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Spurred by the recent complete determination of the weak currents in two-nucleon systent3(@Qzan
heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the thf&ftudtds for
the solarpp (proton-fusion and hep processes in an effective field the@{T) that combineshe merits of
the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is
that one can correlate in a unified formalism the weak-current matrix elements of two-, three-, and four-nucleon
systems. Using the tritiung-decay rate as an input to fix the only unknown parameter in the theory, we can
evaluate the threshol® factors with drastically improved precision; the results &g(0)=3.94x(1
+0.004)x 10" % MeV b andS,¢f0)=(8.6=1.3)x 10" * keV b. The dependence of the calculag@éactors
on the momentum cutoff parametdr has been examined for a physically reasonable ranga.of his
dependence is found to be extremely small for plpeprocess, and to be within acceptable levels for the hep
process, substantiating the consistency of our calculational scheme.
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[. INTRODUCTION tions in light nuclei. For a variant approach towards the EFT
description of nuclear matter and heavy nuclei, we refer to
The standard approach to nuclear phygidsanchored on  Refs.[2-5].
wave functions obtained from the Schinger (or Lippman- To be concrete, we shall consider the following two solar
Schwingey equation with “realistic” phenomenological po- huclear fusion processes
tentials has scored impressive quantitative successes in de-

scribing systems with two or more nucleons, achieving in pp: p+p—d+e’+ve, (1)
some cases accuracy that defies the existing experimental
precision. We refer to this approach as SNPtandard hep: p+ *He— *He+e™ + v,. (2

nuclear physics approachrhe advent of quantum chromo-

dynamics(QCD) asthetheory of strong interactions raises a  We stress that in our EFT approach these processes in-
logical question: What is the status of SNPA in the context ofvolving different numbers of nucleons can be treated on the
the fundamental theory QCD? Put more bluntly, is SNPAsame footing. A concise account of the present study was
(despite its undeniable succggsst a model-dependent ap- previously given in Ref[6] for the pp process and in Ref.
proach unrelated to the fundamental theory? In our view thi$7] for the hep process.

is one of the most important issues in nuclear physics today. The reactiong1) and(2) figure importantly in astrophys-

In this paper we investigate a possible way to identify SNPAics and particle physics; they have much bearing upon issues
as alegitimatecomponent in the general edifice of QCD. We of great current interest such as, for example, the solar neu-
describe an attempt to find a scheme which includes SNPA dsino problem and nonstandard physics in the neutrino sector.
an approximation, and which allows us to control and evalu-Since the thermal energy of the interior of the Sun is of the
ate correction terms. Such a systematic treatment equippexder of keV, and since no experimental data is available for
with error estimation, which is not feasible with SNPA alone, such low-energy regimes, one must rely on theory for deter-
can be profitably studied with the effective field theory mining the astrophysicab factors of the solar nuclear pro-
(EFT) of QCD. We study here a formalism which exploits cesses. Here we concentrate on the thresBdhttor S(0)
simultaneously the merit of EFT in classifying interaction for the reactiongl) and(2). The necessity of a very accurate
vertices unambiguously, and the high accuracy of nucleaestimate of the thresholfl factor for thepp processS;,(0)
wave functions available in SNPA. We demonstrate that thiztomes from the fact thgtp fusion essentially governs the
formalism enables us to make parameter-fpFedictions  solar burning rate and the vast majority of the solar neutrinos
with accompanying error estimates for electroweak transicome from this reaction. Meanwhile, the hep process is im-
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portant in a different context. The hep reaction can produc&FT should provide a valuable insight in this regard. Here
the highest-energy solar neutrinos with their spectrum exwe build on a formalism of this kind developed in Refs.
tending beyond the maximum energy of thB neutrinos. [13,20. In this formalism,[21], electroweak transition op-
Therefore, even though the flux of the hep neutrinos is smallrators are systematically constructed using heavy-baryon
there can be, at some level, a significant distortion of thechiral perturbation theory (HBPT), and the corresponding
higher end of the®B neutrino spectrum due to the hep neu- nuclear matrix elements are evaluated with the use of wave
trinos. This change can influence the interpretation of thdunctions generated by a state-of-the-art SNPA calculation.
results of a recent Super-Kamiokande experiment that havEhis is a hybrid approach in that, formally speaking, there is
generated many controversies related to neutrino oscillatior® Mismatch between the treatments of transition operators

[8,9]. To address these issues quantitatively, a reliable est@nd wave functions. However, we implement in our formal-
mate 0fS,e{0) is indispensable. ism a feature that allows us to reduce the practical conse-

The primary amplitudes for both thep and hep pro- duences of this mismatch down to sufficiently low levels. To

cesses are of the Gamow-Tell&T) type (AJ=1, no parity emphasize this feature, we refer to our present approach as
. . . . *

change. Since the single-particle GT operator is well known EFT™. ) _ Y ) )
at low energy, a major theoretical task is the accurate esti- |N€ starting point of EFT* is the observation that, to high
mation of the meson-exchange currédEC) contributions.  &ccuracy, the leading-order 1B operators in SNPA and EFT
The nature of a specific challenge involved here can be eldHBxPT) are identical, and that their matrix elements can be
cidated in terms of thehiral filter picture. If the MEC in a reliably estimated with the use of realistic SNPA wave func-
given transition receives an unsuppressed contribution frorf{oNs for the initial and final nuclear states. Next we ri@e|
a one-soft-pion exchange diagram, then we can take advaffat 2B transition operators in BET are uniquely given by
tage of the fact that the soft-pion-exchange MEC is uniquely'réducible diagrams in Weinberg's counting schel2@,23.
dictated by chiral symmetry10,11 and that there is a The long-range 2B contributions are in fact identical for both
mechanism(called the chiral filter mechanismthat sup- SNPA and EFT, as they are strongly constrained by chiral
presses higher chiral-order terfii,13. We refer to a tran-  Symmetry. It is shprt—range contributions that |_ntroduce
sition amplitude to which the chiral filter mechanism is ap-model dependence in SNPA. EFT allows us to write down,
plicable (not applicable as a chiral-protected(chiral- for a given chlr_al order, the most general set of operators that
unprotectel case. It is known that the space component ofdovern short-distance physics as

the vector current and the time component of the axial cur- N
rent are chiral protected, whereas the time component of the O = E cO ?)
vector current and the space component of the axial current short™ &g =it

are chiral unprotectetsee below. This implies among other
things that the isovectdvl1 and axial-charge transitions are Where O; is a zero-range operatdwhich may involve a
chiral protected 14,15, but that the GT transition is chiral derivative operatgrandc; is the corresponding low-energy
unprotected. This feature renders the estimation of the GFonstant(LEC); N is a finite number that depends on the
amplitude a more subtle problem; the physics behind it ischiral order under consideration. Tlegs, which should in
that MEC here receives significant short-ranged contribuprinciple be derivable from QCD, are in practice determined
tions the strength of which cannot be determined by chiraby fitting empirical data. Now, a nuclear matrix element in
symmetry alone. EFT* is obtained by sandwiching the EFT-controlled transi-

The difficulty becomes particularly pronounced for thetion operator between the relevant SNPA wave functions.
hep process for the following reasons. First, the one-bodyhis means that, if twd@or more observables belonging to
(1B) GT matrix element for the hep process is strongly supihe same nucleus or to neighboring nuclei are sensitive to
pressed due to the symmetries of the initial and final stat€snorr, they can be related via EFT*. If the experimental
wave functions. Secondly, as pointed out in R¢fs6] (re-  value of one of those observables is known, the ¢thean
ferred to as “CRSW91) and [17] (referred to as be predicted. Correlating tw@r morg observables in this
“SWPC92"), the main two-body(2B) corrections to the manner is expected to significantly reduce the practical con-
“leading” 1B GT term tend to come with the opposite sign sequences of the afore-mentioned “mismatch problem.” The
causing a large cancellation. A recent detailed SNPA calcubasic soundness of this approach has been proven far the
lation by Marcucciet al. [18], hereafter referred to as MS- +p—d+ vy proces§14,24 and several other procesges)].
VKRB, has reconfirmed this substantial cancellation betweeMVe emphasize that EFT*, which takes into account short-
the 1B and 2B contributions. The 2B terms therefore need tdlistance physics consistently, should be distinguished from
be calculated with great precision, which is a highly non-naive hybrid models, which lack this feature. Having de-
trivial task. Indeed, an accurate evaluation of the hep rate hegcribed EFT* in rather general terms, we give in the next two
been a long-standing challenge in nuclear phygl®&. The  paragraphs more specific aspects pertaining toptheand
degree of this difficulty may be appreciated by noting thathep processes.
theoretical estimates of the hé&pfactor have varied by or- An early HBYPT study of thepp process was made in
ders of magnitude in the literature. Ref. [26] (hereafter referred to as PKMRPBy four of the

As mentioned, for accurate estimation of the GT transitionauthors. The calculation in PKMR98 was carried out up to
amplitude, it is imperative to have good theoretical control ofnext-to-next-to-next-to-leading ordé@43LO) in chiral count-
short-distance physics. A first-principle approach based oing (see below. At N3LO, two-body MEC begin to contrib-
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ute, and there appears one unknown parameter in the chirdle formalism in the text as brief and focused as possible,
Lagrangian contributing to the MEC. This unknown con- relegating most technical details to the Appendixes.

stant, calledd® in Ref. [26], represents the strength of a
four-nucleon-axial-current contact interaction. In Ref6], Il. FORMALISM

since no method was known to fix the valueds, the d* We sketch here the basic elements of our formalism. The
term was simply ignored by invoking a qualitative argumenteypjicit degrees of freedom taken into account in our scheme
that the short-range repulsive core would strongly suppresgre the nucleon and the pion, with all other degrees of free-
its contribution. Due to uncertainties associated with this ardom [p and w mesonsA(1232), etc] integrated out. The
gument, Ref[26] was unable to corroborate or exclude the HByPT Lagrangian can be written as

result of the latest SNPA calculatid@7], §,5=0.5—0.8 %,
where ,5 is the ratio of the contribution of the two-body
MEC to that of the one-body currefdgee below.

