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Abstract. We discuss the possibility to extract the neutron-neutron scattering length ann from experi-
mental spectra on the reaction γd → π+nn. The transition operator is calculated to high accuracy from
chiral perturbation theory. We argue that for properly chosen kinematics, the theoretical uncertainty of
the method can be as low as 0.1 fm.

PACS. 12.39.Fe Chiral Lagrangians – 13.60.Le Meson production – 13.75.Cs Nucleon-nucleon interactions
(including antinucleons, deuterons, etc.) – 25.20.Lj Photoproduction reactions

1 Introduction

A precise knowledge of the neutron-neutron (nn) scatter-
ing length ann is, e.g., important for an understanding
of the effects of charge symmetry breaking in nucleon-
nucleon forces [1]. The scattering length ann characterizes
scattering at low energies. It is related to the on-shell 1S0

scattering amplitude fon as

fon(pr) =
1

pr cot δ(pr) − ipr

=
1

−a−1
nn + 1

2 rnnp2
r + O(p4

r) − i pr

, (1)

where pr is the relative momentum between the two neu-
trons, δ(pr) the scattering phase shift in the 1S0 partial
wave and rnn is the effective range. At low energies the
terms of order p4

r can be neglected to very high accuracy.
Obviously, a direct determination of ann in a scattering
experiment is extremely difficult due to the absence of a
free neutron target. For this reason, the value for ann is
to be obtained from analyses of reactions where there are
three particles in the final state, e.g., π−d → γnn [2–4]
or nd → pnn [5–7]. There is some spread in the re-
sults for ann obtained by the various groups. In partic-
ular, two independent analyses of the reaction nd → pnn
give significantly different values for ann, namely ann =
−16.1 ± 0.4 fm [6] and ann = −18.7 ± 0.6 fm [7], whereas
the latest value obtained from the reaction π−d → γnn

a e-mail: j.haidenbauer@fz-juelich.de

is ann = −18.5 ± 0.3 fm [4]. At the same time, for the
proton-proton scattering length, which is directly accessi-
ble, a very recent analysis reports app = −17.3±0.4 fm [8]
after correcting for electromagnetic effects. This means
that even the sign of ∆a = app − ann is not fixed1. It
should be mentioned, however, that state-of-the-art cal-
culations for the binding energy difference of tritium and
3He suggest that ∆a > 0 [9,10].

Another reaction which could be used for extracting
ann is charged pion photoproduction on the deuteron,
γd → π+nn. Indeed, there are already some works in the
literature which investigated the sensitivity of this reac-
tion to the nn scattering length [11–13]. However, those
investigations performed many years ago, focussed primar-
ily on the total production cross-section. It was concluded
that a precise determination of ann is only feasible for
energies very close to the reaction threshold, namely for
excess energies of 0.1MeV or below [11,13].

In the present work we re-examine the possibility to
determine ann from the reaction γd → π+nn, but with
emphasis on the differential cross-sections and by utilizing
the tools provided by chiral perturbation theory (ChPT).
Specifically, we show that one can extract the value of ann

reliably by fitting the shape of a properly chosen momen-
tum spectrum. In this case the main source of inaccuracies,

1 Note, that, in contrast to app, ann is not corrected for elec-
tromagnetic effects. However, since those are only of the or-
der of 0.3 fm [1] they are not relevant for the sign of ∆a. But
they ought to be taken into account for determining charge
symmetry-breaking effects quantitatively.
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caused by uncertainties in the single-nucleon photopro-
duction multipole E0+, is largely suppressed. Furthermore
there is a suppression of the quasi-free pion production at
specific angles. We show that at these angular configu-
rations the extraction of ann can be done with minimal
theoretical uncertainty.

