor. This behaviour motivates the
introduction of the astrophysical S factor (1). In the TH cross-section do™ /dQ, that
appears in Eq. (68), the factor &, is replaced with k;? and the TH integrals J
appear. Their energy dependence for small k, is determined by kAx/CO('/IAx)
ke exp(mh )/ /271, from the contribution of the irregular Coulomb wave func-
tion. This leads to a k,, dependence of the three-body cross-section (68) according to

(Ax — Ce) o< k7 exp(—2mn,,) (93)

d’o , exp(2mi,)

TEc e a0, o Kot XP(-2m kS, =3 0 P = (24 = const

(94)

in the lowest order of k,; cf. also Eq. (79) with the k,, dependence of the penetra-
bility factor P; o< k3, exp(2my,,). As a result the cross-section does not vanish at the
threshold but takes on a finite value. Of course, the same considerations apply to the
case when the spins of the particles are considered. Also in the case of the transfer of
neutron, like in a (d, p) stripping reaction, it is well known that the cross-section is
finite at the threshold E, = 0 [17,18]. The reason is the same as in the case of charged
particles.

6.3. Extraction of astrophysical S factors

In an actual TH experiment the measured cross-section of the three-body reaction
depends on the geometry of the setup, the chosen Trojan—Horse, and the energy of
the projectile. The differential three-body cross-section (68) or (79) can be projected
onto a simple cross-section

do d’c
dE “dE-dQc-dQ.

depending on the 4 + x c.m. energy E. The efficiency function F takes cut-offs in
particle energies, momenta (e.g., Op), the detector geometry etc. into account. The

/ dE-dQ-dQ, O0(Esx —E)F(Ec,Qc, Q.) (95)



250 S. Typel, G. Baur | Annals of Physics 305 (2003) 228-265

experimental spectrum (95) can be compared to a corresponding theoretical cross-
section from a simulation of the experiment assuming a certain energy dependence of
the relevant on-shell S-matrix elements of the two-body reaction, e.g., from a R-
matrix parametrization. By a variation of the parameters, the best fit to the exper-
iment is found and the on-shell two-body cross-section can be calculated. If there is
only a contribution of one partial wave, the procedure becomes simpler. The ratio of
the measured cross-section (95) to the corresponding simulated cross-section directly
gives the energy dependence of the S factor relative to the energy dependence as-
sumed in the theoretical S factor of the two-body reaction. Due to the uncertainties
in the description of the reaction mechanism it is expected to be difficult to extract
absolute values of the cross section. So it is better to normalize the cross-section to
results from direct experiments at higher energies. However, we expect that the en-
ergy dependence of the cross-section (S factor) can be extracted much more reliably.
For recent applications of the TH method with detailed information on the exper-
imental realisation we refer to the references [20-26].

6.4. Elastic scattering with the Trojan—Horse method

The main aim for applying the TH method is the extraction of the energy depen-
dence of cross-sections or astrophysical S factors for inelastic two-body reactions.
But also the indirect investigation of elasting two-body scattering A +x — 4 + x
can be rewarding. In the direct two-body scattering process the cross-section is dom-
inated by the contribution of the Coulomb scattering amplitude (74) at low energies
that diverges with k2. By way of contrast, the TH Coulomb scattering amplitude
(67) vanishes for k,, — 0 due to the appearance of the TH integrals with the regular
Coulomb wave function F;. The nuclear contribution to the TH cross-section (70)
becomes dominant because of the TH integrals with the irregular Coulomb wave
functions in Eq. (73). This allows the study of nuclear effects in the scattering at small
energies, e.g., the influence of sub-threshold or low energy resonances. First attempts
in this direction were made in recent experiments [27,28].

7. Summary and outlook

In this paper the basic theory of the Trojan—Horse method was developed starting
from a distorted wave Born approximation of the T-matrix element. The essential
surface approximation allows to find the relation between the cross-section of the
three-body reaction and the S-matrix elements of the astrophysically relevant two-
body reaction. In the modified plane wave approximation the relation between the
three- and two-body cross-sections becomes very transparent. The three-body
cross-section is a product of a kinematical factor, a momentum distribution and
an off-shell two-body cross-section. Off-shell effects are expressed in terms of so-
called TH integrals that were studied in detail. Their energy dependence leads to a
finite cross-section of the three-body reaction at the threshold of the two-body reac-
tion without the suppression by the Coulomb barrier. This allows to extract the en-
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ergy dependence of astrophysical cross-sections from the three-body breakup reac-
tion to very low energies without the problems of electron screening and extremely
low cross-section. A comparison of results for S factors from direct and indirect ex-
periments can improve the information on the electron screening effect. However,
dedicated Trojan—-Horse experiments are necessary in order to achieve a precision
comparable to direct measurements.