The situation can be greatly improved by using EFT*. As
first discussed in Ref$6,7] and as will be expounded here, with the chiral ordein defined as
the crucial point is that exactly the same combination of

counterterms that defines the constaift enters into the )\=d+e+n—2 ®)
Gamow-Teller(GT) matrix elements that feature p fu- - 2 7

sion, tritium B decay, the hep process, capture on a deu-

teron, andv—d scattering and that the short-range interactionwhered, e, andn are, respectively, the numbers of deriva-
involving the constandR is expected to be “universal,” that tves (the pion mass counted as one derivativexternal

is, A independent. Therefore, assuming that three- and foufi€!ds and nucleon lines belonging to a vertex. Chiral sym-
body currents can be ignoréarhich we will justify a poste- metry requires\=0. The leading-order Lagrangian is given

riori), if the value ofd® can be fixed using one of the above

processes, we can make a totally parameter-free prediction . 1 .

for the GT matrix elements of the other processes. Indeed, Lo=B[iv-D+2igpSAIB— > 2 Ca(BI'4B)?

the existence of accurate experimental data for the tritium A

B-decay ratd™, and the availability of extremely well tested 2

realistic wave functions for th&=3 nuclear systems allow +HIZTIAMIA )+ 7 Tr(x ), (6)
us to carry out this program. In the present work we deter-

mine the value ofdR from FtB and perform parameter-free where B is the nucleon field in HRPT; g,=1.2670

EFT-based calculations &,,(0) andSe{0). +0.0035 is the axial-vector coupling const4@8], and f .
As described below, our scheme has a cutoff parameter 92.4 MeV is the pion decay constant. Furthermore

A, which defines the energy/momentum cutoff scale of EFT

below which reside the chosen explicit degrees of freedom D,B=(4,+T,)B,

[28]. Obviously, in order for our result to be physically ac-

ceptable, its cutoff dependence must be under control. In our 1 o, [ +

scheme, for a given value of in a physically reasonable FM_E[f » 0u€l- Eg R.&- Efl‘#g '

range(to be discussed laterd®R is determined to reproduce

Ftﬁ; thusdR is a function ofA. According to the premise of

EFT, even ifdR itself is A dependent, physical observables
(in our case theS factorg should be independent of as
required by renormalization-group invariance. We shall show x+=ExE+exe, (7)
that our results meet this requirement to a satisfactory de-

gree. The robustness of our calculational results againé’t”t

changes in\ allows us to make predictions d8,,(0) and .
Shed0) with much higher precision than hitherto achieved. = = exp(iﬂ)
Thus we predictS,,(0)=3.94x (1+0.004)x 10" 2*> MeV b 2f, )"
and Syef0)=(8.6+1.3)x 10" *’ keV b.

The remainder of this article is organized as follows. In R#E(Tt’=l/2)(1;24r A2) andL#=(7-a/2)(VfL—A";‘) denote ex-
Sec. Il we briefly explain our formalism; in particular, we ternal gauge fields, ang is proportional to the quark mass
describe the relevant transition operators derived in¢AB. matrix. If we neglect the small isospin-symmetry breaking,
The determination ofiR is described in Sec. Ill. Section IV then szf, (in the absence of external scalar and pseudo-
presents the calculation &;,,(0), while Sec. V is concerned scalar fields For convenience, we work in the reference
with the estimation 0f5;.{0). Section VI is devoted to dis- frame in which the four velocity# and the spin operat®*
cussion and conclusions. We have made the explanation aire

L= Ly=Lo+ L+, (4)
A

1 I
A =35lE 9,81+ S8R E-SELLE

®
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o
v*=(1, 0) and Sr“=(0, E)' (9)
The NLO Lagrangiarithe so-called “Iih” term) in the one-
nucleon sector is given in Ref30], while that in the two-
nucleon sector is given in Refg31,32. With four-fermion
contact terms included, the Lagrangian takes the form

vhy Y —ghv

+4c;iAi-
2y D,D,+4csiAi-A

£l:§[

+ iA,]

o

1 .
2C,+ z—mN)[S“, S[iA

1+cg
My

—i [S, S”]f;,,]B—4id1§SAB§B

+2id,e®C%,,\ v A" BS B BS' B+ -,

(10
wheremy=939 MeV is the nucleon mass, and
— i t
fr,=&0,L,—aL,—i[L,, LE
+&'(0,R,~d,R,~I[R,, RDE (11

€g12=1, and A#=(7a/2)AZ. We have shown here only

PHYSICAL REVIEW C 67, 055206 (2003

TABLE I. Contributions from each type of current@t0. The
entry of “—" indicates the absence of contribution. “1B-RC”
stands for relativistic corrections to the one-body operators, and
“2B-1L" for one-loop two-body contributions including counter-
term contributions.

J* LO NLO N2LO N°LO N*LO

A 1B — 1B-RC 2B 1B-RC, 2B-1L, and 3B
A° — 1B 2B 1B-RC 1B-RC, 2B-1L

\Y - 1B 2B 1B-RC 1B-RC, 2B-1L

Ve 1B - - 2B 1B-RC, 2B-1L and 3B

wherep{* (p/*) denotes the initia(final) momentum of the

Ith nucleon, and{=(p, —p;)*. Therefore, each appearance
of v-p;, v-p|, or v-k, carries two powers of instead of
one, which implies thav increases by two units rather than
one. It is also to be noted that, if we denote d¥¥y=(q,0)

the momentum transferred to the leptonic pair in Ed3,

(2), thengo~|q|~Q?/A,~O(Q?) rather thanO(Q) as na-

ive counting would suggest. These features turn out to sim-
plify our calculation considerably.

In this paper, as far as the main calculation is concerned,
we shall limit ourselves to RLO; for certain discussions,
however, we shall consider operators belonging th.®
as well.

those terms which are directly relevant to our present study. We now describe the derivation of one-bo@B) and

The dimensionless LECs;s andd’s, are defined as

1. Ua -
€34~ Caar  dio=——701,.
N

12
i (12)

We now consider the chiral counting of the electroweak

currents (see the Appendixes for detailsin the present
scheme it is sufficient to focus on “irreducible graphs” in
Weinberg's classificatiofi22]. Irreducible graphs are orga-
nized according the chiral index given by

v=2(A—C)+2L+, », (13)

whereA is the number of nucleons involved in the procéss,
the number of disconnected parts, dnthe number of loops;
v; is the chiral index\, Eq. (5), of theith vertex. One can
show that a diagram characterized by EfR) involves an
ng-body transition operator, whereg=A—-C+1. The
physical amplitude is expanded with respectitoAs ex-

two-body (2B) current operators with due consideration of
chiral counting. The current in momentum space is written as

J“(Q)=V“(Q)+A“(Q)=f dx e ' IH(x). (15

When necessity arises to distinguish the space and time com-
ponents of the currents, we use the notations

VE=(VO V) A*=(A%A). (16)

For the clarity of presentation, we first give a summary
chart of the basic chiral counting characteristics of the rel-
evant currents, and then provide more detailed explanations
in the remainder of this section and in the Appendixes. The
chiral counting of the electroweak currents is summarized in
Table I, where the nonvanishing contributionscgtO are

plained at length in the Appendix, the leading-order one-ngicated[35].

body GT operator belongs te=0. Compared with this op-
erator, a Feynman diagram with a chiral index is
suppressed by a factor ofQ(A )", whereQ is a typical
three-momentum scale or the pion mass, and- 1 GeV is
the chiral scald33]. In our case it is important to take into

We now discuss the entries of this table order by order.

v=0. One-bodyA and V°: A gives the Gamow-Teller
(GT) operator, whileV° is responsible for the charge
operator.

v=1. One-bodyA® andV: A° gives the axial-charge op-

account the kinematic suppression of the time component afrator whileV gives theM 1 operator.

the nucleon four-momentum. We ndte4|

2

PP~ ok~ —,

o 14

v=2. Two-body tree current witlr,=0 vertices, namely,
the soft-pion-exchange current. This is a leading correction
to the one-bodyM 1 and axial-charge operators carrying an
odd orbital angular momentum.

