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Alternative parametrization of R-matrix theory
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An alternative parametrization ofR-matrix theory is presented which is mathematically equivalent to the
standard approach, but possesses features that simplify the fitting of experimental data. In particular, there are
no level shifts and no boundary-condition constants which allow the positions and partial widths of an arbitrary
number of levels to be easily fixed in an analysis. These alternative parameters can be converted to standard
R-matrix parameters by a straightforward matrix diagonalization procedure. In addition, it is possible to
express the collision matrix directly in terms of the alternative parameters.
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I. INTRODUCTION

The R-matrix theory of reactions has proven over t
course of time to be very useful in nuclear and atomic ph
ics, both for the fitting of experimental data and as a tool
theoretical calculations. In this paper we explore a ma
ematically equivalent alternative formulation ofR-matrix
theory which will be especially useful for the fitting of ex
perimental nuclear physics data.

In a recent paper an alternative parametrizationR-matrix
theory was described by Angulo and Descouvemont@1#. In
their framework there are no level shifts and it is straightf
ward to incorporate known information about level energ
and partial widths. They presented an approximate itera
relation between the alternative parameters and the stan
R-matrix parameters. In addition consideration was limit
to the single-channel case with a boundary-condition c
stant of zero. Some aspects of these alternative param
have also been discussed in a paper by Barker@2#. In this
paper we further develop the concept of an alterna
R-matrix parametrization. The description is generalized
allow nonzero boundary-condition constants and an arbit
number of channels. We present an exact method for c
verting the alternative parameters to the standardR-matrix
parameters which only requires a matrix diagonalization.
also found a rather surprising result, that the collision ma
can be calculated directly from the alternative parame
using alternative formulations of the level matrix orR ma-
trix. We then discuss the solution of the nonlinear eigenva
equation required to extract the alternative parameters f
the standard parametrization, and demonstrate some of t
ideas using a simple example. Finally we briefly discuss
application of the alternative parametrization tog rays andb
decays.

II. REVIEW OF STANDARD R-MATRIX THEORY

We begin by reviewing some of the notation and results
standardR-matrix theory as described by Lane and Thom
~LT! @3#. The R matrix is a function of the energyE and is
defined by

Rc8c5(
l

glc8glc

El2E
, ~1!
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whereEl are the level energies,glc are the reduced width
amplitudes,l is the level label, andc is the channel label. We
will assume that the numbers of levels and channels are fi
and given byNl andNc , respectively. One must also speci
the constantsBc , which determine the boundary condition
satisfied by the underlying eigenfunctions.

In order to calculate physical observables one must e
ploy various combinations of the Coulomb wave function
evaluated at the channel radiusr c5ac . The quantitiesI c and
Oc are defined by~LT, Eq. II.2.13!. For closed channels th
outgoing solutionOc is taken to be the exponentially
decaying Whittaker function~LT, Eq. II.2.17!. In addition
one definesVc5(I c /Oc)

1/2 and

Lc5S ac

Oc

]Oc

]r c
D

ac

5Sc1 iPc , ~2!

where the shift factorSc and penetration factorPc are real
quantities. The collision matrixU is anNc3Nc matrix which
determines the observable quantities; it is related to thR
matrix via ~LT, Eq. VII.1!,

U52ir1/2O21@12R~L2B!#21Rr1/2O211IO21, ~3!

whereO, I , L, B, andr are purely diagonal with element
Oc , I c , Lc , Bc , andkcac , respectively;1 is the unit matrix,
andkc is the wave number.

It is convenient to form the level-space column vectorgc
from the glc , and to then form the rectangular matrixg
from the gc such that the matrixg has Nl rows andNc
columns. In addition, the diagonal matrixe is defined by

elm5Eldlm . ~4!

The R matrix defined by Eq.~1! can now be written suc-
cinctly as

R5gT~e2E1!21g. ~5!

The collision matrix can also be expressed as

U52ir1/2O21gTAgr1/2O211IO21, ~6!

whereA is anNl3Nl matrix defined by its inverse,
©2002 The American Physical Society11-1
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A215e2E12g~L2B!gT. ~7!