The validity of the Trojan—-Horse method can be tested by comparing the cross-
sections extracted from the indirect experiment with results from direct measurements
of well-studied reactions. In principle it is possible to assess systematic uncertainties
of the Trojan-Horse method by studying various combinations of projectile energies,
spectators in the Trojan—Horse and scattering angles. Furthermore, different theoret-
ical approximations can be compared, e.g., full DWBA calculations with and without
the surface approximation and simpler modified plane wave approximations.

One may also envisage applications of the Trojan—Horse method to exotic nuclear
beams. An unstable projectile hits a Trojan—Horse target allowing to study specific
reactions on exotic nuclei. A study of low-energy elastic scattering with the Trojan—
Horse method opens another application which can lead to improved information
relevant to the theoretical description of nuclear reactions at low energies.
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Appendix A. Calculation of the Trojan—-Horse integrals

With the differential equation for the Coulomb wave functions

1 d? 27 1(1+1)
OZP@[‘LUG’)—F |: —E—W}Hg(kr), (Al)
the TH integral (55) becomes
* 2 I(I+1) 1 &
(H) _ " .
Jl (R7177ka Q) _k/R dr[ﬁ“r 22 —p@}Hl(n,kr)z;(Qr). (AZ)
After partial integration and with help of the differential equation for z;
1 & I(1+1
= @ @Z!(Qr) + [1 - (erz )}zl(Qr), (A.3)
the expression
k )
T Rk, Q) = 15— o 20kt (R, 1.k, ©) + ki (1 kR)=1(OR)

— OH)(r; kR)Z/(OR)|, (A4)
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with the converging integral

1R, .k, 0) = / " drH (g k) 21(0r) (AS)

is obtained. The prime denotes the differentiation with respect to the argument. We
disregard the contribution from the upper bound (infinity). This corresponds to the
regularization procedure mentioned above. Relation (A.4) cannot be used if £ = Q
but this case will never occur since & < Q from kinematical considerations (see
Section 6.1). The integral (A.5) can be written as

Rk, 0) = KOM (o 0) — [ arbilas k(0 (A6)

with the integral
M1112 (H,n,k,Q) = / drH,, (n; kr)r—z,,(Qr). (A.7)
because 1,(H> is still finite in the limit R — 0. The functions M, | are special cases of

the radial matrix elements in the quantum mechanical theory of Coulomb excitation
[39]. A more general form also appears in the general theory of transfer reactions to
the continuum [40]. In the THM only monopole matrix elements (4 = 1) are needed.
They can be calculated explicitly for both the regular and irregular Coulomb wave
functions (see Appendix B for details). The TH integrals with the regular Coulomb
functions are given by

Co
M (k. 0) = S0 sin, (A8)
3C k
M” (F 1’],k Q) W |:<%+Q) Slné 27]COSC:| (Ag)

for / =0,1. The argument of the trigonometric functions is { = nlnz, with z; =
(O+k)/(Q — k). The constants C,(n) are recursively defined by [35]

_(m " _ ()"
Co(ﬂ)—(w) ; Cl(ﬂ)—mcz—l(’?)- (A.10)

The case with the irregular Coulomb wave functions is slightly more intricate and

leads to

Co(n) s
1—cos{)+——

2 kQ( )+ 2kQC(n)

00 (G7 7k Q) [1 _S0]7 (All)

M (G, k, Q) = % K§+g)(1 —cos{) — 2nsinC]

+12anC1(:1)K§ g>(1—&,)+2nsl}, (A.12)
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with the series

27] 1— Zl 2 15 l’lan
T - A13
Z”ZJFUZ’ n;nZJrnz (A.13)
Explicit expressions for larger / are obtained from the recursion relation (I > 0)
21+1/k ©Q
5 (Q k)Mlll = |1+inM7 L+ 1+ 1+ inME L, (A.14)

which is valid for H; = F, and H, = G,. It can be derived in a similar manner as in
Coulomb excitation theory [39]. However, for a numerical calculation the question
of stability of (A.14) arises. In the case of H;, = F; only the backward recurrence is
stable. Starting with, e.g., M;,'(H,n,k,0) =0 and M, ,(H,n,k,Q) =1 for large
L > [ a backward recursion gives integrals for / = 0, 1,2, ... after normalizing to the
known value (A.8). In the case of H; = G; the upward recurrence can be used with
the known starting values My (G, n,k, Q) and M;;'(G,n, k, Q). The remaining inte-
gral from 0 to R in Eq. (A.6) is easily performed numerically.

