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An alternative parametrization d&®-matrix theory is presented which is mathematically equivalent to the
standard approach, but possesses features that simplify the fitting of experimental data. In particular, there are
no level shifts and no boundary-condition constants which allow the positions and partial widths of an arbitrary
number of levels to be easily fixed in an analysis. These alternative parameters can be converted to standard
R-matrix parameters by a straightforward matrix diagonalization procedure. In addition, it is possible to
express the collision matrix directly in terms of the alternative parameters.
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[. INTRODUCTION whereE, are the level energies, . are the reduced width
amplitudes)\ is the level label, and is the channel label. We
The R-matrix theory of reactions has proven over thewill assume that the numbers of levels and channels are finite
course of time to be very useful in nuclear and atomic physand given byN, andN,, respectively. One must also specify
ics, both for the fitting of experimental data and as a tool forthe constant8., which determine the boundary conditions
theoretical calculations. In this paper we explore a mathsatisfied by the underlying eigenfunctions.

ematically equivalent alternative formulation &f-matrix In order to calculate physical observables one must em-
theory which will be especially useful for the fitting of ex- ploy various combinations of the Coulomb wave functions,
perimental nuclear physics data. evaluated at the channel radiys=a.. The quantities. and

In a recent paper an alternative parametrizaematrix =~ O, are defined by(LT, Eq. I1.2.13. For closed channels the
theory was described by Angulo and Descouvenj@htin  outgoing solutionO, is taken to be the exponentially-
their framework there are no level shifts and it is straightfor-decaying Whittaker functiorLT, Eq. 11.2.17. In addition
ward to incorporate known information about level energiesone define€).= (I1./0.)*? and
and partial widths. They presented an approximate iterative
relation between the alternative parameters and the standard
R-matrix parameters. In addition consideration was limited c
to the single-channel case with a boundary-condition con-

stant of zero. Some aspects of these alternative parameter : .
have also been discussed in a paper by BafRerin this Where the shift factofS, and penetration factdP, are real

paper we further develop the concept of an alternativequamiti.es' The collision matrid is "’}r.]NC,X. Ne matrix which
R-matrix parametrization. The description is generalized todete.rmlr'\es the observable quantities; it is related toRhe
allow nonzero boundary-condition constants and an arbitrar{ﬁamx via (LT, Eq. VIL.1),
number of channels. We present an exact method for con-

— i 1U2~—1rq _ _ -1p 12 -1 -1
verting the alternative parameters to the stand@mnhatrix U=2ip""0" T1-R(L-B)] "Rp™0 4107 (3

parameters which only requires a matrix diagonalization. W&\ hereO. | L. B and p are purely diagonal with elements

also found a rather surprising result, that the collision matrixO | L ' B, émdk a., respectively1 is the unit matrix

can be calculated directly from the alternative parametergrﬁé k° 'is tch e \5v,ave nlJCmCt;er '
c :

using alternative formulations of the level matrix Rrma- It is convenient to form the level-space column vecggr
trix. We then discuss the solution of the nonlinear elgenvalu?mm the y,,, and to then form the rectangular matrix

equation required to extract the alternative parameters frorprom the y, such that the matrixy has N, rows andN
[ A Cc

the standard parametrization, and demonstrate some of these " : . .
. ; ) . . . CcOlumns. In addition, the diagonal matiixis defined by
ideas using a simple example. Finally we briefly discuss the
application of the alternative parametrizatiomtoays andg

decays.

a; 90,
O; dre

) =S:.tiP, 2

SN S (4)

The R matrix defined by Eq(1) can now be written suc-
Il. REVIEW OF STANDARD R-MATRIX THEORY cinctly as

We begin by reviewing some of the notation and results of
standardR-matrix theory as described by Lane and Thomas
(LT) [3]. The R matrix is a function of the energl and is
defined by

R=7"(e—E1)'y. 5
The collision matrix can also be expressed as

U=2ip20 1y App?0 1+1071, (6)

R :2 Ve’ Ve (1)
°¢ & E\-E’ whereA is anN, X N, matrix defined by its inverse,
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A l=e—E1-¢L-B)y". (7)
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choice ofB, the R-matrix level energ)E, is often taken to
be the “observed resonance energy.” This definition is par-