The equivalence of these two forms for the collision mat
is discussed in~LT, Sec. IX.1! and in the Appendix. In addi-
tion the elements of the collision matrix connecting op
channels in Eq.~6! can also be expressed as

Uc8c5Vc8Vc@dc8c12i~Pc8Pc!
1/2gc8

T Agc#, ~8!

using the definitions of the Coulomb functions.
An interesting feature ofR-matrix theory is that the col-

lision matrix is invariant under changes in theBc , provided
that theEl andglc are suitably adjusted. This result remai
true even for the case of finiteNl @4#. The transformation is
most easily described using matrix equations in level spa
Let us consider the transformationBc→Bc8 , El→El8 , and
glc→glc8 . One first constructs the real and symmetric m
trix C defined by

C5e2(
c

gcgc
T~Bc82Bc!, ~9!

which is diagonalized by the orthogonal matrixK such that
D5KCKT, with Dlm5Dldlm . The necessary transforma
tion of theR-matrix parameters is then given by@4#

El85Dl ~10!

and

gc85Kgc . ~11!

It is straightforward to verify by substitution into Eqs.~6!
and ~7! that these transformations leaveU invariant.

III. THE ALTERNATIVE PARAMETRIZATION

A. Definition of the parametrization

We begin by defining the real and symmetric matrixE:

E5e2(
c

gcgc
T~Sc2Bc!, ~12!

and consider the eigenvalue equation

Eai5Ẽiai , ~13!

whereẼi is the eigenvalue andai is the corresponding eigen
vector. Note thatE is implicitly dependent uponẼi through
Sc , so the eigenvalue problem is nonlinear. We will assu
for convenience that the eigenvectors are normalized so
ai

Tai51.
Before proceeding further we would like to point out tw

important properties of this eigenvalue equation:~1! The ei-
genvaluesẼi are invariant if theBc are changed and theEl

and glc are changed according to Eqs.~10! and ~11!. This
result is easily shown by substituting Eqs.~9!–~11! into Eqs.
~12! and ~13!. ~2! If Bc5Sc(El), the matrixE is diagonal
for the energyEl and henceEl is an eigenvalue. For this
04461
e.
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choice ofBc the R-matrix level energyEl is often taken to
be the ‘‘observed resonance energy.’’ This definition is p
ticularly useful in the present context and we will thus ado
the Ẽi as the observed resonance energies. TheẼi also cor-
respond exactly to the level energies found using bound
condition constant transformations yieldingBc5Sc(El)
such as described by Barker@2# and Azumaet al. @5#.

In addition one can define a new set of reduced wi
parametersg̃ ic via

g̃ ic5ai
Tgc . ~14!

These new reduced width parameters are also invariant u
changes inBc . When Bc5Sc(El), we have alsog̃lc

5glc . The quantitiesẼi andg̃ ic can be taken as an alterna
tive parametrization ofR-matrix theory. We will derive be-
low efficient methods to convertẼi andg̃ ic into the standard
R-matrix parametersEl andglc , or to the collision matrix
U. Also note thatẼi and g̃ ic are equivalent to the ‘‘super
script (l)’’ parameters of Barker@2#, and essentially equiva
lent to the ‘‘observed’’R-matrix parameters described by An
gulo and Descouvemont@1#.

Our Eq.~13! is closely related to the complex eigenvalu
equation introduced by Hale, Brown, and Jarmie@6# to locate
the poles of the collision matrix—in fact it is just the re
part of their eigenvalue equation. For bound states ourẼi are
thus equivalent to the eigenvalues discussed in Ref.@6# since
Pc50. For these states we can also introduce the asymp
normalization constantCic which is given by@7#

Cic
2 5

2mcac

\2Oc
2 F g̃ ic

2

11(
c

g̃ ic
2 S dSc

dE D
Ẽi

G , ~15!

wheremc is the reduced mass. This quantity is simply relat
to the pole residues described by Eq.~4! of Ref. @6#. For
unbound states there appears to be no simple relation
tweenẼl and g̃lc and the pole parameters of Ref.@6#. One
may, however, define the observed partial width of a leve
terms of our parameters by

G ic5
2Pcg̃ ic

2

11(
c

g̃ ic
2 S dSc

dE D
Ẽi

~16!

~see LT, Eqs. XII.3.5 and XII.3.6!. One should bear in mind
however, that there are many different definitions of o
served resonance energies and widths in use; generally
differences between definitions are significant only for bro
states.