When 5 becomes large (and & small) it is not favorable to calculate the integral
1 I(G> (R,n,k, Q) from Eq. (A.6). The irregular Coulomb wave functions becomes very
large for small radii » and a difference of large numbers has to be evaluated with loss
of accuracy. In this case it is more convenient to use Eq. (A.5) directly because G;
becomes small with increasing » > R very rapidly.

A.l. Limiting cases

In the case of R — 0 the surface contributions in Eq. (A.4) vanish only if H, = F.
This can be seen from the approximations [35]

21+
Fi(n;x) — ((1+1 vV 2nxly 1 (24/20x) ~ x ! (A.15)

and z;(x) — x™1/(21 + 1)!! for x = kR — 0. In this case the expression for TH inte-
gral with the regular Coulomb wave function reduces to the simple form

2k*0
2 — 0
Using the approximation [35]

J0,n,k,0) = M; (Fi,n,k, 0). (A.16)

—1

; —_— \/2 Kr111(2+/2 —_— A.l
Gl(’/hx) (21 + 'Yx 21+1 77x 2[ + ) (71) ( 7)
for small x one obtains for H; G, the result
kQ _ (o/k)
(@ = 2nkM;,! - Al
Jl (O7n7k7 Q) k2 _ Q2 ’7k 1l (G[,”],k, Q) (21+ I)HC[(f’]) I ( 8)

with a remaining contribution from the surface terms.

In the special case where the transferred particle x is a neutron, the Coulomb func-

tions uﬁi)(x) reduce to Hankel functions x[—y,(x) £ij,(x)] = :tixhgi)(x) with the
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spherical Neumann and Bessel functions y; and j;, respectively [35]. There is no con-
tribution from the term with the integral I,(H) and the TH integral simplifies to

+ik>’OR?
k2 _ Q2

so that J[(+)(R,0,k, Q) is ik*Q times the I, integral in the stripping enhancement
factors F; of [41]. For the neutral particle, there is, for [ # 0, still a barrier, the an-
gular momentum barrier with its /(/ + 1)/# radial dependence. The enhancement is
due to the Hankel functions hgi) (x) with a x~*1 behaviour for x — 0. The mathe-
matical treatment of the Coulomb functions is much more involved.

“/(R,0,k, Q) = k") (kR)ji/(OR) — Oh™) (kR)j -1 (OR) |, (A.19)

A.2. Energy dependence of the Trojan—Horse integrals

In order to investigate the behaviour of JZ(H) for k — 0 it is useful to study the case
R =0 first. From the explicit expressions for the integrals M,' (F;) the approxima-
tions

IS0, 0,k,0) = IS (0,0, &) — —Co(n)& sin(2€), (A.20)

sin(2y&)
2né

for the integrals with the regular Coulomb functions Fy and F; are found. Here, we
used the reduced variables defined in Eq. (56). Because the recursion relation (A.14)
for M;;" reduces to the recursion relation of the Riccati-Bessel functions we have the
approximation

10,1,k 0) = Jj704(0,0,€) — —Co(m)Ez/(2n¢) (A.22)

for all / in the limit £ — 0. The argument 2n¢ = 2yk/Q is independent of k for
constant Q and the entire & dependence is determined by Co(n)é2 independent of /.

The TH integrals with the irregular Coulomb wave functions reduce in the limit
k — 0 to the form

0,1, k,0) = J15,(0,1,8) — —Co(n)& — cos(25¢) (A.21)

{01,k 0) = S2u(01.8) = s 1 = 20 (2] (A23)
1
Q@%h@—ﬁ%&m@HQZJﬁ—ﬂM@—M@Qm} (A.24)
with functions
- /0 dt% = Ci(x) sinx — [Si(x) - g] cosx, (A.25)

e™ . . T .
/ dr e e —Ci(x) cosx — {Sl(x) —5} sinx, (A.26)
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that can be expressed in terms of the sine and cosine integrals Si(x) and Ci(x) [35].
The expressions inside the brackets in Egs. (A.23) and (A.24) are constants and the
k-dependence of the TH integrals with the irregular Coulomb wave functions is
determined by &/Co(1).