The equivalence of these two forms for the collision matrixticularly useful in the present context and we will thus adopt

is discussed ifLT, Sec. IX.])) and in the Appendix. In addi-
tion the elements of the collision matrix connecting open

channels in Eq(6) can also be expressed as
Uere= Qo 8o+ 2i(Pe PO Y2y, Ay, (8)

using the definitions of the Coulomb functions.
An interesting feature oR-matrix theory is that the col-
lision matrix is invariant under changes in tBg, provided

that thek, andvy,. are suitably adjusted. This result remains

true even for the case of finife, [4]. The transformation is

most easily described using matrix equations in level spac

Let us consider the transformatid—B;, E,—E,, and

Yae— Yae- One first constructs the real and symmetric ma

trix C defined by
C=e-2 %7(B;~Bo), 9

which is diagonalized by the orthogonal matkxsuch that

D=KCKT, with D\,=D\6\,- The necessary transforma-

tion of the R-matrix parameters is then given b§]
E,=Dy (10
and

Ye=Kre. (11)

It is straightforward to verify by substitution into Eq&)
and(7) that these transformations lea\deinvariant.
IIl. THE ALTERNATIVE PARAMETRIZATION

A. Definition of the parametrization

We begin by defining the real and symmetric mat€ix

£=e-2 7.%(SBo), (12)
and consider the eigenvalue equation
£a=Eia, (13

whereE; is the eigenvalue ang is the corresponding eigen-

vector. Note tha€ is implicitly dependent upoi; through

e.

the E; as the observed resonance energies. Ehalso cor-
respond exactly to the level energies found using boundary-
condition constant transformations vyieldinB.=S.(E,)
such as described by Barkigt] and Azumaet al. [5].

In addition one can define a new set of reduced width
parametergy;. via

Yie= a1T'}’c . (14

These new reduced width parameters are also invariant under
changes inB.. When B.=S,(E,), we have alsoy,.

= y\c. The quantitie€; and¥;. can be taken as an alterna-
tive parametrization oR-matrix theory. We will derive be-

low efficient methods to convek; and,. into the standard
R-matrix parameter&, andvy,., or to the collision matrix

U. Also note thatE; and¥,. are equivalent to the “super-
script (\)" parameters of Barkef2], and essentially equiva-
lent to the “observed’R-matrix parameters described by An-
gulo and Descouvemoit].

Our Eq.(13) is closely related to the complex eigenvalue
equation introduced by Hale, Brown, and Jarf@¢to locate
the poles of the collision matrix—in fact it is just the real

part of their eigenvalue equation. For bound statesEguare

thus equivalent to the eigenvalues discussed in [R¢fince
P.=0. For these states we can also introduce the asymptotic
normalization constart;. which is given by[7]

~2
2 2pcd Yic

ic™ 3 2+~2 ds. '
h<Og ~2 U
1+§ 7IC<dE)E

(15

wherepu. is the reduced mass. This quantity is simply related
to the pole residues described by Hd) of Ref. [6]. For
unbound states there appears to be no simple relation be-

tweenE, and¥,. and the pole parameters of Rg]. One
may, however, define the observed partial width of a level in
terms of our parameters by

2P
- s
~2
1+§c: %C( dE)E_

(16)

ic

(see LT, Egs. XI1.3.5 and XI1.3)6 One should bear in mind,

Sc, so the eigenvalue problem is nonlinear. We will assumeyowever, that there are many different definitions of ob-

a'la=1.

differences between definitions are significant only for broad

Before proceeding further we would like to point out two states.

important properties of this eigenvalue equati@): The ei-
genvalue<E; are invariant if theB, are changed and tHg,
and y,. are changed according to Eq40) and (11). This
result is easily shown by substituting E¢8)—(11) into Egs.
(12) and (13). (2) If B.=S(E,), the matrix£€ is diagonal

B. Relation to standard parameters

We will next show the method to convelt, and¥, .. to
standardR-matrix parameters. It is assumed that the eigen-

for the energyE, and henceE, is an eigenvalue. For this values are distinct, so thig, #E; providedi #j. Note that if
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this were not the case the levels with the saeould be
combined into a single level. The eigenvectors of Ep)