055206-4



PARAMETER-FREE EFFECTIVE FIELD THEORY ... PHYSICAL REVIEW 67, 055206 (2003

v= 3. Two-body tree currents with;»;=1, which corre- A
spond to the hard-pion current, considered in CRS\%] A= 2 Anm.
and SWPC92[17]. These are leading corrections to the I=m
GT and V° operators carrying an even orbital angular
momentum. A —_9A 1

v=4. All the components of the electroweak current re- 12 Zme2 m2 + k2
ceive contributions of this order. They consist of two-body T
one-loop corrections as well as leading-ordeee three-
body corrections. Among the three-body currents, however,
there are no six-fermion contact terms proportional to

(NN)3, because there is no derivative at the vertex and n 9a
hence no external field. myf2
It is noteworthy that the counting rule fofis the same as

for A°, and the countinog rules fd_c/o andA are the same. ih k= (ko—k0)/2, ki=p. — 1, P=(P1— P2)/2, Pi=(p\
The behavior ol and A” summarized in Table | represents N2 r =L V) PR = (X ) i y d
the chiral filter mechanisif.Z], andV andA° are referredto | P 2,7 =3(n—im), 7=(rX 1) =i(r1X75)", an

as chiral-filter-protected currents. By contragf, andA be- ~ Similarly for o ; ¢'s and d's are the LECs explained in
long to chiral-filter-unprotected currents. PKMR98. The values ot’s in Eq. (19) have been deter-

We now discuss the explicit expressions for the relevaniined from#-N data[37]: c;= —3.66+0.08 andc,=2.11
currents. For the 1B currents, for both the vector and axiaLFO 08. The two constant?kl andaz remain to be fixed but

cases, one can simply carry over the expressions obtained i'?turns out(see Appendix C Pthat. thanks to Eermi-Dirac
MSVKRB. Up to N°LO, the 1B currents in coordinate rep- statistics o(nly ongl?:ombinati]cz)n of’ them

resentation are given as

i
5oy o)k

7 T kX[ oy X K]

~ ~ 1
+4Cgkk(7’;0’l+ 7502)+ ( C4+ -

[281(7'Iol+ 7502)+azriax], (19

3 3 6

. 2
VO= e 10N 14ig. oy X p s

2

P PO J
V_ll dR=d;+2d,+ =Cg+ =Cs+ = (20
2|

is relevant in the present contd:a8].
It should be noted that the two-body currents given in Eq.
o Elz (19) are valid only up to a certain cutoff. This implies that,
m—N 1- ﬁ when we go to coordinate space, the currents must be regu-
N lated. This is a key point in our approach. Specifically, in
performing Fourier transformation to derive thapace rep-

V|: Treiiq'rl

+iﬂq>< 0'|+i0'|><aq02'uvzl , resentqtioq of a transitior) operator, we use the Gaussian
2my N regularization(see Appendix € This is, to good accuracy,
equivalent to replacing the delta and Yukawa functions with
H 62 the corresponding regulated functions
g o P I
0_ _ —ign| L0 0t
Al gaT € My ( omz | | 3

k _
65\3)(r)zf (j )3s§(k2)e'k'f,

w

Z(EG] 'a— 0'|B|2) +i qxa
+ 3

A=—gar e 9N gy

4mﬁ T (r Ef 2 (K2)elk T
17 Yoa(r) (2m)° A (K) k2+mfr
where uy,=4.70 is the isovector anomalous magnetic mo- o J .
. — S = YIA(N)=—=T—yga (1),
ment of the nucleon ang=—iV, andp,=—(i/2)(V,—V)) oar
act on the wave functions. Equatigh?7) gives the isospin-
lowering currents T (1) 1 919 ) 21
rN=-—r———Yyoalr),
o Yaa mi arr aryOA
J, =3, -3, (18)

where the cutoff functiors, (k?) is defined as
and7, =3(7—iT).

We next discuss the 2B currents. The expressions for the N k?
V,g and A, operators can be found in Ref®0,36. The Sa(k )—exp( B ﬁ)
VgB operator does not appear up to the order under consid-
eration. The derivation of the 2B axial currefdg in HBYPT  The resultingr-space expressions of the currents in the
is described in Appendix A. In momentum spadeg reads  center-of-mass$c.m) frame that are of RLO are

(22)
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g2m2 three-nucleon potentig#4]. Furthermore, we apply the same
Vir)=— A—;T;r[gl. oY i (1) +S1y7, ()] regularization method to all the systems in order to control
f short-range physics in a consistent manner.
o2 5 The values ofi® determined in this manner are
. JA P T
_|qu OxyoA(r)+ T><_§O><>y1A(r) )
i dR=1.00+0.07 for A=500 MeV,
Jga _| O+ F i -~ ~
(= —— 4 =q-To_ 1|y (1) R
12 af2 x| v 2 - 1AV d"=1.78+0.08 for A=600 MeV, (29
A gamZ || cs 0.0 )+ 2. N 1 dR=3.10+0.10 for A=800 MeV,
121 = Zmefr 3( + ) 3 Cy 4
where the errors correspond to the experimental uncertainty
" " 1 . t R . . .
X Oy YT (1) +| (T + T ) —| Gat = inT";. Onced™ has been determl_ned, we are in a posmon t(_)
4 make a parameter-free calculation of the transition ampli-
. tudes forpp and hep, which will be described in the next
- P two sections.
XT YA |+ —— §T><(p10'2'r
2myfo
= F)yfA(r) + O 3 IV. THE pp PROCESS
P20 r A | It is convenient to decompose the matrix element of the

GT operator into one-body and two-body parts
where r=r;—rt,, S$;,=304-To,-T—0y-0,, and O

=7505, Oo=1500, To=1-0g—50,, O= M= Mgt Mag. (25)
*, X, 75=(1107) = (110m)*—i(11On)Y, and og
=(0,00,). We emphasize again thag, in Eq. (23) con- We discuss them separately. In PKMR98, an extensive

tains only one unknown LE@R that needs to be fixed using analysis was made of the leading-orde®©) one-body ma-

an empirical input. As mentioned in Sec. |, we choose here t@fIX e|ement/\/lfB+N , with a focus on the connection between

determined® using the experimental value ﬁT‘B. EFT and the effective range expansion. The results obtained
with the AV18 potential43] were

lll. DETERMINATION OF dR

C+N: — A O/ 0,
The cutoff parameterA characterizes the energy- Mg "= (1+0.02%7+0.07%+0.02%9 x 4.859 fm,(26)

momentum scale of our EFT. A reasonable rangé ahay

be inferred as follows. According to the genetahet of

XPT, A larger thanA ,~4f_~my has no physical mean- where the errors are due to uncertainties in the scattering

ing. Meanwhile, since the pion is an explicit degree of free-length and effective ranges. The “full” one-body contribu-

dom in our scheme\ should be much larger than the pion tion in PKMR98 includes the vacuum-polarizatioviP) and

mass to ascertain that genuine low-energy contributions ar&vo-photon-exchang€éC?) contributions. In PKMR98, how-

properly included. These considerations lead us to adopt €ver, the one-body current due to thenf/term in Eq.(A3)

=500—-800 MeV as a natural range. was ignored. Although this term is required for formal con-
In the present work we use as representative values Sistency, its numerical value turns out to be quite small,

=500, 600, and 800 MeV, and for each of these values of Mi’;ﬁ: —0.006 fm. In terms of the\,, defined in Refs.

we adjustd® to reproduce the experimental value BE. [45,46 we have

With the use of the value aiR so determined, we evaluate
the pp and the hep amplitudd89].

To determined® from I'};, we calculatd™; from the ma- A2 =
trix elements of the current operators evaluated for accurate
A=3 nuclear wave functions. We employ here the wave
functions obtained in Refs[18,40 using the correlated- for the central value, whera® is the pp 1S, scattering
hyperspherical-harmonid€HH) method[41,47. It is obvi-  length, andy andAg are the wave number ar§iwave nor-
ously important to maintain consistency between the treatmalization constant pertinent to the deuteron, respectively.
ments of theA=2, 3, and 4 systems. We shall use here theThis should be compared with 6.93 obtained in R26].
same Argonne ;g (AV18) potential[43] for all these nuclei. The properly regularized two-body GT matrix elements
For the A=3 systems we add the Urbana-(Rv18/UIX) for the pp process read

AiMF=6.91 (27)
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TABLE Il. The strengthd® of the contact term and the two- 1+ Son )2 2/ A2 \2
2B ga pp
body GT matrix elementM,g for the pp process calculated for Spp(0) =3.94X 101 12670 | 6.91
representative values of. ) ) )
A (MeV) ar Mg (fm) =3.94X(1+0.0015-0.0010t¢) (30
500 1.08:0.07  0.076-0.035dR=0.041* 0.002 in units of 10 > MeV b. Here the first error is due to uncer-
600 178008  (.097-0.031dR~0.042+0.002 tainties in the input parameters in the one-body part, while

N the second error represents the uncertainties in the two-body
800 390010 0.129-0.022d"~0.042+0.002 part; e(~0.001) denotes possible uncertainties due to higher
chiral order contributiongsee below. To make a formally
rigorous assessment of we must evaluate loop corrections
2 (= and higher-order counter terms. Although aAL® calcula-
my 2 JO dr tion would not involve any new unknown parameters, it is a
T nontrivial task. Furthermore, loop corrections necessitate a
more elaborate regularization scheme since the naive cutoff
Yoa (M Ug(r)upg(r) regularization used here violates chiral symmetry at loop or-
ders.(This difficulty, however, is not insurmountabldhese
mi/. . 1 formal problems set aside, it seems reasonable to ass&ss
- ﬁ?(cs_%_ Z) Y2 (1) Wq(r)Upp(r) follows. We first recall that both tritiung decay and solar
pp fusion are dominated by the one-body GT matrix ele-
ments, the evaluation of which is extremely well controlled
[Ug(r)— \/EWd(r)]U,;p(r) from the SNPA as well as EFT points of view. Therefore, the
precision of our calculation is governed by the reliability of
3y2 estimation of small corrections to the dominant one-body GT
—[ug(r) = vV2wi(r) Jupp(r) + — Wa(r)upp(r) contribution. Now, we have seen that the results of the
present NLO calculation nicely fit into the picture expected
~R (3) from the general premise of EFTi) the N°LO contributions
—dmS(r)ug(r)upp(r) (28)  are indeed much smaller than the leading order téinThe
physical transition amplitudd1 does not depend on the cut-
whereuy(r) andwy(r) are theS and D-wave components Off parameter. Although these features do not constitute a
of the deuteron wave function, ang,(r) is the 15, pp  formal proof of the convergence of the chiral expansion used
Scattering Wa\/da’[ zero relative energy The results are here, it isextremely Unlikelyhat hlgher order contributions
given for the three representative valuesioin Table II; for ~ be so large as to completely upset the physically reasonable
convenience, the values @f given in Eq.(24) are also behavior observed in the®NO calculation. It should there-