In the case of finite R the energy dependence of the TH integrals for £ — 0 can be
extracted with the help of the approximations (A.15) and (A.17) which are valid for
21 > &xq. The energy dependence of the differences

JI<F> (Oa n, k7 Q) - JI(F) (R7 , ka Q) = Jl{fgd(07 , 5) - J;fe)d(x(h , 5)
@1+ 1)'Cin)¢
(2n)l+l

y / " Ao/ (/) x) (A27)

0

~
~

and
J[(G) (Oa m, k7 Q) - JI(G)(R7 n, k7 Q) = Jl(fe)d(o7 n, é) - J/(fe)d(xm n, é)

o 20p)e
T @20+ D)IC(n)

v /0 de/2nExKor 1 (2 20E0)z1 () (A28)

is entirely given by the factor in front of the integrals since né = nk/Q is constant for
constant Q. For large # and small £ it is found that the energy dependence of the
finite range correction to the TH integral with the regular and irregular Coulomb
functions is given by £2C0(11) and &/Cy(n), respectively. The finite range correction
essentially leads to a change in the absolute value of the integral but the energy
dependence of Jl(i> (R,n,k,Q) and Jl(i)(O, 1, k, Q) is the same for small %.

When the Sommerfeld parameter 5 increases, the coefficient Cy(1) becomes very
small and the TH integral with G; is much larger than the TH integral with F.
The integrals J,(i) are therefore dominated by J,(G> at low energies.

In the case where a neutron is transferred in reaction (3) the reduced TH integrals
can be written as

TR, 0,k, Q) = Ji 1 (x0,0, &)
&
-=

in the variables xo = OR and ¢ = k/Q with y = 0. For ¢ — 0 we find the approxi-
mation

R (Ex0) i (x0) — kY™ (Ex0) i1 (xo0) (A.29)

%]11(]&)), (A30)

with a characteristic /-dependence due to the centrifugal barrier.

Jl(;fe)d(x(% 07 é) -
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A.3. Simplified approximation of TH integrals

The dominance of the contribution with the irregular Coulomb wave function G;
in the TH integrals J,(i) at low energies also motivates a simple approximation in the
limit £ — 0 that has been used in applications of the THM to reactions with Ax # Cc.
In this case the integral is completely determined by the contributions at radii close
to R and the integrand decreases very fast with increasing r. If we assume that a gen-
eral function f(r) decreases exponentially, the integral of f(r) from R to infinity can
be calculated from

/: drf(r) = f(R) /Rm drexp ( - é) = ARf(R), (A31)

with AR = —f(R)/f"(R) and Re(AR) > 0. In the TH integral J,&) the appropriate
value of AR is determined by

KGy(m:kR) | 0Z1(0r) } B
Gi(n; kR) z(Qr) ’

neglecting the small contribution of F; for £ — 0. From the approximation (A.17) of
the irregular Coulomb wave function for kR < 25 we find

20k Kby (2V/20R) 020
\/;K2/+1(2\/27]kR) + Z](QI") ] ’ (A33)

independent of k because 5k is constant and Q is practically independent of k& for
small k. Applying this result to the TH integral leads to the approximation

AR ~ —{ (A.32)

AR ~ —

(R0, k, 0) = k / " drd®) (k)2 (0) ~ KARUE (7 kR)z (OR). (A.34)

Since we are only interested in the k-dependence, the TH integral can be replaced by
the value of the integrand,

JE (R, n, k, Q) — kRu\™ (n; kR)z,(OR), (A.35)

at the cutoff radius R with the factor R instead of AR. The energy dependence for
small £ in this simple approximation agrees with the exact result for the TH integrals.
Appendix B. Analytical calculation of radial integrals
The radial integrals
1 o0
My (Hon k) =15 [ drtitusker 5100 (B.1)
0

appearing in Eq. (A.6) can be calculated explicitly by using the integral represen-
tation
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. i(kr 1+1 i+00 i . 5
Fy(n; kr) +1Gi(n; kr) = (214‘1))'@(’7) / dse™ (s — 1)/ (s + 1) (B.2)

of the combined Coulomb function H; = F; + iG,;. This form has been obtained from
the representation in [35] by the substitution # = kr(s — 1). The integration path in the
variable s is a parallel to the real axis in the complex plane. Since the recursion re-
lation (A.14) connects integrals of three successive /-values, only the basic integrals
with / =0 and / =1 are needed for the explicit calculation of M;' for all /. With
zo(x) = sinx and z; (x) = sinx/x — cosx the integration over the radial coordinate r is
easily performed and one finds