PHYSICAL REVIEW C 66, 044611 (2002

genvalue equation. If the matriM is also positive definite
then Eq.(24) is known as the symmetric-definite eigenvalue

are not orthogonal; using the eigenvalue equation with twgroblem and had\, real eigenvaluegsee Sec. 8.7 of Ref.

different eigenvalues one finds

7

where &; is used to denote the matri& evaluated for the

energy E;. Using Egs.(12) and (14) with this result we
obtain

ajT(gj_gi)ai:(Ej _Ei)ajTai )

(18

—-S
T ~ ~ c jc
aa=— E, icYic = =
j & . YicYjc Ei_Ej

whereS,. denotes the shift functios, evaluated aE; . By
similarly evaluatingajT(Ej +&j)a;, one finds that

E+E S,
a}rea: a|+z 7|c7]C(CT Bc)- (19

These results are summarized in the matrideand N,
1 i=j
c SJC

2 7|c'}’Jc E _—E

T, —
B a=Mi= ]

and

i+ 2 V(S

c

E C’?JC

c

ajTeaENij=

—B.| i#].

SESi
—E

(21)

Note that the construction & requires the adoption of spe-

cific B, values.

The eigenvectors of Eq(13) can be arranged into a

square matriba such that Eq(14) becomes

Y= aT')’c . (22

The matricesM andN defined above can then be written as

M=a'a and N=a'ea From Eq.(4) the matrixe trivially
satisfies the eigenvalue equation
eu,=E,u,. (23

Upon substitution ofu, =ab, and multiplying from the left
by a this equation becomes

Nb)\:E)\Mb)\ . (24)

[8]). The off-diagonal elements of M are
~—2%icYjc(dS/dE) which is typically small compared
to unity; M will be positive definite provided th®,. are not
too large and the energy dependenceSdire not too great.
Further if M is not positive definite, the eigenvectasare

not real and the transformation to stand&natrix param-
eters is not defined. We thus conclude that for physically

reasonabléy., E;, andS,., the matrixM will be positive
definite; in practice we have found this condition to be easily
fulfilled. Finally note thatM is automatically positive defi-
niteT for any given set of standard parameters siite
=a'a

The eigenvectors of Eq24) b, can be arranged into a
square matribb which satisfies the relations

b"Mb=1 (25)

and

b"Nb=e. (26)
We therefore havé=a ! and from Eq.(22) the standard
R-matrix reduced widths are given by

= bTﬁi/c - (27)

The simultaneous diagonalization &ff andN thus provides
all of the standardR-matrix parameters. Note that aBy can
be chosen; the collision matri¥ will be invariant provided
the sameB,. are used in Eq(21) and in Eqs(3) or (7). The
numerical solution of Eq(24) is discussed in Sec. 8.7.2 of
Ref. [8]; we have have utilized the LAPACK9] routine
DSYGV.

IV. FURTHER DEVELOPMENT

It is fruitful to investigate alternative forms for the level
matrix and theR matrix which allow the collision matrix to
be calculated directly from the alternative parameters.

A. The alternative level matrix

We define the alternative level matr implicitly via

This elgenvalue equation holds the key for transformingyr equivalently

from the E;-¥,. representation to the standaRdmatrix pa-
rameters, and v,..

Ei, ¥, andB, using Eqs(20) and(21). TheE, can thus be

The real, symmetric, and energy-
independent matriced andN are completely determined by

Yo AY=Y.A;. (28)

In order for this relation to hold, we must have
aAa’=A, (29)
A l=a"A 1a, (30)

where we have used E{R2). We can now substitute E7)
determined by finding the eigenvalues of a generalized eifor A~

1 and again use Eq22) to obtain
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At=dlea-Ea'a-2 FH(S—Be+iP) (3D (@)= (Ei-B)d;— 2 TucFieSe