Our investigation is based on the recent work of
ref. [14] in which the transition operator for the reaction
γd → π+nn was calculated up to order χ5/2 in ChPT with
χ = mπ/MN ≃ 1/7, where mπ (MN ) is the pion (nucleon)
mass. Half-integer powers of χ in the expansion arise from
the unitarity (two- and three-body) cuts (see also [15]).
The results of ref. [14] for the total cross-section are in very
good agreement with the experimental data. The only in-
put parameter that entered the calculation was the leading
single-nucleon photoproduction multipole E0+, which was
fixed from a fourth-order one-loop calculation of Bernard
et al. [16]. The uncertainty in E0+ is the main theoretical
error in the calculation presented in ref. [14]. Besides this
transition operator, in the present study we use nucleon-
nucleon (NN) wave functions constructed likewise in the
framework of ChPT, namely those of the NNLO interac-
tion of ref. [17]. This allows us to estimate the theoreti-
cal uncertainty which arises from variations in the wave
functions. In fact, as soon as we include consistently all
terms up to order χ5/2, we expect the ambiguities due to
different wave functions not to be larger than a χ3 correc-
tion, for only at this order the leading counter term which
absorbs these effects enters. This expectation is indeed
quantitatively confirmed in the concrete calculations.

If one works within chiral perturbation theory it is
possible to estimate the effect of higher orders in terms of
established expansion parameters together with the stan-
dard assumption that additional short-ranged operators,
that enter at higher orders, behave in accordance with the
power counting (the so-called naturalness assumption).
This method was applied in refs. [18,19], where the re-
action π−d → γnn was investigated as a tool to extract
ann. In these works a careful estimate of the operators
that contribute at N3LO revealed that the theoretical un-
certainty can be as low as 0.05 fm. However, in the present
study we use a somewhat different approach to examine
reliably the theoretical uncertainty for the extraction of
ann from the γd reaction: we employ our leading-order
calculation as a baseline result and quantify the theoreti-
cal uncertainty directly from the effects of the higher or-
ders that we calculated completely. We do not rely on
an asserted value of the expansion parameter to examine
possible higher-order corrections but only need to assume
that the series converges. Based on our analysis, we find a
theoretical uncertainty δann . 0.1 fm. We therefore argue
that the reaction γd → π+nn appears to be a good tool
for the extraction of ann.

It is worthwhile to point out that the leading-order
(LO) result coincides with a result derived by Laget al-
ready many years ago, in the pre-ChPT days [12]. How-
ever, as will be shown below, the LO calculation agrees
with the full result for very special kinematics only. To
identify this kinematics as well as to estimate reliably the

γ π

n

nd

+
q k

p

p−q 2

1

πγ

γ
Fig. 1. Kinematical variables for γd → π+nn. The relative
neutron-neutron momentum is defined as pr = 1

2
(p1 − p2).

theoretical uncertainty, the evaluation of the chiral correc-
tions is mandatory.

To end this section, we remark that in ref. [20] a
method was proposed to extract scattering lengths from
γd-induced meson-production reactions. However, that
approach should not be used for the reaction investigated
here, since the momentum transfer is not sufficiently large
for guaranteeing the applicability of this method. Besides
that, since in the present case an explicit calculation of the
transition operator is feasible we can reach a significantly
higher accuracy via a direct computation.

2 ChPT calculation for γd → π
+nn

The kinematical variables are defined in fig. 1. The di-
agrams that contribute to the reaction γd → π+nn are
shown in fig. 2.

Before going into the details some comments are nec-
essary regarding the relevant scales of the problem. In the
near-threshold regime of interest here (excess energies of
at most 20MeV above the pion production threshold) the
outgoing pion momenta are small compared even to the
pion mass. Thus, in addition to the conventional expan-
sion parameters of ChPT mπ/Λχ and qγ/Λχ, where Λχ de-
notes the chiral symmetry-breaking scale of order of (and
often identified with) the nucleon mass, and qγ denotes the
photon momentum in the center-of-mass system which is
of order of the pion mass, we can also regard kπ/mπ as
small, where kπ denotes the momentum of the outgoing
pion. In what follows we will perform an expansion in two
parameters, namely:

χm = mπ/MN and χQ = kπ/mπ.