Moy (H, 1.k, Q) = el /im dsw (B.3)

and
B kQ [T (s i) (s — 1)

My (Hon kb Q) =3 o) / ds 71 0) (B.4)
The substitution s =i(z+ 1)/(¢ — 1) leads to the expressions

MG (H.1.k. Q) = s 012 (B.3)

M H 1k, Q) = ot s i) (B.6)
with the integral

£
I(n,z) = /C dtm. (B.7)

The contour C is the straight line from 1 to 1 + ico parallel to the imaginary axis in
the complex plane. The integral depends on the variable

Q2 +k2
which is always larger than 1 for the conditions of the TH method. The integrand has
two polesat z; =z+VvVz2—1>1and z; =z — vz2 — 1 < 1 on the real axis. In the
next step the path of integration is deformed to lie on the real axis and the integrand
is broken into partial fractions. This yields

00 £ £in
I = dt——— — niRes,, —————
o(n,2) /1 22zl M o
1 .
= I, — I, — miz! B.9
Zl — Zp [ ! 2 TCIZI ( )
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with the contribution of the residue at the pole z;. The remaining integrals

1,:/‘ dtti”[t ! —%] (B.10)
1 —Zi

for i = 1,2 are evaluated with the help of the geometric series and the relation [35]

) 2
S E— ) . B.11
tanh(my) e ; n? + n? ( )
Collecting all contributions we find
_ 1 2 in _ o 2 - —n
[0(7772) - 27]\/22j CO(”)( ) 2 E 2+ ) (Blz)

for the fundamental integral (B.7). Separating real and imaginary parts, the explicit
expressions of the integrals My (Ho, 1, k, Q) and My, (Go, n, k, Q) are found with Eq.
(B.5). In the case / = 1 the derivative of Iy(z) with respect to z has to be calculated
first.

Appendix C. Cross-sections for particles with spin

For the application of the THM to a particular reaction one has to consider that
the nuclei participating in the reactions (2) and (3) usually carry a spin. In this case
the definition of the relevant quantities becomes more intricate but the general pro-
cedure remains the same as in the spinless case. Spins of an individual particle i will
be denoted in the following by s; with projection v,.

Here, the channel spin basis in the derivation of the expressions is used. In the
two-particle reaction the spins s, and s, in the initial state are coupled to the
channel spin s4,. Similarly, in the final state sc and s. are coupled to the channel
spin s¢.. Coupling sc. with the spin of the spectator s, gives the angular momen-
tum s, of the three-body final state. The initial state of reaction (3) is character-
ized by the angular momentum s; which is obtained from coupling the spins s,
and s,.

The cross-section of reaction (3) in the laboratory system

d30' o Klab
dEcdQcdQ. ~ (25, + 1)(2sa + 1)

X Z Z Z ‘Tﬁ'(]_éCcaEBb7SCCSf'V/';]}'Aa7sivi) ’ (C.1)

SiSp o Vive  Sce

is obtained by summing over final spin states and averaging over initial spin states
with the three-body 7-matrix element 7 that carries now both momentum and spin
indices. In the modified plane wave approximation it is given by
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Y}{H(kCc7quaSC¢'sfyf; Gaas SiVi) = <exp(i€_iBb “Fap) asym(CC —b kc“Sfo)

X Vool XP(iiaa - i) aa(5%)) (C2)
with the asymptotic wave function
?’asym(Cc —-b kCC,scC, Spvyr)
= Z(SCCVCcSth |vaf) qla;)?m (CC, ];CM SCchc)¢b (Shvb)a (C3)
VeeVh
where