VieSic i=]
=N—EM— 2>, ¥ (Se—Bc+iPy). (32) +3 48 S(E-E)-Sc(E-E) .
¢ c YicYjc = = 1#].
Ei—E;j
The elements of this matrix can now be determined entirely (39)
from the alternative parameters with the aid of E@$) and
(21), Using Egs.(3) and (35) the collision matrix can now be
written as

K71 ij= ’Ei_E 6ij— ~ic~'c Sc+.Pc ~ ~
(A= ) Ec:y Vi Set1Pe) U=2ip"?0 Y(1-iRP) Rp?0 *+10"L. (40

VieS =] , ~ . ) : ;
e - - With the R matrix defined by Eq937) and(39) this equation
+2 ~ ~ Sic(E-E)—Si(E-E) 4] also givesU in terms of the alternative parameters without
¢ | YicVic Ei_Ej ' reference to the boundary-condition constants.
(33 _ R
C. Relative merits of R and A
Note that the boundary-condition constarfis have now The R matrix is more complicated thaR and the calcu-

canceled out—a not un(_axpected _result §ince the alternativigtion of U via Eq. (40) requires inverting a reaN, x N,
parameters and the collision matrix are independerBof  matrix in addition to a compledN X N, matrix. When cal-
We can now express the collision matrix directly in terms ofculatingU via the alternative level matrix one must invert a
the alternative parameters using E(®. and (28) single complex N, XN, matrix—using the alternative
R-matrix approach may thus offer a modest computational
Uere=Qo Qf Sre+ Zi(pc,pc)llzi,;;%]_ (34)  advantage in comparison whéhi >N, . Note, however, that
if it is necessary to calculatd for several energies and,
>N, it will probably be more computationally efficient to
B. The alternative R matrix diagonalize Eq(24) once and then use the stand&-anatrix
parameters in Eq23) to calculateU, as Eq.(3) only requires
inverting a single complel. X N, matrix.
We would also like to point out that this alternative pa-
[1-R(L-B)] R=(1-iRP) R, (35)  rametrization, usin@i andy;c with Eq. (34) or (40), may be
of formal interest since no arbitrary boundary-condition con-
stants are required, but the equations are mathematically
equivalent to the standaRimatrix approach. The alternative
parameters, in fact, correspond to eigenfunctions satisfying
energy-dependent boundary conditions—the real part of the
(1-iRP) " 'R=9"R7. (36) Kapur-Peierls or Siegert boundary conditions $€E Sec.
IX.2).

The matrixR is an alternative to the standaRi matrix
and is defined implicitly via

whereP is a purely diagonal matrix with elemeni,. By
comparison with Eqs(3) and (34) we must have

We proceed by assuming th&tcan be written in the form
V. SOLUTION OF THE NONLINEAR

o EIGENVALUE EQUATION
R=7 Q7. (37) _ _ ~
The transformation fromg;. and %;. to the standard

In the Appendix we describe a method to derive the leveR-Malrix parameterss, and y,. can be carried out in a
matrix form for the collision matri{Eq. (6)] from the chan- straightforward manner using the methods discussed above

nel matrix form[Eq. (3)]. This reasoning can also be applied in Sec. Il B. We will now discuss the inverse transformation,

~ ~ ) . ; i.e., the solution of the nonlinear eigenvalue problem Egq.
LoaseandA. We find that in order to satisfy E¢36) we must (13). At this point it is instructive to introduce a concrete

example: in Table | we show a simple well-documented set
~ of standardR-matrix parameters taken from Azune al.
Q =A"1+iwy . (38 [5].
We consider thdinear eigenvalue equation
A formula for the elements @ ! in terms of the alternative R
parameters can then be found using E88) and(398), EEB)4=E4, (41
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TABLE |. StandardR-matrix parameters from Table Ill of Ref.

[5] which describeJ™=1" reactions in the'®0 system, and the
alternative parameters derived from them. The channel labalsd

vy describe'®C+ o and %0+ v, respectively. The channel radius is
6.5 fm and the boundary condition constant is chosen so that the

level shift vanishes foE=E,. The g-decay feeding amplitudes,
are equivalent to the quantitiés ; v, N >/ of Ref.[5].