Obviously, the value of the second parameter depends on
the excess energy Q. The energy regime of interest to us
corresponds to excess energies up to 20MeV. The maxi-
mum value of χQ, χmax

Q =
√

2Q/mπ, at the highest en-

ergy considered is thus about 1/2. Since this is numerically
close to

√
χm we use the following assignment for the ex-

pansion parameter:

χ ∼ χm ∼ χ2
Q. (2)
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(d2)(b2)

(b1) (c1) (d1)

(c2)

(a1)

(a2)

Fig. 2. Typical diagrams for γd → π+nn included in the calculation. Shown are one-body terms (diagram (a) and (b)), as well
as the corresponding rescattering contribution (c) —all without and with final-state interaction. Diagrams (d) shows the class
of diagrams with intermediate NN interaction. Solid, wavy, and dashed lines denote nucleons, photons and pions, in order.
Filled squares and ellipses stand for the various vertices (see ref. [14] for the details), the hatched area shows the deuteron wave
function and the filled circle denotes the nn scattering amplitude. Crossed terms (where the external lines are interchanged)
are not shown explicitly.

The tree level γp → π+n vertex, as it appears in dia-
grams (a1) and (a2) in fig. 2 (the vertex is labeled as filled
square), contributes at leading order (order χ0), and or-
ders χ1 and χ2, depending on the one-body operator used.
Note that the loop diagrams with πN rescattering (see di-
agrams (b), (c) and (d) in fig. 2) contribute at order χ2

m

as well as at χ2
mχQ, χ

5/2
m and at χ

1/2
m χ4

Q. The origin of

the non-integer power of χ are the two-body (πN) and
three-body (πNN) singularities. Thus, all terms up to
χ5/2 are explicitly taken into account in our calculation
of the transition operator.

As already emphasized, we employ wave functions
evaluated in the same framework in order to have a fully
consistent calculation. In our work, we use the N2LO
wave functions corresponding to the chiral NN forces in-
troduced in ref. [21] and based on the spectral function
regularization (SFR) scheme [22]. At this order, the NN
force receives contributions from one-pion exchange, two-
pion exchange at the subleading order as well as from all
possible short-range contact interactions with up to two
derivatives. In addition, the dominant isospin-breaking
correction due to the charged-to-neutral pion mass dif-
ference in the one-pion exchange potential together with
the two leading isospin-breaking S-wave contact interac-
tions were taken into account [21]. The two corresponding
low-energy constants were adjusted to reproduce the scat-
tering lengths ann and app. The SFR cutoff Λ̃ is varied in
the range 500, . . . , 700MeV. It was argued in ref. [22] that

such a choice for Λ̃ provides a natural separation of the
long- and short-range parts of the nuclear force and allows
to improve the convergence of the chiral expansion [22].
The cutoff Λ in the Lippmann-Schwinger equation is var-
ied in the range 450, . . . , 600MeV. For an extensive dis-
cussion on the choice of Λ and Λ̃ the reader is referred
to [17,21].

3 Differential cross-sections: relevant features

In this section we outline the features of the differential
cross-section for unpolarized particles that are important
for our considerations. Let us consider the five-fold differ-
ential cross-section

d5σ(pr, θr, φr, θπ, φπ)

dΩpr
dΩkπ

dp2
r

∝prkπ(pr)|M(pr, θr, φr, θπ, φπ)|2,
(3)

where pr (kπ) stands for the relative momentum of the
two final neutrons (momentum of the final pion) in the
center-of-mass frame, θr, φr (θπ, φπ) for the correspond-

ing polar and azimuthal angles, respectively, and |M|2 for
the squared and averaged amplitude. The value of kπ at
given pr and excess energy Q is fixed by energy conserva-
tion:

Q =
p2

r

MN
+

k2
π

4MN
+

k2
π

2mπ
, (4)

hence we write kπ(pr) in eq. (3).
In the following we choose the momentum qγ of the ini-

tial photon to be along the z-axis. Then the cross-sections
at a certain excess energy Q depend on four variables,
namely the magnitude of the relative momentum of the
two final neutrons pr, the polar angles of the vectors pr

and kπ, and the difference between the azimuthal angles of
those two momenta. Unpolarized cross-sections are invari-
ant under rotations around the beam axis, which makes
the dependence on the missing angle trivial.