B. Relation to standard parameters

We will next show the method to convertẼl and g̃lc to
standardR-matrix parameters. It is assumed that the eig
values are distinct, so thatẼiÞẼj providediÞ j . Note that if
1-2
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this were not the case the levels with the sameẼi could be
combined into a single level. The eigenvectors of Eq.~13!
are not orthogonal; using the eigenvalue equation with
different eigenvalues one finds

aj
T~Ej2Ei !ai5~Ẽj2Ẽi !aj

Tai , ~17!

whereEi is used to denote the matrixE evaluated for the
energy Ẽi . Using Eqs.~12! and ~14! with this result we
obtain

aj
Tai52(

c
g̃ icg̃ jc

Sic2Sjc

Ẽi2Ẽj

, ~18!

whereSic denotes the shift functionSc evaluated atẼi . By
similarly evaluatingaj

T(Ej1Ei)ai , one finds that

aj
Teai5

Ẽi1Ẽj

2
aj

Tai1(
c

g̃ icg̃ jcS Sic1Sjc

2
2BcD . ~19!

These results are summarized in the matricesM andN,

aj
Tai[Mi j 5H 1 i 5 j

2(
c

g̃ icg̃ jc

Sic2Sjc

Ẽi2Ẽj

iÞ j
~20!

and

aj
Teai[Ni j 55 Ẽi1(

c
g̃ ic

2 ~Sic2Bc! i 5 j

(
c

g̃ icg̃ jcS ẼiSjc2ẼjSic

Ẽi2Ẽj

2BcD iÞ j .

~21!

Note that the construction ofN requires the adoption of spe
cific Bc values.

The eigenvectors of Eq.~13! can be arranged into
square matrixa such that Eq.~14! becomes

g̃c5aTgc . ~22!

The matricesM andN defined above can then be written
M5aTa and N5aTea. From Eq. ~4! the matrix e trivially
satisfies the eigenvalue equation

eul5Elul . ~23!

Upon substitution oful5abl and multiplying from the left
by aT this equation becomes

Nbl5ElMbl . ~24!

This eigenvalue equation holds the key for transform
from the Ẽi-g̃ ic representation to the standardR-matrix pa-
rametersEl and glc . The real, symmetric, and energy
independent matricesM andN are completely determined b
Ẽi , g̃ ic , andBc using Eqs.~20! and~21!. TheEl can thus be
determined by finding the eigenvalues of a generalized
04461
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genvalue equation. If the matrixM is also positive definite
then Eq.~24! is known as the symmetric-definite eigenval
problem and hasNl real eigenvalues~see Sec. 8.7 of Ref
@8#!. The off-diagonal elements of M are
'2(cg̃ icg̃ jc(dSc /dE) which is typically small compared
to unity; M will be positive definite provided theg̃ ic are not
too large and the energy dependences ofSc are not too great.
Further if M is not positive definite, the eigenvectorsai are
not real and the transformation to standardR-matrix param-
eters is not defined. We thus conclude that for physica
reasonableg̃ ic , Ẽi , andSic , the matrixM will be positive
definite; in practice we have found this condition to be eas
fulfilled. Finally note thatM is automatically positive defi-
nite for any given set of standard parameters sinceM
5aTa.

The eigenvectors of Eq.~24! bl can be arranged into a
square matrixb which satisfies the relations

bTMb51 ~25!

and

bTNb5e. ~26!

We therefore haveb5a21 and from Eq.~22! the standard
R-matrix reduced widths are given by

gc5bTg̃c . ~27!

The simultaneous diagonalization ofM andN thus provides
all of the standardR-matrix parameters. Note that anyBc can
be chosen; the collision matrixU will be invariant provided
the sameBc are used in Eq.~21! and in Eqs.~3! or ~7!. The
numerical solution of Eq.~24! is discussed in Sec. 8.7.2 o
Ref. @8#; we have have utilized the LAPACK@9# routine
DSYGV.

IV. FURTHER DEVELOPMENT

It is fruitful to investigate alternative forms for the leve
matrix and theR matrix which allow the collision matrix to
be calculated directly from the alternative parameters.

A. The alternative level matrix

We define the alternative level matrixÃ implicitly via

gc8
T Agc[g̃c8

T Ãg̃c . ~28!

In order for this relation to hold, we must have

aÃaT5A, ~29!

or equivalently

Ã215aTA21a, ~30!

where we have used Eq.~22!. We can now substitute Eq.~7!
for A21, and again use Eq.~22! to obtain
1-3
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C. R. BRUNE PHYSICAL REVIEW C 66, 044611 ~2002!
Ã215aTea2EaTa2(
c

g̃cg̃c
T~Sc2Bc1 iPc! ~31!