. o - fore b fe t ign taint ble to th
listed. The table indicates that, although the valual®fis ore be sa’e 1o assign o an Uncertainty comparabie to the

. ) . . .~. error estimate for the two-body part in EO); viz.,
sensitive toA, Mg is amazingly stable against the variation yp ®9 °

. . L -~ ~0.1 %. In this connection we remark that an axial three-
of A W.'th'n the stated range. In view of .th's h'gh. stab|llty, body MEC contribution to the’H GT matrix element was
we believe that we are on the conservative side in adoptin

; : PUNGaiculated explicitly in SNPA18] and found to be negligible
the estimateM,g=(0.039-0.044) fm. Since the leading o |ative 1o the leading two-body mechanisms. This feature is
single-particle term is independent &f the total amplitude ) qistent with the above argument since, in the context of
M=Mp+Mpp is A independent to the same degree ASEFT, the three-body MEC represents a higher-order effect
Mg. The A independence of the physical quantityt,

hich is | formi th th tEFT i il subsumed in £” in Eq. (30).
which Is in conformity .W't the tenet o » IS a crucia Apart from the noticeable numerical differences between
feature of the result in our present study. The relativey,

L _ e present work and PKMR98, it is worth noting that short-
strength of the two-body contribution as compared with the ;46 physics is much better controlled in EFT*. In the con-
one-body contribution is

ventional treatment of MEC, one derives the coordinate

M space representation of a MEC operator by applying ordinary
5ZBEM_ZBZ(0_86i 0.05%. (29) Fourier transformat?or(with no restri_ction on tr_le range of
1B the momentum variabjeto the amplitude obtained in mo-

. . ; thi in Eq. (22).
We remark that the central value 6§z here is considerably mentum space,ht 'S chc?rr?spc_)lr]ds 0 shetizjlr@oo(;n qd( flt?%
smaller than the corresponding valdig,=4% in PKMR9g. N PKMR98, where this familiar method is adopted,

Furthermore, the uncertainty ¢f0.05% in Eq.(29) is dras-  term appears in the zero-range fod®s(r). PKMR98 chose
tically smaller than the corresponding figure4% in  tO introduce short-range repulsive correlation with hard-core
PKMR98. radiusrc and eliminate thEﬂR(S(r) term by hand The re-
We now turn to the threshol8 factor S, ,(0). Adopting ~ maining finite-range terms were evaluated as functions of
the valueGy,=(1.14939-0.00065)x 10 °GeV 2 [47], we  rc. Mg calculated this way exhibited substantialdepen-
obtain dence, indicating that short-range physics was not well con-

Mog=

: 1

YIa(r)
12r

J’_
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TABLE Ill. Values of dR andL(q;A) (in fm®? for the hep TABLE IV. Contributions t0 Syef(0) (in 107?° keV b) from
process calculated as functions of the cutoffThe individual con- individual initial channels calculated as functions &f The last
tributions from the one-bod§1B) and two-body(2B) operators are ~ column gives the results obtained in MSVKRB.
also listed.

A (MeV) 500 600 800 MSVKRB

A (Mev) 500 600 800 is, 0.02 0.02 0.02 0.02
R 1.00+0.07 1.78-0.08 3.9¢-0.10  °S 7.00 6.37 4.30 6.38
fl(q;A) ~0.032 ~0.029 ~0.022 iPO 0.67 0.66 0.66 0.82
1B ~0.081 ~0.081 ~0.081 3:;1 8-22 8':85?1 8-231 é-gg
2B (without dF) 0.093 0.122 0.166 1 : : : :

X P, 1.06 1.06 1.06 0.97
2B (>d%) —0.044 —0.070 —0.107 Total 9.95 9.37 7.32 9.64
2B total 0.049 0.052 0.059

of the A° term in this channel as welin addition to the
trolled. Inclusion of thed® term, with its strength renormal- P-wave channels see Ref[18].
ized as described here, properly takes into account the short- Summarizing the results given in Table IV, we arrive at a
range physics inherited from the integrated out degrees gfrediction for the hefs factor [49]:
freedom above the cutoff, thereby drastically reducing the
undesirable (or unphysical sensitivity to short-distance Shed 0)=(8.6+1.3)X 10" *keV b, (31

physics. where the “error” spans the range of thd depen-

dence for A=500-800 MeV. This result should be
V. THE hep PROCESS compared to that obtained by MSVKREBLS], Spe{0)

— 20
In the notation of MSVKRB, the GT amplitude for the =9.64x 10" keV b [50].

hep process is given in terms of the reduced matrix elements. The latest analy_S|§ of the Super-Kamlokande_ dal
gives an upper limit of the solar hep neutrino flux,

L.(g;A) and El(q;A)_. Since these_matrix elements are I'e-q)(hep)SK<40x 1® cm2s ! The standard solar model
lated to each other &;(q;A)=12 L1(q;A), with the exact [51] using the hepS factor of MSVKRB [18] predicts
equality holding ag=0, we consider here only one of them & (hep)*"=9.4x10* cm~2s™!. The use of the central
L,(g;A). For the three exemplary values af, Table 1l value of our estimate Eq31) of the hepS factor would
gives the corresponding values bf(q;A) at q=|g=19.2  slightly lower ®(hep)*>" but with the upper limit compat-

MeV and zero c.m. energy; for convenience, the valuet®of ible with @ (hep)>>"in Ref. [51]. A significantly improved

in Eqg. (24) are also listed. We see from the table that theestimate OfShef(0) in Eq. (31) is expected to be useful for

variation of the two-body GT amplitudéow labeled “2B further discussion of the .SOIar hep problem.

total”) is ~10 % for the range ofA\ under study. It is also To reduce the uncertainty in E@D, we need to reduce
noteworthy that the variation of the 2B amplitude as a func-theA dependence in the two-body GT term. Accordm_g toa
) : : ; ~R general tenet of EFT, the cutoff dependence should diminish
tion of A is reduced by a factor of 7 by introducing thed

- ) as higher order terms get included. In fact, the somewhat
term contributions; compare the fifth and seventh rélas . I ~R . 3 .
. . ~ Ry . ., ) ) rapid variation seen i~ (Table Ill) and in the*S,; contri-
beled “2B (without d)” and “2B total,” respectively] in

. . bution t0S;,.{0) (Table IV) asA approaches 800 MeV may
Table Il Although theA dependence in the total GT ampli- o o ingication that there is need for the explicit presence of

tude '(Ijl in the third row is more pronounced due to the the vector mesonsp(and ») with massm,=<A. This pos-
drastic cancellation between the 1B and 2B terms, this amsjble insufficiency could be remedied to a certain extent by
plified A dependence still lies within acceptable levels forgoing to higher orders. A preliminary stud$2] indicates
the purpose of analyzing the Super-Kamiokande {l& that it is indeed possible to reduce thedependence signifi-
Table IV shows the contribution to th® factor, at zero  cantly by including NLO corrections. We expect that the
c.m. energy, from each initial channel. For comparison Wenigher order correction would make the result for=800
also give the results of MSVKRB for the AV18/UIX interac- eV closer to those forA =500,600 MeV, bringing the
tion. It is noteworthy that for all the channels other the8),  EFT* results closer to what was obtained in MSVKRB. This

the A dependence is very smak(2%). The *S, channelis  possibility is taken into account in the error estimate given in
the most sensitive to short-distance physics because the ey, (31).

traordinary suppression of the one-body GT contribution
makes more pronounced the chiral-non-protected nature of
the GT transition. In fact, the sensitivity of thS, channel

to short-distance physics would be larger if the contribution It is worth emphasizing that the above EFT* prediction
of the A® term, which is rather sizable here despite its ge-for 5,5 for the pp process is in line with the latest SNPA
neric 1m suppression, were omitted. It is therefore reassurresults obtained in Ref27] (and mentioned earligrThere
ing that the chiral-filter mechanism allows reliable estimationtoo, the short range behavior of the axial MEC was con-