A 1 2 3
E, (MeV) —0.0451 2.845 11.71
e (MeVY?) 0.0793 0.330 1.017
Yy (MeV™H) 8.76x10°% —2.44x10°% —2.82x10°°
B, 1.194 0.558 —0.629
E, (MeV) —0.0451 2.400 8.00
Yo (MeVY?) 0.0793 0.471 0.912
Fry (MeV™1) 8.76x10°% —-320x10°% —250x10°°
B, 1.194 0.408 —-0.781

where £, the eigenvalueéi , and eigenvector$, depend
upon on the energy parameterThe solutions to the original

nonlinear problem Eq(13) thus occur wherE;(E)=E in
which caseE=Ei . From inspection of Eqg9) and(12) we

see that the eigenvalué&s also correspond to a set of stan-
dard R-matrix level energies, transformed from the original

parameter values tB.=S.(E).

We will next investigate how thE; depend orE. Starting
with

Ei=a/£a (42)
differentiation with respect t& yields
dE ,de_ d& _  _ dj
R TSali TRl = “3
—_3' E TdSC a+E d_AT"__{_‘Tﬁ
a1 YCYCdE ai 1 Eai i E .
(44)

Since by definition 4'4=1 we have ¢a'/dE)4
+4](da /dE)=0, and we finally find

d

i d
GE- 2 (yIéq)zd%. (45)

The energy derivative of the shift functionl§./dE) is
positive for negative-energy channels, and 3s0 for

positive-energy channels for all cases we are aware of. This

point is also discussed bi.T, p. 350; although a general

proof of (dS./dE)=0 is lacking it appears to always hold in
practice and we will thus assume it is true here. Note that for

PHYSICAL REVIEW C 66, 044611 (2002

E. (MeV)

1

' 5
E(MeV)

ol

10

FIG. 1. The eigenvalue trajectories are shown by plotting as
solid curves the eigenvaluds, versusk; the dashed line corre-

sponds toE;=E. The eigenvalues of Eq13) are given by the
intersections between the solid curves and the dashed line.

o

(|
dE <0. (46)
The eigenvalue<€; are thus monotonically nonincreasing
functions of E. The eigenvalue trajectories for the example
parameters are shown in Fig. 1 where the expected behavior
is seen. We also note that the eigenvalue trajectories avoid
crossing one another for the reasons given by von Neumann
and Wigner{10]. The avoided-crossing behavior is most ap-
parent when there are two nearby levels with very different
reduced width amplitudes.

The nonlinear eigenvalue problem E@3) and the para-
metric eigenvalue problem E¢42) are also closely related
to a well-studied question in linear algebra: the modification
of a symmetric matrix with known eigenvalues and eigen-
vectors by a positive-definite perturbation. This question is
analyzed for the single-channel case in Sec. 8.5.3 of Golub
and Van Loar{8] and for the multichannel case by Arbenz,
Gander, and Golupl1]. The perturbation bounds on the ei-

genvalues derived in Reff11] imply that theE; remain finite
provided theS; are finite—thus the eigenvalue trajectories
do not have real poles fgE|< <.

From the lack of poles and the monotonic dependence

(d Ei/d E)<0 we can conclude that each eigenvalue trajec-

tory intersects with the lin&; = E exactly once. These inter-
sections are shown graphically for the example in Fig. 1. We
thus have the important result that the nonlinear eigenvalue
problem Eq.(13) has a number of real eigenvalues exactly
equal to the number oR-matrix levels. A similar type of
nonlinear eigenvalue problem has been investigated by Rog-
ers[12]; it may be that the methods described in that paper
could be used to develop further understanding of the present
problem, e.g., to investigate inner products and/or the linear
independence of the eigenvectors.