5N2EM2(
c

g̃cg̃c
T~Sc2Bc1 iPc!. ~32!

The elements of this matrix can now be determined entir
from the alternative parameters with the aid of Eqs.~20! and
~21!,

~Ã21! i j 5~Ẽi2E!d i j 2(
c

g̃ icg̃ jc~Sc1 iPc!

1(
c H g̃ ic

2 Sic i 5 j

g̃ icg̃ jc

Sic~E2Ẽj !2Sjc~E2Ẽi !

Ẽi2Ẽj

iÞ j .

~33!

Note that the boundary-condition constantsBc have now
canceled out—a not unexpected result since the alterna
parameters and the collision matrix are independent ofBc .
We can now express the collision matrix directly in terms
the alternative parameters using Eqs.~8! and ~28!

Uc8c5Vc8Vc@dc8c12i~Pc8Pc!
1/2g̃c8

T Ãg̃c#. ~34!

B. The alternative R matrix

The matrix R̃ is an alternative to the standardR matrix
and is defined implicitly via

@12R~L2B!#21R[~12 iR̃P!21R̃, ~35!

whereP is a purely diagonal matrix with elementsPc . By
comparison with Eqs.~3! and ~34! we must have

~12 iR̃P!21R̃5g̃TÃg̃. ~36!

We proceed by assuming thatR̃ can be written in the form

R̃5g̃TQg̃. ~37!

In the Appendix we describe a method to derive the le
matrix form for the collision matrix@Eq. ~6!# from the chan-
nel matrix form@Eq. ~3!#. This reasoning can also be applie
to R̃ andÃ. We find that in order to satisfy Eq.~36! we must
have

Q215Ã211 ig̃Pg̃T. ~38!

A formula for the elements ofQ21 in terms of the alternative
parameters can then be found using Eqs.~33! and ~38!,
04461
ly
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~Q̃21! i j 5~Ẽi2E!d i j 2(
c

g̃ icg̃ jcSc

1(
c H g̃ ic

2 Sic i 5 j

g̃ icg̃ jc

Sic~E2Ẽj !2Sjc~E2Ẽi !

Ẽi2Ẽj

iÞ j .

~39!

Using Eqs.~3! and ~35! the collision matrix can now be
written as

U52ir1/2O21~12 iR̃P!21R̃r1/2O211IO21. ~40!

With theR̃ matrix defined by Eqs.~37! and~39! this equation
also givesU in terms of the alternative parameters witho
reference to the boundary-condition constants.

C. Relative merits of R̃ and Ã

The R̃ matrix is more complicated thanR and the calcu-
lation of U via Eq. ~40! requires inverting a realNl3Nl

matrix in addition to a complexNc3Nc matrix. When cal-
culatingU via the alternative level matrix one must invert
single complex Nl3Nl matrix—using the alternative
R-matrix approach may thus offer a modest computatio
advantage in comparison whenNl@Nc . Note, however, that
if it is necessary to calculateU for several energies andNl

.Nc it will probably be more computationally efficient t
diagonalize Eq.~24! once and then use the standardR-matrix
parameters in Eq.~3! to calculateU, as Eq.~3! only requires
inverting a single complexNc3Nc matrix.

We would also like to point out that this alternative p
rametrization, usingẼi andg̃ ic with Eq. ~34! or ~40!, may be
of formal interest since no arbitrary boundary-condition co
stants are required, but the equations are mathematic
equivalent to the standardR-matrix approach. The alternativ
parameters, in fact, correspond to eigenfunctions satisfy
energy-dependent boundary conditions—the real part of
Kapur-Peierls or Siegert boundary conditions see~LT, Sec.
IX.2!.

V. SOLUTION OF THE NONLINEAR
EIGENVALUE EQUATION

The transformation fromẼic and g̃ ic to the standard
R-matrix parametersEl and glc can be carried out in a
straightforward manner using the methods discussed ab
in Sec. III B. We will now discuss the inverse transformatio
i.e., the solution of the nonlinear eigenvalue problem E
~13!. At this point it is instructive to introduce a concre
example: in Table I we show a simple well-documented
of standardR-matrix parameters taken from Azumaet al.
@5#.