'd

asym(Cc kcc,Scc, VCc Z Z Z

kCL’ usy  JM lylce
— 51 o hewse (@ k) Vi (o0, 7) 25577 (kee)  (C4)

for r, > R and P

asym

(o ?) = (Imsv[IM)i' Yy, (7)o, (sv) (C.5)

mv

= 0 for r, < R. The vector spherical harmonics

and the angular distribution functions

2 (k) = " (Imsv|IM) Yy, (k). (C.6)

m

are obtained by coupling the channel spins s with the corresponding orbital angular
momenta / to the total angular momentum J. The radial wave functions

(+) . _ 1 Uce [ @race
51ys71&.sa,(a7 k‘“r“) - Z U_ Slafy/avsc( ulx (;777 k, r“)
o

= BaceO,ic ety (i ”a)} (C.7)
and
J(—
517(3'73&4@ (OC k r“) = ‘flzsllccsc( (OC; kir“) (CS)
contain the general S-matrix elements S/ for a transition from a channel with

quantum numbers /c.scc in the partition Cc to the channel /,s, in partition o.
The T-matrix in the modified plane wave approximation

4n
kAx QAa

again factorizes into a form with the momentum amplitude # and the scattering
amplitude

T;H(ECcqub7SC¢-Sfo;6Aa;sivi) = W(QBb)]:TH(QAmzC¢'7SCchVfSiVi) (C.9)
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- 1 A
F'NOuarkcerscesyvysivi) = Diker Z Z Z (2J + 1)7>11Astxlc'c56c (kces QaarSrvysivi)
e

Sax laxlce

Uce JAxCc (+)
8 V E[SIAXSAXICL‘SC('JIAX (R M4 e, Q)
X

- 5Axcc51AxlCc 5A‘.4XSCCJ1(,;) (R7 N> Kz QAa)} (C 10)

which is a matrix in spin space. The angular distribution is determined by the
function

A 4
P{AX‘YAX/C(“YCL‘ (kCu Oiar SfoS,-V,-) = 2‘]—11 Z Z Z Z

VxVp  V4Va MCcVCe MAxVAx

X Z Yl(,‘gmc‘c (]%CC) Ylj,cm,u (QAa)
M

X (SxVeSpVp|SaVa) (SaVaSaValsivi)
X (SceVeeSpVolSrvr) (LS axVax|[JM )

X (SA VA4S Vx |SAvax) (lCcchSCchc |JM)

= 4n Z Z(s,»vijm|sfvf)

myxmce  jm
X (leemeejm|Lucm ) Yeme, (IECC) Y o (QAa)

e (Sx,ShySasS4), (C.11)

LaxSaxlcesce
with

ljsisf
LaxSaxlcesce

(Svs Sy SarSa) = (1) 7577

(_ 1 ).S'AX+‘1+ICF

X
\/ZSAX+1\/21AX+1
X{sx S SAX}{SAX Sy Si }{SAx J le}. (C.12)
Si Sp Sa Sy ] Sce lee J sce

The Trojan—-Horse scattering amplitude is a sum

V25, + 1325+ 1(2j+ 1) x (254, + 1)

.7:TH = .F};H + ngéAch (C13)
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of the pure Coulomb contribution

F = Zzzm

Sax laxlce

x P,

LaxSax

~ ~ . F
lcesce (kCc; QAm SfoS[V,') €'l (WCC)JI(/“) (Ra N oxs kA)m QAa)élelCE 5SAXSCL,

¢ 4sh s Sy S4  Sce
:ngé\,lféé,Af( )Ax+s,4+bb+sf\/2SCc + 1\/2Sa + 1{ A C }
Sy

Sp Sa
(C.14)
and the nuclear contribution
TH
P 5 S 0P e Busrsm)
¢ Sty laxlee
1VCe myaxce (+)
X JTIAXL;IQJ-QJIM (R7 M4 kAxv QAa) (C‘ls)
with
xCe i i e
T}J/ﬁ;‘;[asa — elo1y, () Houg, (nee) Slj,ﬁ/‘:l]z(va 5AxC55[AxlCc55AxSCc:| (C.16)

depending on the nuclear S-matrix element S/4*¢<¥
LaxSaxlcesce”

The unpolarized cross-section for the three-body reaction in the laboratory
system

d’c L, 16m® ve. do™
— = Ku|W =
dEcdQcdQ. ol W (C )| k.02 vy dQ

(C.17)

has the same form as in the case for spinless particles. The TH cross-section

de™ Vs Fp
dQ (2SA+ 2sa—|—l ZZZ |

SiSf ViV Sce

da{,H
dQ

(C.18)

delM doM
dQ dQ

:l 5A\ch +—

again decomposes into a pure Coulomb contribution

dUEH TH TH |2
dQ ~ (s, + 1) 2s Y SN S FEE = (C.19)