The eigenvalues of Eq(13) satisfy the characteristic
equation

any specific case it is a simple matter to verify this relation

numerically.
Since (y.4)? is clearly =0, we can utilize S./dE)
=0 to conclude from Eq(45) that

de(E—E1)=0, (47)
which can also be written as
defe—E1- ¢#(S—B)y']=0, (48)
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TABLE II. Elementsb;; of the transformation matrix corre- VI. APPLICATION TO vy RAYS AND B DECAYS

sponding to the parameters of Table I. . . . L )
P g P We will briefly discuss the application of the alternative

i parametrization to reactions involvingrays andg decays.

i 1 2 3 Gamma-ray decay processes are generally treated with first-
order perturbation theory iR-matrix theory, which implies

1 1.000 0.0373 0.0446 that y-ray channels are excluded from the sum over channels

2 0.000 0.9781 0.2281 when constructingd, A, M, or N. Assuming that external

3 0.000 —0.1466 0.9933 contributions can be ignored, the collision matrix elements

connectingy-ray channelglabeledy) and nons-ray chan-
nels(labeledc) are given by(LT, Eqg. XIII.3.9)

whereS is a purely diagonal matrix with elemenss which

depend uporkE. Using the methods described in Rgf1] U. =2i0.(P.P.)2 A

one can show that or=212e(PcPy) ;M IneYuyhu

defe—E1- ¥(S—B)9y'] =2iQ(P.P,)?y[Ay,. (52

=de(e-El)def1-y'(e—E1)"'"®S—B)]. (49 In the long-wavelength approximation the penetration factor
. . for y rays is given byP,,=E%"** where( is the multipolar-
The eigenvalues thus satisfy ity. The observedy-ray widths are described by E16),
_ _ RV where y-ray channels are excluded from the sum in the de-
de(e-E1)de{1-R(S-B)]=0, 0 nominator. Using the same reasoning described in Sec. IV A
which may be a computationally efficient approach for de-the alternative expression for the collision matrix elements
termining the eigenvalues whex, >N, since the calcula- C€an be obtained using the replacement
tion of dete— E1) is trivial. Note that Eq(50) is the multi-

T, —=TR=
channel arbitranB. generalization of the resonance YAV, =V AYy (53)
condition given by Eq(14) of Ref.[1]. The eigenvalues also _ ) _

satisfy where the alternative-ray reduced width amplitudes are re-

lated to the standard parameters via
def1-R(S—B)]=0, (51 3
Yy= bT'VV' (54

but this equation has poles in addition to zeros, and if there is o ] .
a level\ with B.=S,(E,) (at most one level can satisfy this If the external contributions to the matrix elements are in-
Conditior) it does not produced a zero. cluded USing the formalism of Barker and KajlﬁbB], the

Rather than finding the eigenvalues by directly solving theeXpressions for the collision matrix elements and observed
characteristic equation, we have applied the Rayleigh quowidths become more complicated. However, these quantities
tient iteration method described in Sec. 8.2.3 of Ref.to  can still be written in terms of the alternative parameters
Eq. (13), as this procedure yields the eigenvectors as well agsing the above equations, noting that g, above are the

eigenvalues. Starting values for the eigenvalues and eigeifternal y-ray reduced width amplitudes. o
vectors were taken & =E, + = .y2[S.(E;) —B,] and a; The extension of the alternative parametrization to the
i i cViclPc\ i c ji P _ . . .
< 2 Due o he nonlinear natue of the prablem, the matrXy 0 Eu -l e o specrum s given by
y g. (7) of Barker and Warburtofil4]; note that additional

cedures were tested with several single-channel and multl= rameters must now be introduced. ghdecay feeding am
channel parameter sets, and were successful in finding all & u whel uced, f y Ing

the eigenvalues in every case. We cannot rule out, howev«j’“tUdes By It is convenient to form column vectois,

that some cases may require more carefully chosen starti &EﬁtheABg}r; jginth?;?rfég;ﬁmyl& g‘zz tl)\? A’V\:\'It;e;a\?s
values. Once th&; anda, are found, théy;. can be calcu- YeABx- AY 9 9 ’

lated using Eq(14). In Table | we show for the example case
the alternative parameters determined from the standard
R-matrix parameters. Note that the alternative parameters are ~
exactly the same as tematrix parameters given in the last Where the alternative feeding amplitud# are related to
column of Table Il of Ref[5] which have been transformed the standard parameters via

to satisfyB.=S;(E,) for other levels. As discussed in Sec. .