We consider thelinear eigenvalue equation

E~E!âi5Êi âi , ~41!
1-4
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whereE, the eigenvaluesÊi , and eigenvectorsâi depend
upon on the energy parameterE. The solutions to the origina
nonlinear problem Eq.~13! thus occur whenÊi(E)5E in
which caseE5Ẽi . From inspection of Eqs.~9! and~12! we
see that the eigenvaluesÊi also correspond to a set of sta
dard R-matrix level energies, transformed from the origin
parameter values toBc5Sc(E).

We will next investigate how theÊi depend onE. Starting
with

Êi5âi
TEâi ~42!

differentiation with respect toE yields

dÊi

dE
5âi

T dE
dE

âi1
dâi

T

dE
Eâi1âi

TEdâi

dE
~43!

52âi
TS (

c
gcgc

TdSc

dE D âi1Êi S dâi
T

dE
âi1âi

T dâi

dED .

~44!

Since by definition âi
Tâi51 we have (dâi

T/dE)âi

1âi
T(dâi /dE)50, and we finally find

dÊi

dE
52(

c
~gc

Tâi !
2
dSc

dE
. ~45!

The energy derivative of the shift function (dSc /dE) is
positive for negative-energy channels, and is>0 for
positive-energy channels for all cases we are aware of. T
point is also discussed by~LT, p. 350!; although a genera
proof of (dSc /dE)>0 is lacking it appears to always hold i
practice and we will thus assume it is true here. Note that
any specific case it is a simple matter to verify this relat
numerically.

Since (gc
Tâi)

2 is clearly >0, we can utilize (dSc /dE)
>0 to conclude from Eq.~45! that

TABLE I. StandardR-matrix parameters from Table III of Ref
@5# which describeJp512 reactions in the16O system, and the
alternative parameters derived from them. The channel labelsa and
g describe12C1a and 16O1g, respectively. The channel radius
6.5 fm and the boundary condition constant is chosen so that
level shift vanishes forE5E1. Theb-decay feeding amplitudesBl

are equivalent to the quantitiesAl1gl1
21Na

21/2 of Ref. @5#.

l 1 2 3

El ~MeV! 20.0451 2.845 11.71
gla (MeV1/2) 0.0793 0.330 1.017
glg (MeV21) 8.7631026 22.4431026 22.8231026

Bl 1.194 0.558 20.629

Ẽl ~MeV! 20.0451 2.400 8.00

g̃la (MeV1/2) 0.0793 0.471 0.912
g̃lg (MeV21) 8.7631026 23.2031026 22.5031026

B̃l
1.194 0.408 20.781
04461
l
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r

dÊi

dE
<0. ~46!

The eigenvaluesÊi are thus monotonically nonincreasin
functions ofE. The eigenvalue trajectories for the examp
parameters are shown in Fig. 1 where the expected beha
is seen. We also note that the eigenvalue trajectories a
crossing one another for the reasons given by von Neum
and Wigner@10#. The avoided-crossing behavior is most a
parent when there are two nearby levels with very differ
reduced width amplitudes.

The nonlinear eigenvalue problem Eq.~13! and the para-
metric eigenvalue problem Eq.~42! are also closely related
to a well-studied question in linear algebra: the modificat
of a symmetric matrix with known eigenvalues and eige
vectors by a positive-definite perturbation. This question
analyzed for the single-channel case in Sec. 8.5.3 of Go
and Van Loan@8# and for the multichannel case by Arben
Gander, and Golub@11#. The perturbation bounds on the e
genvalues derived in Ref.@11# imply that theÊi remain finite
provided theSc are finite—thus the eigenvalue trajectori
do not have real poles foruEu,`.

From the lack of poles and the monotonic depende
(dÊi /dE)<0 we can conclude that each eigenvalue traj
tory intersects with the lineÊi5E exactly once. These inter
sections are shown graphically for the example in Fig. 1.
thus have the important result that the nonlinear eigenva
problem Eq.~13! has a number of real eigenvalues exac
equal to the number ofR-matrix levels. A similar type of
nonlinear eigenvalue problem has been investigated by R
ers @12#; it may be that the methods described in that pa
could be used to develop further understanding of the pre
problem, e.g., to investigate inner products and/or the lin
independence of the eigenvectors.