VI. DISCUSSION
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strained by reproducinﬁ;. The inherent model dependence grangian(at a given orderusing empirical input$55]; the
of such a procedure within the SNPA context was shown tgealistic wave functions in SNPA can be regarded as a theo-
be very weak simply because at small inter-particle separaetical input that fits certain sets of observables. In the
tions, where MEC contributions are largest, the pair wavepresent EFT* scheme, we take the view that the same real-
functions in different nuclei are similar in shape and differistic wave functions also provide a framework for reliably
only by a scale factof53]. As a consequence, the ratios of calculating (finite-rang¢ many-body corrections to the
GT and pp-capture matrix elements of different two-body leading-order one-body matrix element. The short-ranged
current terms are nearly the same, and therefore a knowledgpart inherited from the integrated out degrees of freedom is
of their sum in the GT matrix element is sufficient to predict renormalized by thel® term. This way of handling “short-
their sum in thep p-capture matrix elemerf27]. range correlation” is analogous to the derivation of Bogner
It seems informative to compare the hep reaction withet al. [4] of “ V,,,.” based on renormalization-group theory
radiativenp capture. The polarization observablesﬁ'ﬁrﬁ (see also the work of Epelbauet al. [56]). While our ap-
—d+ vy are known to be sensitive to the isoscalt matrix ~ proach here is, in certain cases, not in strict accordance with
elementM 1S, and this amplitude has been extensively studthe systematic power-counting scheme of EFT proper, one
ied in EFT[24,54). The similar features of the hep GT am- should expect that the severity of this potential shortcoming
plitude andM 1S are(i) the leading one-body contribution is may very well vary from one case to anottieee discussion
suppressed by the symmetries of the wave functiging; in Ref.[57]). For thepp and hep amplitudes under consid-
there is no soft-pion exchange contributidifi;) nonetheless, eration, the degree ok dependence exhibited by the nu-
short-range physics can be reliably subsumed into a singlmerical results does suggest that deviations from rigorous
contact term. In th@p case the strength of this term can be power counting cannot be too significative. Indeed, this type
determined from the deuteron magnetic mon‘(mr[a given of “resilience” may also explain Why the SNPA calculation
value of A). The calculation in Ref[24] demonstrates that in Ref.[18] gives a result very similar to the present one. It
the A dependence in the contact term and that of the remainis true that the two-body terms in MSVKRB are not entirely
ing terms compensate each other so that the fdtaS is  in conformity with the chiral counting scheme we are using
stable against changes in. This suggests that, if we go to here; some terms corresponding to chiral orde_rs higher than
higher orders, the coefficient of the contact term in questioN°LO are included, while some other terms which afé.®
will be modified, with part of its strength shifted to higher in EFT are missingsee Appendix A 8 Most importantly the
order terms; however, the total physical amplitude will re-dR term — which plays a crucial role here — is omitted in
main essentially unchanged. These features are quite similMSVKRB although heavy-meson exchange graphs may ac-
to what we have found here for the hep GT amplitude. count for some part of it. This formal problem, however,
We have derived here all the weak currents up fa®  seems to be largely overcome by the fact that also in MS-
(even though we have calculated the relevant nuclear matrixKRB a parametefthe axialNA coupling strengthis ad-
elements only up to ALO). As Table | indicates, loop con- justed to reproducEtﬁ.
tributions start at RLO. Loop corrections in the vector cur- Not unrelated to the above issue of power counting is the
rents(bothV andV°) can be safely ignored, since even their question of consistency of embedding “realistic” wave func-
leading single-particle terms are suppressed relative to thgons obtained from “realistic” potentials that are fitted
axial current. It turns out that the loop diagramsArare all ~ accuratelyto experiments into an EFT framework with the
finite and hence need no regularization although there areurrents obtained to a given order of chiral perturbation
finite counterterms that should be taken into account. On théheory. It is a well-known fact that potentials that fit experi-
other hand, the loop diagramsAsy do have divergences and ments are not necessarily unique. The nonuniqueness resides,
need to be regularized. To derive the momentum space ekowever, in the short-range part of the potential, with the
pressions for the currents given above, we have employeldng-range part primarily governed by the pion exchange.
the dimensional regularization. This is not quite congruoud.et us suppose that one can calculate potentials to a very
with the cutoff regularization adopted in going from momen-high order in a consistent expansitthat is, consistent with
tum to coordinate space. Meanwhile, using a cutoff regularsymmetries, etg. The structure of the potential would de-
ization in evaluating loop graphs is a delicate matter, sincgpend on various aspects of the calculation. For instance, al-
that might endanger chiral symmetry; with the use of a cutofthough they all may fit equally well various experimental
regularization one might need chiral-symmetry-breakingdata such as, e.g., nucleon-nucleon scattering, different regu-
counterterms in order to satisfy the Ward identities. We havéarizations would lead to different potentials, the difference
not yet investigated whether the dimensional regularizatiomesiding mainly in the short-range part. One might worry that
as used here preserves chiral symmetry, and hence we canniis nonunigueness would upset the basic premise of an EFT,
say at this point whether our coordinate space operators a¢ndering the predictions untrustwort§8].
N*LO are fully consistent. However, this problem does not Another intricate issue, which is also connected to short-
arise if we limit ourselves to RLO, for up to this order there range physics, is the off-shell ambiguity. This problem
are no loop contributions. should be absent in a formally consistent EFT. In EFT*,
Evaluating the matrix element of the leading-order one-however, we insert the current operators derived from irre-
body operator in EFT with the use of realistic nuclear waveducible diagrams up to a given chiral order between phenom-
functions is analogous to fixing parameters in an EFT La-enological (albeit realisti¢ wave functions. Since the in-
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serted current involves off-shell particles, there can inthat this approach cannot be readily extended to systems with
principle be terms other than those that have been include8=3, in particular to electroweak transition amplitudes in
in our approach. While those additional terms that may bdéhese systems. What is lacking presently is a method to cor-
required to eliminate the off-shell dependence are expecteilate in a unified framework the observables in different
to be of higher order thanO, this issue warrants a further nuclei (different mass numbexsThis limitation keeps one
examination. from exploiting the experimental data available for the

To answer the above question with full rigor, much more=3 nuclei to fix unknown LEC. Apart from the basic prob-
work is needed. However, partial and yet reasonably satidém of organizing chiral expansion for complex nuclei from
factory answers can be obtained from this work. For chiral- first-principles,” a plethora of parameters involved would
filter protected processes, we have presented a clear argBl€Sent a major obstacléor recent efforts in this approach,
ment that the above-mentioned ambiguity does not matter ace R_efs[61,6?ﬂ and references given therginthis diffi-
the level of accuracy in question. The results listed in Tablecmty.IS expected to be particularly pronounced for the hep
IV for the P-wave capturdto which the chiral-protected time reaction. . . . . -
component of the axial current contributelemonstrate this There has been a series of intensive studies by thehJu

point. The question of short-distance ambiguity arises onlyGrOlJp to extend EFT calculations in the Weinberg scheme to

for chiral-unprotected processes such as the GT transitior?.ys'[ems W'Fh three or more nucleoftt]. The relgnonshlp .
) A L between this approach and the phenomenological potential
As already explained, however, tl renormalization es-

; ; Al o approach has been examined in great detail. This line of
sentially removes this ambiguity. The point is that the phys

, study, however, has been so far limited to nuclear observ-
ics of the degrees of freedom above the cutoff sealgets  4pjes that dmot involve the electroweak currents. An exten-

lodged in the short-range® term. In fixing this term as a sjon of the formalism developed in R¢64] to electroweak
function of A via the experimental value thﬁ, one is es- transitions should be extremely useful.
sentially incorporating the short-range correlations that ren-
der low-energy physics insensitive to short-distance physics. ACKNOWLEDGMENTS
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rive at a unique effective forc¥ ., by integrating out the by Brain Korea _21 in 2001. T.S.P. and K.K. would I|k_e to
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the field variables and that, for each choice, the LECs need to
be readjusted. It is in principle possible to choose the field APPENDIX A: GAMOW-TELLER OPERATORS

variables in such a manner that off-shell contributions be-  Tha aim of this and subsequent Appendixes is to provide
come highly suppressed. We are essentially adopting thigyme technical details that have been left out in the main
particular choice by using the forms of the transition operayey; The readers who are not interested in the details of our
tors described above and adjusting the corresponding LEGCy|cyjation can safely skip these Appendixes without missing
d® to reproducd“tﬂ. the essential points of our results.

A possible approach that is formally consistent with sys- \We decompose the axial current intg-body operators as
tematic power counting is the pionless EFT based on the

power divergence subtractid®DS scheme60] (for a re- ArB= AP+ AL+ AL

cent review, see Ref61]), which has been applied to tipg

fusion [62]. Due to the fact that this scheme also involves _ w2 wa ma

one unknown low-energy constant, PDS has not so far led to 2| Al +I;m Al +I<§<n Almn

a definite prediction on thep fusion rate. The problem is (A1)
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where (, m, n) are particle indices. The one-body operator
can be read from

r\/w.———-c

(N(p")|A##(x=0)|N(p))=—u(p")| Ga(a®) ¥*¥s

Ta

2 u(p), (a) (b)

_ Gp(g?)
2my

a“vs

(A2) FIG. 1. A one-pion pole diagrar®) responsible foAT,(17),

and a short-range contribution diagraifb) responsible for

AR (27). The solid circles include counterterm insertions émak-
particle irreduciblgloop corrections. The wiggly line stands for the
external field(curren} and the dashed line for the pion. One-loop
corrections of the relevant orders for the pion propagator and the
7NN vertex need to be included.

whereu(p) is a four-component Dirac spinor of momentum
p, andg”=(p—p')* is the momentum carried by the lepton
pair. Go(q?) andGp(g?) are the axial and induced pseudo-
scalar form factors, respectively. Note thgt= O(Q?/my),
while p=O(Q) and p '=0(Q). Thus, up to NLO, it is
sufficient to consider the form factors gt=0. Furthermore

YN : 47703 . [ J— -~
u(p’)g”ysu(p) attached to thesp term is of O(Q™/AY), AT.ZV3(17T): _9a (71X 75)3p; +2C3 73k,

which we neglect throughout this wof5]. In getting the 2myf2 12
nonrelativistic operators from the above relativistic form fac-
tors, we should also take into account the wave function il +} (; <7 Yaor Xk
normalization. The resulting one-body operator ugi@?) A
then reads
1+CG > > 0'2'k2
- -, +—2 (11X 7)%0 X Q|5 +(1<2),
A__T_irjl e~in-a +|0|0'|~p|—0'|p|+i0|><|0| Ky+my,
Q4
Lol =] 9a_ -
N m;> (A3 A2 =~ (ot )
mN T
This expression has appeared in Etj7). In the following +dy( 71X 75)201 X 03], (AB)
subsections, we derive all the two-body GT operators up to
N*LO and leading three-body GT operators. wherek =p/ —p, . Although there are two unknown param-
eters,d; andd,, it turns out that the Fermi-Dirac statistics
1. Two-body GT effectively reduces the number of unknowns to one. We will

come back to this important point later.