Typical differential cross-sections are shown in fig. 3 as
a function of pr at some fixed set of angles {φr, θπ, φπ} and
Q = 4.65MeV for two different values of θr. (The excess
energy Q = 4.65MeV corresponds to a photon laboratory
energy above threshold of ∆Eγ = 5MeV.) One can see
from this figure that for the differential cross-section of
eq. (3) there are two characteristic regions:
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Fig. 3. Differential cross-section for γd → π+nn at Q =
4.65 MeV (∆Eγ = 5MeV) as a function of the relative mo-
mentum between the two neutrons, pr. Upper panel: the solid
line corresponds to θr = 90◦, a configuration where the quasi-
free peak is suppressed, whereas the dashed line corresponds
to one of the configurations when the quasi-free production
amplitude is maximal (θr = 0◦). The values of the remaining
angles are θπ = 135◦, φr = φπ = 0◦ for both curves. Lower
panel: the dashed curves correspond to the calculation at LO,
the solid ones to the calculation at χ5/2. Curves denoted by
“FSI” (“QF”) are obtained by retaining only those diagrams
of fig. 2 that contain (do not contain) the final or the inter-
mediate nucleon-nucleon interaction. The labels “0 degrees”
and “90 degrees” denote the corresponding values of θr for the
“QF” curves whereas the “FSI” curves are almost insensitive
to this angle. The values or the remaining angles are as on the
upper panel of this figure.

1. The region of quasi-free production (QF) at large pr,
which corresponds to the dominance of those diagrams
of fig. 2 that do not contain the NN interaction in the
final or intermediate states. In the appendix we give
explicit expressions for the diagram (a1) —the most
significant diagram of this type. At large pr the pion
momentum kπ is small (see eq. (4)) and the arguments
of the deuteron wave function in eqs. (A.1) may be-
come small for particular combinations of ± pr and
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Fig. 4. Dependence of the differential cross-section on θπ. The
upper panel corresponds to the suppressed quasi-free ampli-
tude (θr = 90◦), the lower panel to the maximal quasi-free
amplitude (θr = 0◦). Solid, dashed, dotted, and dash-dotted
lines correspond to θπ = 0◦, 45◦, 90◦, 135◦, respectively. The
values of the remaining angles are φr = φπ = 0◦.

qγ/2. This feature gives rise to a peak in the differen-
tial cross-section at large pr.

2. The region with prominence of the strong nn final-
state interaction (FSI) at small pr (in fact, we would
have the strongest final-state interaction at zero rela-
tive momentum, however the cross-section goes to zero
at pr = 0 due to the phase space, therefore we see a
peak shape).

One can see from fig. 3 that the FSI peak depends on
the value of θr only marginally, whereas the quasi-free
peak shows significant dependence on this angle. In par-
ticular, the quasi-free production is largely suppressed at
θr = 90◦ —at this angle the arguments of the wave func-
tions in both terms in the r.h.s. of eqs. (A.1) are large. It
can also be seen from fig. 3 (lower panel) that the effect of
higher orders is more important for the quasi-free produc-
tion amplitude —the influence of higher-order effects on
the FSI production is quite small. Another interesting ob-
servation is that the contributions of higher orders change
the relative height of the two peaks —the FSI peak goes
up whereas the QF peak goes down when we proceed from
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the LO calculation to the order χ5/2. In order to suppress
the distortions of the spectrum due to higher orders in the
chiral expansion, which is the condition for an extraction
of ann with small theoretical uncertainty, configurations
should be chosen where θr = 90◦.