The eigenvalues of Eq.~13! satisfy the characteristic
equation

det~E2E1!50, ~47!

which can also be written as

det@e2E12g~S2B!gT#50, ~48!

he

FIG. 1. The eigenvalue trajectories are shown by plotting

solid curves the eigenvaluesÊi versusE; the dashed line corre

sponds toÊi5E. The eigenvalues of Eq.~13! are given by the
intersections between the solid curves and the dashed line.
1-5
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whereS is a purely diagonal matrix with elementsSc which
depend uponE. Using the methods described in Ref.@11#
one can show that

det@e2E12g~S2B!gT#

5det~e2E1!det@12gT~e2E1!21g~S2B!#. ~49!

The eigenvalues thus satisfy

det~e2E1!det@12R~S2B!#50, ~50!

which may be a computationally efficient approach for d
termining the eigenvalues whenNl.Nc since the calcula-
tion of det(e2E1) is trivial. Note that Eq.~50! is the multi-
channel arbitrary-Bc generalization of the resonanc
condition given by Eq.~14! of Ref. @1#. The eigenvalues also
satisfy

det@12R~S2B!#50, ~51!

but this equation has poles in addition to zeros, and if ther
a levell with Bc5Sc(El) ~at most one level can satisfy th
condition! it does not produced a zero.

Rather than finding the eigenvalues by directly solving
characteristic equation, we have applied the Rayleigh q
tient iteration method described in Sec. 8.2.3 of Ref.@8# to
Eq. ~13!, as this procedure yields the eigenvectors as wel
eigenvalues. Starting values for the eigenvalues and ei
vectors were taken asẼi5Ei1(cg ic

2 @Sc(Ei)2Bc# and aji

5d j i . Due to the nonlinear nature of the problem, the ma
E must be updated at each step of the iteration. These
cedures were tested with several single-channel and m
channel parameter sets, and were successful in finding a
the eigenvalues in every case. We cannot rule out, howe
that some cases may require more carefully chosen sta
values. Once theẼi andai are found, theg̃ ic can be calcu-
lated using Eq.~14!. In Table I we show for the example cas
the alternative parameters determined from the stand
R-matrix parameters. Note that the alternative parameters
exactly the same as theR-matrix parameters given in the la
column of Table III of Ref.@5# which have been transforme
to satisfyBc5Sc(El) for other levels. As discussed in Se
III A this equality is required due to our definition of th
alternative parameters. In Table II we show the element
the matrixb for the example parameters. Finally we wou
like to point out that the methods discussed in this sec
should be generally useful for the extraction of resona
parameters from standardR-matrix parameters.

TABLE II. Elementsbi j of the transformation matrixb corre-
sponding to the parameters of Table I.

j
i 1 2 3

1 1.000 0.0373 0.0446
2 0.000 0.9781 0.2281
3 0.000 20.1466 0.9933
04461
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VI. APPLICATION TO g RAYS AND b DECAYS

We will briefly discuss the application of the alternativ
parametrization to reactions involvingg rays andb decays.
Gamma-ray decay processes are generally treated with
order perturbation theory inR-matrix theory, which implies
thatg-ray channels are excluded from the sum over chann
when constructingA, Ã, M, or N. Assuming that externa
contributions can be ignored, the collision matrix eleme
connectingg-ray channels~labeledg! and non-g-ray chan-
nels ~labeledc) are given by~LT, Eq. XIII.3.9!

Ucg52iVc~PcPg!1/2(
lm

glcgmgAlm

52iVc~PcPg!1/2gc
TAgg . ~52!

In the long-wavelength approximation the penetration fac
for g rays is given byPg5Eg

2l 11 where, is the multipolar-
ity. The observedg-ray widths are described by Eq.~16!,
whereg-ray channels are excluded from the sum in the
nominator. Using the same reasoning described in Sec. I
the alternative expression for the collision matrix eleme
can be obtained using the replacement

gc
TAgg5g̃c

TÃg̃g , ~53!

where the alternativeg-ray reduced width amplitudes are re
lated to the standard parameters via

gg5bTg̃g . ~54!

If the external contributions to the matrix elements are
cluded using the formalism of Barker and Kajino@13#, the
expressions for the collision matrix elements and obser
widths become more complicated. However, these quant
can still be written in terms of the alternative paramet
using the above equations, noting that theglg above are the
internal g-ray reduced width amplitudes.