There are no two-body GT diagrams that involve only v=4. Tree graphs Witk »; =2 and one-loop graphs with
" 171

;=0 vertices, because thé" 27NN vertex is kinematically B . . .
suppressed, and there is no four-fermion contact contributio%!;{_O_imer f‘t 4ﬂt“8 order.hS|rr]lcelc';hhere 1S _'ltﬂrleN'\\/lezrtex
at LO (v,=0). As a consequence, the two-body GT operatorﬁ' NIIQI_ ’tay_'th refzgrabp\)/ shou " ave el (I d) c')trh
starts atr=3. The two-body GT operator at thresholg( NN VEMEX WIth ;= 2. Ve can, NOWEVer, exciude either

—.0) was given up to RLO in Ref. [36]. We extend here POSSibility. The absence cimNN vertex aty;=2 can be
that analysis to include all contributions up t41ND. To this gscertalned by consul_tlng a complete list of terms that appear
end, it is useful to decompog., as in the NZL(B Lagrangian given in Refl66]. As for the y;
' m =2 A(NN)“ vertex for the two-nucleon sector, a complete
AL =AR (1) + AR (2), (A4) list is not available yet. We therefore resort to parity selection
rules. Our vertex must have org, and oneD , involving
four nucleon fields. These operators should not be contracted
whereAf, (1) represents the contributions of the one-pionwith the four-velocityv*, for otherwise the actual chiral in-
pole part andA, (27) stands for the remaining short-ranged dex would acquire an extra power @f We can easily show,

part. Generic diagrams fa@x,(17) andAj,(27) are shown however, that it is impossible to construct a parity-even Lor-

in Fig. 1. entz scalar with ond ,, oneD, and arbitrary numbers of
We now list all the two-body GT operators belonging to S* and e***£. Introducing an operator of the, A,—d,A,
v=3 andv=4. type instead ofA , andD,, does not help either. These ob-

v=3. This contribution comes from tree grapfsne- servations lead us to conclude that no divergences occur in
pion-exchange and contaatith a ;=1 vertex. The result- the relevant loops and, more importantly, that no new param-
ing GT operators, given in Ref36], are of the form eters appear at=4.
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1 1 1
D6(k)=j0dz 17w X

(A8)

(a) ) ©) (d) ) Herek=|k|, z=1-z, andM = \Vm2+zzk?,
The integrations ovez can be done analytically, resulting
-- d y in
,\/ ‘/-\ - l\, - ,r ,’/ . ,
N Ay N "\a., . m, 4m_+KkK
‘ > D1(K =5+ —p— 0
(5 (9) (h) (2)
FIG. 2. One loop diagrams that contribute to th& NN ver- m,, 4mi_ k2
tex. Only the first five diagram&)—(e) contribute toA. D,(k) 2 e 0,
The one-pion-exchange contribution can be read off from ) )
one-loop corrections to tth’f;‘b vertex; the relevant dia- Dy(K)= —3m, — 8m7+ 3k 0
grams are shown in Fig. 2. We note that only the first five 3 g 2k ko
diagrams(a)—(e) contribute to A. Using the expressions
given in Ref.[15], where all the one-loop diagrams have 1 mek(8m,27+3k2)
been calculated, we find Du(k)=— —(8mM2Z+k?) O/,

9a
f4

AL (L) =—

(11X 75)3| 01X (Ko + Q) Dy (ky)

ar

2
+ %olx ko mw> - 75 (q+3k2)[D1(k1)

2

90
g e M

1 2
+§k1D2(k1) +

} O'z'kz
m2+ k3
+(1<2), (A7)

wherek,;=1k| (I=1, 2), andD;(k)’s are defined as

1
Dl(k>=fodzMzk,

1
Dz(k): fo dz

ZZ
Mzk

A2
Da(k) = fldz (— 2

—5M
0 Mk Zk)

1 3 m2
—4fodz _EMZk+m s

1 (22?2 _zz 1
D4(k)=fod2 _—M3 +7M—k
z

zk
fld 7z +z§1ﬁ (1 j 1
= z —|\=—ZZ
0 2Mz 4m3, 14 M

1
Ds(k):fodz

Mzk’

2k3 4m?+k?

2
Ds(k) = O,

mk 4mZ+k?
+ S —

e T

Oy, (A9)
wherek=|k| and

O,=tan !

5 (A10)

m

with — 7/2< 0 < 7/2.

Note that the one-pion-pole contributions can be absorbed
into A%*3(1) [given in Eq.(A5)] by renormalizingc; and
Ca,

2 2
N LN r 9ga
R_
Ca—Ca=Ca+ —— 4+ —m_
T a2 8
~C3+1.0334,
2 2
-~ ~p_~  MNOA Oa
R_
C4—Ch=C4———|2D 1, + 5 m,
T g2 [T 8
=c,—0.4821, (A11)
where
m, 1
D1,=D1(K)ke=-m2 = —~| 2+3tanh * o,
T 4 2
D1,=3D;(K) +k?Dy(K)|ye— _ 2
1
=m, 2+tanh1§} (A12)
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A
[ /’
- -~
A A~
-~ -
ANNK ANNSE = T —
~ ~
] N
(a) (0)

FIG. 4. Diagrams for the three-body GT operator. All other dia-
grams are higher order tharfND except for the crossed diagrams
of (a) — crossed with respect to the particle indices.

whereX,, X,, X,, X, are constants that characterize the

diagrams(a)—(d) contribute to the space part of the axial-vector LO short-range nuclear forces, we can write

(GT) and the remaining diagram$—(h) to the axial-charge cur-

rent. The graphe) vanishes.

For the two-pion contributionAZ;"*

(27r), the relevant

3

gAm'n'
& (2md)=—
2md)== o) 2

[(=3X1+9X,,) (Tio1+ 1507)

one-loop graphs are shown in Fig. 3. Among the diagrams in

the figure, only the first four graphs)—(d), can contribute
to the GT operatorjfe) is identically zero due to isospin

symmetry, and the remaining grapli®—(h), contribute only
to A°.
As mentioned, the four diagranta)—(d) are all ultravio-
let finite. The first three graphs give
Ja
A2 (2ma)=— ———0,7 3D (k) + k3D (k
12 ) 64 1711 3D1(K2) + k3D 2(Kz) ]

™

+(1+2),

3

da
ng[alDl(kZ)_(ZKZUl' ks

ko

Al (2mb)=—
— 01 k3)Dy(kp) ]+ (14-2),

ga

A(2m:C)=— ——
14 2mC) 1024714

(TT"‘ 27'2)[0'1D3(k2)+(2k20'1 k2

— 01k3) D 4(kp) + (02k5— koo k) Ds(Ko) ]
+(12) (A13)

while the fourth diagranid) gives
gam | »
(2md)=— W ; TEUJ1{CAFAFAJT0'1}T?"J1

+(12). (A14)

+(=2X g ) (11X T) (01 X 03)

+(9X,—3X,) (1o + 7509)]. (Ale)

We demonstrate below that's can all be absorbed into the
parametersl’s.

2. Three-body GT

The three-body GT operators up t¢IND come from the
two diagrams given in Fig. 4. They contain only=0 ver-
tices, and their contributions read

3

9a - - + -

a=— 272 T Ta— TS Ta T —Ta T T
123 cydle(123) lei( 1 2° 73 2 13771 3 1 2)
v 4 klo'l-kl 0'2"(2 0'3'k3 A17
T3 m [k mE K (A1)

1 ol 2 T "3 T
where
flmnEfImn+fmnI+ntm- (A18)
cycle(lmn)

3. Comparison with SNPA exchange currents

The meson-exchange currents in SNBX,68 are based
on one-boson exchange diagrams involving those bosons
which are responsible for the phenomenological nuclear
forces in the context of one-boson-exchange models. This

The summation here is taken over all possible combinaframework does not have direct contact with chiral counting.

tions of spin-isospin operatofwith no derivatives that fig-

We give here a detailed comparison between the transition

ure in the nucleon-nucleon interactions. Using a generic exeperators used in SNPA and those dictatedyBy. Among

pression

E CAFAFAZX1+ g 0'2X0.+ 7-:1' 7-:2X7.+ g 0'2;'1' ;'ZXO.T,
A

(A15)

the most elaborate SNPA operators are the ones used in
CRSW091[16]; these operators were derived by Towhés]
based on a phenomenological Lagrandiéfl] which satis-
fies CVC, PCAC and current algebra. We consider the SNPA
operators used in CRSW91 as a representative. It will turn

055206-13



T.-S. PARKet al. PHYSICAL REVIEW C 67, 055206 (2003

out that there are substantial differences between the SNPf\e use of the pseudoscalar coupling. ®T analog of
and xPT operators in both the long-range and short-range\(#S) would be a Iy term, but this term should be sub-

parts.
In CRSW91 the heavy particlgs and A are treated as

explicit degrees of freedorfi70]. To examine the roles of ficients of (;
these heavy particles in the context of the present compari- !
son, we divide the two-body currents in CRSW91 into two

families:
AZ= AR+ AR (A19)
=[A*(Am)+A%(mp) +AX(7S)]
+[A%(Ap) +A%(pS)], (A20)

where the ‘S’ stands for “seagull.” A and A} can be asso-
ciated, respectively, with{ (1) andAf,(27) in Eq. (A4).
The expression foA} is [71]

__9a 4 5 My 2
- ZmefT 259A| 1 my— mNR 77( k2)

A?
X[ 473Kk, — (71X 75) 20, X Ky ]

I, m’

- ZRp( kl)R’n'( kZ)—

2,12
mp+kl

X (11X 12)3[ (14 k) oy X Ky — 2 p; ]

Iy I
+ ZIAR LK) (11X )01 X Ky

— A~ g+ 2i oy X py)] ke 1)
2 o m2+ k3
(A21)
with
2 2 2_ M2
RaK=—"—>, R,(k=—L—2L, (A22
AZ+K? AP

where my=1232MeV, k=6.6, andg,=2.50 is thepNN
coupling constanti ;. (A,) is a cutoff parameter character-
izing the 7NN (pNN) coupling form factor. We have de-
finedl, andl, by

|_4f727f3-rNN fqerN gi o |_89,2)f37
Cogm o om2 o laf2) 7t m?