Il A this equality is required due to our definition of the B,=b'B,. (56)
alternative parameters. In Table Il we show the elements of

the matrixb for the example parameters. Finally we would Note also that ifB,=S.(E,) we have By,=B,,. The

like to point out that the methods discussed in this sectiorB-delayed particle spectrum can now be calculated directly
should be generally useful for the extraction of resonancérom the alternative parameters by using Esp) in Eq. (7)
parameters from standaRFmatrix parameters. of Ref. [14]. One could also convert to standaRdmatrix

YAB, =V AB,, (55)
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parameters using E¢56) and the methods discussed in Sec.the Institute for Nuclear TheoryNT) at the University of
Il B, and then calculate the spectrum using standardVashington for its hospitality during a part of this work.
R-matrix formulas. Financial support was supplied in part by the U.S. Depart-
In Table | we also show the standard and alternajivay =~ ment of Energy, through the INT and also Grant No. DE-
reduced amplitudes ang-decay feeding amplitudes for the FG02-88ER40387.
example case.
APPENDIX

VIl. CONCLUSIONS . . .
The equivalence of the two forms of the collision matrix

We have presented an alternative formulatiofRahatrix ~ given by Eqs(3) and(6) is discussed ifLT, Sec. IX.1. The

theory based on the parametésand¥;. defined in Sec. derivation is reviewed here, utilizing the matrix notation in-

Il A. This parametrization is a generalization of the ideastroduced in Sec. Il. The same procedure is useful for the

presented by Angu|0 and Descouvem@]]]_ The new for- derivation of the alternativé&k matrix as discussed in Sec.

mulation is mathematically equivalent to the standardV B.

R-matrix theory[3] but there are no boundary-condition con- We defineL,=L—B and note the quantity1—R(L

stants or level shifts. The new parameters can be convertedB)] ! in Eq. (3) can be written as

to standardR-matrix parameters by diagonalizing E@4), o T 1 o

or be used to calculate the collision matrix directly using (1~ RLo) "=[Lo—(Lo¥')(e—E1) “(1L0)] "Lo.

Egs. (34) or (40). We have discussed the solution of the (A1)

nonlinear eigenvalue problem E¢L3) which is needed to

convert standardR-matrix parameters to the new parametri-

zation. Finally we have briefly discussed the applicatioyto (x4 zyzT)~-1=x"1-x"1z(Y 14+ 27X 17)"1zTx 1,

rays andg decays. (A2)
We can envision at least two uses for this new formulation

in the fitting of experimental data. One application is thewhich holds for any square and invertible matricésindY

generation of starting parameter values from an outsidevhich need not be of the same dimensjdb]. With the aid

source of spectroscopic information such as a level compilaef this identity we obtain

tion or shell-model calculation. These latter sources gener-

ally do not supply standar®-matrix parameters but rather  (1—RLg) " *={Lg*—Lo (Lo¥")[—(e—E1)

resonance parameters without level shifts. In the past the

A useful identity is given by

-1 T\1—1 -1
methods to incorporate these types of information have not +(rollo (Lov)] (vlollo Lo (A3)
always been optimale.g., B, could be chosen to make the B T —
level shift vanish for a representative energy, but not for all =1ty (e~El-1ov) "7o (A4)

energies simultaneouslyAnother application is to use the
alternative parameters as the fit parameters. The calculations
can be made directly from the alternative parameters usin
the methods discussed in Sec. IV, or by diagonalizing Eq
(24) to find the standar&®-matrix parameters. The latter op-
tion may be preferable iN,>N,, if observables must be

=1+9"Ay,, (A5)

Where in the last step we have used Eg).for the definition
of the level matrixA.
We can then write

calculated for many different energies. It should be noted 1—RLA) “R=(1+ v'A T(e—E1) ! A6
that in data-fitting applications the collision matrix must be ( o) (Lt 7 Arto) v ( )y (A6)
calculated repeatedly for different energies, and the extra =T (e—E1) v+ A —A 1+ (e—E1
computational overhead required will be negligible in com- ( vty Al ( )]
parison. With the alternative parameters it is very easy to fix X (e—E1)~ 1y, (A7)
known information about level energies and partial widths

for any number of levels. where we have substituteet A~1+(e—E1) for gy

Simplifying this expression we finally have
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