The extension of the alternative parametrization to
description ofb-delayed particle spectra is straightforwar
A multichannel formula for the particle spectrum is given
Eq. ~7! of Barker and Warburton@14#; note that additional
parameters must now be introduced, theb-decay feeding am-
plitudes Blx . It is convenient to form column vectorsBx
from the Blx , so that (lmBlxAlmgmc can be written as
gc

TABx . Again using the reasoning of Sec. IV A we have

gc
TABx5g̃c

TÃB̃x , ~55!

where the alternative feeding amplitudesB̃x are related to
the standard parameters via

Bx5bTB̃x . ~56!

Note also that if Bc5Sc(El) we have B̃lx5Blx . The
b-delayed particle spectrum can now be calculated dire
from the alternative parameters by using Eq.~55! in Eq. ~7!
of Ref. @14#. One could also convert to standardR-matrix
1-6
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ALTERNATIVE PARAMETRIZATION OF R-MATRIX THEORY PHYSICAL REVIEW C 66, 044611 ~2002!
parameters using Eq.~56! and the methods discussed in Se
III B, and then calculate the spectrum using stand
R-matrix formulas.

In Table I we also show the standard and alternativeg-ray
reduced amplitudes andb-decay feeding amplitudes for th
example case.

VII. CONCLUSIONS

We have presented an alternative formulation ofR-matrix
theory based on the parametersẼi and g̃ ic defined in Sec.
III A. This parametrization is a generalization of the ide
presented by Angulo and Descouvemont@1#. The new for-
mulation is mathematically equivalent to the standa
R-matrix theory@3# but there are no boundary-condition co
stants or level shifts. The new parameters can be conve
to standardR-matrix parameters by diagonalizing Eq.~24!,
or be used to calculate the collision matrix directly usi
Eqs. ~34! or ~40!. We have discussed the solution of th
nonlinear eigenvalue problem Eq.~13! which is needed to
convert standardR-matrix parameters to the new paramet
zation. Finally we have briefly discussed the application tg
rays andb decays.

We can envision at least two uses for this new formulat
in the fitting of experimental data. One application is t
generation of starting parameter values from an outs
source of spectroscopic information such as a level comp
tion or shell-model calculation. These latter sources ge
ally do not supply standardR-matrix parameters but rathe
resonance parameters without level shifts. In the past
methods to incorporate these types of information have
always been optimal~e.g.,Bc could be chosen to make th
level shift vanish for a representative energy, but not for
energies simultaneously!. Another application is to use th
alternative parameters as the fit parameters. The calcula
can be made directly from the alternative parameters u
the methods discussed in Sec. IV, or by diagonalizing
~24! to find the standardR-matrix parameters. The latter op
tion may be preferable ifNl.Nc , if observables must be
calculated for many different energies. It should be no
that in data-fitting applications the collision matrix must
calculated repeatedly for different energies, and the e
computational overhead required will be negligible in co
parison. With the alternative parameters it is very easy to
known information about level energies and partial wid
for any number of levels.
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APPENDIX

The equivalence of the two forms of the collision matr
given by Eqs.~3! and~6! is discussed in~LT, Sec. IX.1!. The
derivation is reviewed here, utilizing the matrix notation i
troduced in Sec. II. The same procedure is useful for
derivation of the alternativeR matrix as discussed in Sec
IV B.

We define L05L2B and note the quantity@12R(L
2B)#21 in Eq. ~3! can be written as

~12RL0!215@L02~L0gT!~e2E1!21~gL0!#21L0 .
~A1!

A useful identity is given by

~X1ZYZT!215X212X21Z~Y211ZTX21Z!21ZTX21,
~A2!

which holds for any square and invertible matricesX andY
which need not be of the same dimension@15#. With the aid
of this identity we obtain

~12RL0!215$L0
212L0

21~L0gT!@2~e2E1!

1~gL0!L0
21~L0gT!#21~gL0!L0

21%L0 ~A3!

511gT~e2E12gL0gT!21gL0 ~A4!

511gTAgL0 , ~A5!

where in the last step we have used Eq.~7! for the definition
of the level matrixA.

We can then write

~12RL0!21R5~11gTAgL0!gT~e2E1!21g ~A6!

5gT~e2E1!21g1gTA@2A211~e2E1!#

3~e2E1!21g, ~A7!

where we have substituted2A211(e2E1) for gL0gT.
Simplifying this expression we finally have

~12RL0!21R5gTAg, ~A8!

which proves the equivalence of Eqs.~3! and ~6!.
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