" (A23)

stantially suppressed; hence a term suchA@sS) should be
absent in chirally invariant theory. Comparison of the coef-

X 75)3py, 13Ka, (11X T5)%01 XKy, and (ry
X 7,)%0, X q leads to the following correspondence between
xPT (left-hand sid¢ and CRSW91(right-hand sidg

2
m,
1=1,R(K)RA(K)———

, (A24)
M3+ ki
- My
Ca— 52 0Al T mNni(kj), (A25)
1 4 m
C — < = 2 N 2 .
Cyst 4 259A| 1mA_mNR w(kj)
+1,R, (k) Ro(Ko) m, ltx
2% p{ 1 N2 mg—i—ki 4 ’
(A26)
m2
1+Ce 1R (k) Ro(ko)——— (1+k). (A27)

2

my,+ k1
The presence of the momentum-dependenc® & and

the p-meson propagator prevents us from going beyond this

correspondence. To proceed, however, we may consider the

approximation

2

m

1~1,R,(K) Ra(kp) =5 ~11R%(K).  (A28)

mp+ ki

We then find
- 8 m
CRSW_ _ 2 2 N

Ccy = 259A A= 1.633, (A29)

~ CRSW, L.crsw, X
c; = §c3 + 222.467, (A30)
cSRW= k=6.6. (A31)

It is informative to compare these valuesas with those
obtained in a resonance-exchange saturation analysis by Ber-
nard, Kaiser, and MeiRnéBKM) [30]. We note that the two
approaches give very different results for theresonance
contributions. CRSW91 used the quark model value for the

We note thatl,=1 if we assume the Goldberger-Treiman ratio gana/dna , the accuracy of which is rather difficult to

relation, andl,=1 if the KSRF relation hold§72]. The
above equation should be compared V\Mﬁ"’?’(lw) in Eq.
(AB). A little exercise shows that, while the curredémA)
andA(mp) can be related to certain currentsyRT, A(7S)

assess. Meanwhile, the resonance-saturation calculation suf-

fers from ambiguity related to the so-called off-shell param-

eterZ. Considering these uncertainties, it is perhaps not too
surprising that BKM’s estimate of thé contribution to

has noyPT counterpart to the order considered here. Aposég, |6§|=3.59, is 2.2 times larger than the estimate in
sible explanation for the occurrence of this “extra” term in CRSW91. We also note that, while CRSW91 only includes
SNPA is thatA(7rS) arises as a “recoil” term associated with the A and p-meson contributions, BKM’s calculation con-
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tains the contributions from scalar-meson and Roper exThus, there are important differences betwesf of
changes as well. According to BMK, CRSW91 andA(27) derived inyPT.

~A | Zscalar, ARoper_ __ _ S
C3tcz ey =—3.59-1.31-0.06= — 4.96, APPENDIX B: AXIAL CHARGE OPERATORS

C4+Ch+CRoPe=1.80+ 1.53+0.11=3.44. (A32) As stressed in the main text, the axial charge operators are
chiral-protected. Since the axial-charge operators up to
Thus the contributions of the scalar-meson exchange are subXQ*) have already been described in detail in RR&6], we
stantial. What is significant for our calculation is the fact thatonly briefly recapitulate what is directly relevant to the
the coefficientsc’s can be extracted directly from theN  present work. The leading one-bod§ operator is kinemati-
scattering datf30,66. The most recent analysi§6] gives cally suppressed because of thematrix. Correspondingly,
in xPT, theA® operator at orde®(Q*) appears as a mj
63=(—5.58t0.08, —5.49+0.01, —5.82+0.08), term. The leading correction to the one-body axial-charge
operator comes from the soft one-pion-exchange, which is of
¢,=(3.26-0.05, 3.29-0.01, 3.30:0.04. (A33) O(Q?). Loop contributions start a®(Q*), and hence the
ratio of the loop contribution to the tree diagram two-body
These values are in reasonable agreement with those oBontribution isO(Q?). Finally, there is no three-body con-
tained in the resonance saturation approach. We should notéibution up toO(Q*).
however, that the results in E¢A33) belong to an KLO The one-body axial-charge operator at threshold is given
calculation whereinA (1232) as well as other massive de- by
grees of freedom have been integrated out. The explicit in- a — 5
clusion ofA(1232) would modify the values afs, because APR= lgA P +O( q_)
the A contribution to thec’s should now be excluded. We 2 My mﬁ
also should pay attention to a similar modification of the
LECs as we move from fLO to N3LO. Although the dif- ~ Which is O(QY). We note that there is no relativistic correc-
ference betweert’s obtained in an RLO calculation and 10N Of O(a) to the one-body axial charge; this aspect is in

those obtained in KLO are of order 0fQ* and hence can in SNarP contrast to éhe GT operator. ) _
principle be neglected in an3NO calculation, it is more The two-bodyA™ current appears &(Q°) (tree diagram

4 X
natural and safer to use in our present calculation the value%nd ato(Q") (loop diagrams
obtained in an RLO analysis[30],

, (B1)

L A% = — FA 700 ey (B2
N°LO: c3=-4.96+0.23, 41
C4=3.40+0.09. (A34)  Where
The precise value dfg is unimportant in the present con- TO=i(7X 1) % (o1 + ), (B3)
text, since it is suppressed by the kinematic faggpr In any
event, the results of BMK and CRSW91 are close to each T2 =i (7,4 75)%- o, X 07, (B4)

other,cg=5.83.
We now discuss the short-ranged curreAfs=A(pA)  with k=k,=—k;. The one-pion-exchange contribution in-
+A(pS). According to CRSW91, the dominant termAg is cluding the vertex renormalizatiofioop corrections to the

of the form verticeg reads
9a (1+x)? ) m; o _ 1 v
A%(pA)= | R2(k Wiz=— Fi(t),
(P8 et 250 (ms ) A it
X [473(02xX ko) X ko= (71X 75) 20y w0, (B5)
X[(02xko) X ko] ]+ (1 2). (A35  wheret=k2—k2~—Kk2, and FY(t) is the isovector Dirac

It should be noted, however, that this term belongs t0form factor of the nucleon electromagnetic current. The phe-

N°LO in chiral counting, and therefore its inclusion in nomenologically determineﬂ\l’(t) is of the dipole type
CRSW91 constitutes a deviation froppPT. Although a 5\ 2

particular NLO term may give an appreciable contribution FV(t)z( A ) (B6)
(see belowy, there are many terms of the same order, includ- ! A%—t

ing multiloop diagrams, and in general there should be a

substantial cancellation among these terms to make the natith A=840 MeV. The HB(PT expression foF\l’(t) up to
N°LO contribution small, as dictated by chiral symmetry. one-loop accuracy is given by
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R 2
o t 1+3g
Vigey_ 14 3¢ - |Z C9A
Fl(t)—1+f727t T Ko(t)
—2(1+2gf\)K2(t)} (B7)

The loop functionsK'’s, will be specified below. The con-
stantc? is determined by the nucleon charge radivs].

2 2
m
Cg«f_; = (r?)=0.04784. (B8)

We should mention here thatt, . in Eq. (B5) contains
both O(Q?) and©O(Q*) contributions. Th&?(Q?) contribu-
tions can be obtained by replacirig\ll(t) by 1, while
[F\l’(t)—l] is responsible for th&@(Q%) contributions. The
two-pion-exchange contributions, which are also{iQ*),
are given by

1 3ga— 1
Wer=re | 4 Kok~ 3 0aKa(K?)
1
=
af2 4
wil=——__[2g2K (kZ)]_i (2) (B9)
2T 1 6m212 Gako 452"

m

where«{? and «{?) are unknown parametef24]. The total
two- body axial-charge operator is the sum of E@5) and
(B9):
WO=WE AW,
ARSI QER UV ON (B10)

The loop functionK’s in the above are defined as

Ko(t)= joldz In

(t)—f dz—————

1
Ky(t)= Jo dzZ1-2)In

t
1—z(l—z)m—i],

—z(1-2)t
—zl z)t

ko

1—z(1—z)L2]. (B11)
m

The integrations ovez can be done analytically, resulting in

0( ) olin '
l(t) 2 n 1)’
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o+1
: o—1

a? (7(3—(72)I

4
Kz(t):—§+ E‘F 12 y (812)

with
4m2 —
—t

(B13)

t) 1/2

APPENDIX C: REGULARIZATION AND THE CUTOFF

1. Fourier transform

Since SNPA employs coordinate-space representation, we
need to Fourier transform the momentum-space expressions.
In doing so, we must impose a cutoff to regularize the inte-
gral. The cutoff introduced here typically represents a scale
that divides the low-energy degrees of freedomhich we
choose to include explicitlyand the high-energy degrees of
freedom(which we integrate olit How to implement cutoff
into the theory is not unique, but physics should be indepen-
dent of methods used insofar as the calculation is done con-
sistently. This is a statement of renormalization group invari-
ance. We now describe a particular cutoff scheme to be used
here [75]. For the ng-body current in momentum space

S =AY (K, Ko, -+, k), define its “Fourier trans-
form” as
n
~ d3k
A2 = f |k| UTS k2
2= 11 oS
X (2m)38®(q+ky+kot -+ +k)AL,

(CD

whereS, (k?) is a regulator with a cutoff\, and the factor
(2m)28C)(q+ky+ko+ - - - +k,) comes from momentum
conservation. We employ here a regulator of the Gaussian

type[76]
k2
SA(kZ)IeX% - ﬁ) .