SiSf o Vive  Sce
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an interference contribution

dgH _ Z Z Z2Re [ I FTH]
dQ (2s4 + 1)(2s, +

SiSf Vivy  Sce

)
1
:(2sA+ 1)(2s,+1) ZZZ

J e sce

2J+1
X

kee Re |:(1 ) Tlifscczcla VCLJl:;) (R7 N axs kAx7 QAd):| PICC (IECC : QAu)

(C.20)

and a nuclear contribution

daiHt _ Z Z Z UAx ]_—TH|
dQ  (2s,+1 2s +1

SiSf o Vive Sce

1
T (2si+ D25+ 1) 4k2 PIPIDID

A JT saxSce laxlce

X > (=1)Tzl (Gsa)Zy (Asce)Pi(Quq - kee)

oy
lAtl((

X T Th i (R nAxakAmQAa) (R Mae ki Qaa),  (C.21)

LaxSaxlcesce ™ Uy saxlpsce” Lax
with factors

Z,J[J,’(zs):\/(2J+1)(2J/+1)(21+1)(21/+1)(101/0|10){Jl, i i} (C.22)

for the angular momentum coupling. The Coulomb contribution is the same as in the
case of spinless particles. Notice the change from s, to s, in the spin degeneracy
factors.

If only one orbital angular momentum / = /,, = /, contributes in the Ax partition
to the inelastic two-body reaction 4 + x — C + ¢, the TH cross-section

do™  (25¢ 4 1)(2s.+ 1) do;

- AX)P(R, 4o Koo O 23
dQ ~ (2sq+ D(2s+ 1) ag (e = AX)PR, 11, ki, Ose) (C23)

is directly related to the usual on-shell cross-section

dU[

— A
a0 (Ce X)

1
T (2sc+ (25 + 4k2 Z 2.

JI SaxSce

X Z(—l)‘”"‘f“‘”z‘/}’ (As)Zi2, (Asc)PuQuaarkce) Tt e Tt o

’
lc“ICc

(C.24)
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with the penetrability factor (77). In (C.23) the only difference to the case with
spinless particles is the appearance of the spin degeneracy factors. Applying the
theorem of detailed balance the simple relation

d’o ~ 2 161 vc. doy
dEcd0cdn, ~ KoV (Onm) k2,02, vax dQ
X (A)C — C‘C‘)P[(R7 Naxs kAxa QAa) (CZS)

is found which is the same as in the spinless case. The increase of the factor P, at
small k,, compensates the decrease of the two-body cross-section (do;/dQ)
(4x — Cc).

Appendix D. Trojan—-Horse Coulomb scattering amplitude

Recalling the procedure to derive the radial integrals (B.1), the contribution f2!!
to the Coulomb scattering amplitude can be written as

TH _ ’1sz
O 2n(k? — Q?)

by considering the Schrodinger equations for the Coulomb scattering wave ?’(Cio)ul
and the plane wave. The matrix element can be evaluated by employing the
integral representation of the confluent hypergeometric function [35] in the Cou-
lomb scattering wave function (85). After the integration over the spatial coor-
dinates, an integral remains that represents a hypergeometric function [35]. This
technique is similar to the evaluation of Bremsstrahlung matrix elements [42,43].
One obtains

(Feoul®lr | exp(Q - 7). (D.1)

RN = Arre—(®/2n . .
<‘I’(Co>ul(k)|r "exp(iQ - r)> = WF(I +in),F (1, —in; 1;x) (D.2)
with the argument
X = —2%:126) (D.3)
(Q—k)

in the hypergeometric function ,F; which reduces to the simple form
2Fi (1, —in; 1;x) = (1 —x)" (D.4)

for the given parameters. Combining the above results the scattering amplitude as-
sumes the form (86) when the relation

I(1+iy) = Co(y) exp (gn + iao) (D.5)

with the Coulomb phase g is used.
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One application of this formula is the calculation of the modified momentum am-
plitude (37) with a Coulomb scattering wave function. In this case one finds

g . 8mnk  C . . 2 — k
W@ =@ 5 S e it i | S DO

where the indices Bb of n and k& have been suppressed for clarity.
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