For a one-body operator, the regulator plays no role, see Eq.
(A3). Now for the two-body current EQC1) gives[77]

(C2

~ d3k .
Aldk = - (€3

To simplify subsequent expressions, we will hereafter omit
the tildes on the currents in the coordinate space representa-
tion, and define the following functions:

d3K
5&3)(r)5f omy?

a
o d%
yOA(m!r)zf (277)3

K, ko=K).

Si(kZ)eik-r,

2 1,2\ aik-
e o,
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where the superscript,(j) are particle indices,,=|r;, and

J
yin(mn=— - —-yor(mr), r1,=r1,/T1,. In the above equations, we have defined the
following two-body spin-isospin operators:
14 . N .
Yaa(M,r)=—r—- = —-yoa(m.r). (C4 O F=(1107)% (0 0ay),
R .
These functions become the ordinary delta and Yukawa func- TR=|r 3 o0y, (C9
tions whenA goes to infinity. We also use the abbreviation
Yoa(r)=Yoa(m,,r), and similarly fory7,(r) andyz,(r).  where®=(+,—,x) and
The regularized delta and Yukawa functions read
A3 A2r2 (9' B=— H(;lx ;Z)a(HIJ_O-Z'FlZ—i_HIQUl'FlZ)'
in= exp(— ) (CH ”
(4)32 4 (C10
Note that(9i75a is completely determined by Lorentz invari-
_ Zazd| Ar m In terms of th t it
Yoa(m,r)=—e™" ~le"Merfg — —+ — ance. In terms of these seven operators, we can ailitine
Amr 2 2 A two-body currentgincluding v=3 andv=4 contribution$
as
—(r<—>—r)}. (C6)
A== > [FE(r)OE+FL(r)Te]
We are now ready to write down the=3 two-body R
axial-vector current EqA6) in coordinate space: a2
Alllz
0 - fzym(rlz)o 5 W11
ALAm =7 o) c3<c9a +0?) v
My )
x| 2 doO (c11)
2 1 gam 2 O=+,—,X
+-l¢c +7 o|l-—— 0O r
3l 2m Nf AL We have separated out here tpe part proportion@ft&r).
The dimensionless paramet are given byd,, and
1 )
63(Ti+73)— Cyt 7 T2 |yT () (higher order loop contributions as
1 2 1 d =a+la—g’*—“< 3X,+9X,.+9X,—3X,)
+ §6:3((9‘1+c9"i)+ c4+ 02 FTELT 3 327 LTS e g
a _a 1. gimN
XygA(rlz) ’ (C7) _=0;+ §C3_3—( 3X1+9X(,.T 9X0.+3XT),
8, =2 d+ =[ ey - g’z*m“‘m”x C12
A (2m)= —— 6P(r,)[dy(OF + O) +2d,0%], =202t 3\ Cat )t gy Xor]  (C12
I"nN T

(C8

2
gAqu
FEn=2

2
Nf7r
2

1
+g (3Dt k?D,)+ %1(303—k204+ 2k’D5)

)

2
gAmﬂ'

2mef,

FC(r)= C—g o)+
Z 3y

(3D1+ k?D)+ oz gA

~R 3
3 Yo (r)+—32 £ {6(3D1+k D,—Di,)

1 2
7 6(3D1+k D,— Dlﬂ-)

The functionsF$ T in Eq. (C11) are given by

2
T

m?2.+k?

} (r),
FT

2
+k2

(r),

1 2 2 2
~Ds+ kDt k*Dg
FT
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FC(r)= gAmi 2 “R+l - + 9a ZD 2 D,-D m2 Cc13
X(r)_ 2me7ZT§ C4 Z yOA(r) 327Tf::_ 5 1 3( 111') k2 (r) ( )
and
m2 3 2
gamz R, 9a 1 2 A
(r)— - WcayZA(r)_'—?i{z(:SDl—i_sz D“) k2+ZD2+§1(_6D4+3D5) FT(r)’
FL(r) T ZA(r)+ 9 ~(3D,4K2D,~ B~ 7 gA(ZD TDs) (1)
"= c N+ ——>15 —Din) 554D ),
fo-,- 3Y2A 327Tfi. 2 1 2 1 m2+k2 4 4 5 o
2 3
gam_ [ . Oa Dl_DlﬂT
Fl(n=- B+ =y (n+ r, C14
<0 myf2 4 Y 3277fi( m2 +k? ]FT( ) o
|
wherek=|k|, D;=D;(k) and ) m2 (1 [6zz-1
D4~ 2 [ a2 2Ky 00+ Ko()]
3 2mreJo zz

(0 e(n= [ Sk 1),

(2m)®

dk
(2m)*

d194
arroor

{f(kA)} L (r)=r S (k?)e kT f(Kk?).

The explicit results of Fourier transformation 8f;(k)

andk?D; (k) are given by(* —” denotes Fourier transforma-

tion):

zf dz zz xKq(x),

2(X) +xKq(X)],

1 1 _
D,— Zfo dz[zz x?K(x)+(622—1)xK(X)],

2ar

(C19

and

k’D,=D;—

m2 (1
m2Dg— — f dz[K,(x)+xKy(x)],
2mr2Jo

+Xx?K o(X) —xK1(X) |,

k’Ds »(x)], (C16)

where

3

(C17

x

IIl
<l
N|

Next we turn to the three-body currents of £417). The
Fourier-transformed three-body current has the form

g3

a
7371 T2) | 123
cycle(123) 16]‘4 8

(C19

a PR
To—= — —(2 7'17'2 7'3 7'27'3'7'1—

with

I 123~

d3k
H f ok g Kfr2A2
(277)3

X (27)3 6@ (ky+ky+ k3)

X(O’l

The calculation ofl}, is rather involved. We may start
with exploiting the identity

4 klo'l'kl
3 k+m?2

oKy 03K

ka+m2 K3+ m?

(27)28C) (kg + ko + k3) = J d3xe'* (kitketke) (C19)
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to arrive at Fermi-Dirac statistics requires th&"'E°E’=—1, where
E" is the Majorana exchange operator that exchanges the

4 . .
orbital coordinates; andr,. As a result,

i 4m77 3

S i@ i
Rffﬁx (X)+aryor(Ix)

i OY3=-0E"E™=0""F". (C20
i . - .
_(;(i)‘(J_ 5_) oy T(|x]) o2 (X+ 1) When multiplied by the delta functioa®)(r), the opera-
3 X+ tors are nonvanishing only for the=0 states, which then
implies S+ T=1. Acting onL=0 states,0';* is identically
XY (| x+T19) O3 (X+r13) o n zero, since either spin or isospin must be equal to zero. Fur-
Yia 12 le(|x rigl),

|x+r14 thermore, thd.=0 states are eigenstates of the oper&br
with eigenvalue 1, so thab"® becomes identical t@.?.

with KE \/EA This repl’esentation is nicely transparent, andThus we are left with on|y one unknown parameter
the resulting integrand is nonoscillatory and rapidly damp-

ing. The remaining integration can be done by means of a  gR=d_+d,
Monte Carlo simulation with Metropolis random walks.

,\ ,\ 1. 2. 1
=d1+ 2d2+ _C3+ _C4+ g

st 3 (C21)

2. The parameterd®

Up to N°LO, unknown parameters occur only iA. . . )
At N“LO, several unknown parameters appear in botnd The abqve gr)gument_ is not strl_c'gly vahq for the cutoff
Ao, but no new parameters appearAn By the chiral filter ~ delta func'ﬂ'?”‘sA (r), which has a finitealbeit very small
argument, one can ignore thé MO terms in bothV andA,  'ange~A "~ However, deviations from the ordinary delta
while going to MLO in A. Thus, up to MLO, the only functlon_ case is higher order in chiral counting and hence
genuinely unknown parameters residefinThe crucial ob-  ¢&n be ignored.
servation is that up to NLO, there is effectively only one ~ Since dr accompanies the regularized delta-function
constan® that governs the GT amplitudes of all the casesd% (1) its contribution depends o rather strongly. How-
under consideration. The argument goes as follows. ever, the renormalization-group invariance of EFT requires

The two parametersl; andd,, and the fourx's can be  that this sensitivity to\ should be compensated by the con-

. . - tributions of the remaining terms. Since the single-particle
combined into three unknown parameters . that reflect  iace ofa has noA dependence, and since all the currents
short-range physics. It is the Fermi-Dirac statistics that '®bther thanA have only weakh dependence, this compensa-
duces the number of unknowns from three to one. To Sef m st occur between the finite-range two-body GT and
this, let=” and =7 be the excilarlge operators in Sp'_r‘Tandthe regularized delta-function term. This has been indeed
isospin: spaces, respectivelig’=3(1+o1-03), and =7 qiified in our calculation over a wide range &f(500—800
=3(1+71-7). An explicit calculation gives the identity MeV) although, as mentioned above, the results for the 800
o X oy=i(0y— 0,)E7, and likewise forr, X 7,. Now, the ~ MeV cutoff should be viewed with caution.
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