We now briefly discuss the dependence of the cross-
section on the remaining angles θπ, φπ (we always may
choose φr to be zero). The dependence on θπ is illustrated
in fig. 4. One can see from this figure that the dependence
on θπ is significant for both the quasi-free as well as the
FSI peak. This can be easily understood from the explicit
expressions for the matrix elements given in the appendix
keeping in mind that already at Q = 4.65MeV the maxi-
mal value of kπ is about mπ/3 while qγ ≈ mπ. Thus, the
momentum transfer to the nucleon pair, |qγ − kπ|, varies
in the range 2mπ/3 to 4mπ/3 depending on θπ. Since the
S-wave deuteron wave function is large only for very small
arguments, the influence of the direction of kπ is signifi-
cant. In addition, from fig. 4 it follows that a variation of
θπ not only changes the magnitude but also the shape of
the cross-section, even in the FSI region. This has to be
taken into account in the analysis of any experiment.

In contrast to the polar angles, the dependence of the
differential cross-section on φπ is negligible for all config-
urations (there is no dependence at all for θr = 0◦ and at
θr = 90◦, only the QF contribution —which is small in
any case— changes by just 5%).

4 Extraction of ann and estimate of the

theoretical uncertainty

In this section we discuss how to extract the scattering
length from future data on γd → π+nn as well as the
resulting theoretical uncertainty. Our focus is especially
the latter point. As in the previous section we will only
discuss results at excess energy Q = 4.65MeV. However,
the analysis can be repeated analogously at any excess
energy within the range of applicability of the formalism,
i.e. Q ≤ 20MeV.

We are interested in extracting the value of ann, which,
in turn, is a low-energy characteristic of nn scattering
and manifests itself in the momentum dependence of the
cross-section at small values of the momentum pr. For
convenience, we consider the function F proportional to
the square of the matrix element as well as the five-fold
differential cross-section

F (pr, θr, φr, θπ, φπ) = C pr kπ(pr)|M(pr, θr, φr, θπ, φπ)|2,
(5)

where C is an irrelevant dimensionful constant. In what
follows we will consider only shapes of cross-sections and
therefore the value of C is not important for our consid-
erations. The influence of the value of ann on the cross-
section is illustrated in fig. 5, where the cross-sections are
shown for three different values of ann, namely −18, −19,
−20 fm. For each value there are two curves, the dashed
one corresponds to θr = 0◦, and the solid one to θr = 90◦.
One can see from fig. 5 that the influence of different val-
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Fig. 5. The effect of varying the value of ann on the differen-
tial cross-section. The solid and dashed lines correspond to the
same angular configurations as in fig. 3, upper panel. The dif-
ferent values of ann are shown on the figure. The overall scale
is arbitrary but the relative normalization is the same for all
curves.
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Fig. 6. (Colour on-line) The light (white) band is the error
band, and dark (blue) band correspond to ±1 fm shift in the
scattering length from the central value −18.9 fm.

ues of ann is significant in the FSI peak and marginal in
the quasi-free peak, as one would have expected.

In the previous section we have shown (see lower panel
in fig. 3) that the relative height of the quasi-free and the
FSI peak changes if the effects of higher orders are in-
cluded in the cross-sections. Therefore those angular con-
figurations are to be preferred, where the quasi-free pro-
duction is suppressed.

The central point of this study is to demonstrate that
there is a large sensitivity of the momentum spectra to
the scattering length and that this scattering length can
be extracted with a small and controlled theoretical un-
certainty. As outlined in the introduction, we can estimate
this uncertainty reliably, because the effect of the higher
orders up to χ5/2 are calculated completely. In order to
demonstrate the effect of those higher orders on the shape
of the momentum distribution, in fig. 6 we show as the
light (white) band the spread in the results for the cal-
culation from LO to χ5/2. The results also include higher
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partial waves for the pion as well as the final nn system.
But since their effect is tiny we do not show them sepa-
rately.

There is some sensitivity to the behavior of the NN
wave functions at short distances. For the reaction π−d →
γnn this sensitivity was identified as important effect at
N3LO [18] even in case when only the FSI region was
considered2. (Cf. also the earlier systematic investigations
in refs. [23,24].) Guided by that observation, we include
in the uncertainty estimate also the spread in the results
due to the use of different wave functions. In order to
remove the effect of the change in normalization when,
e.g., changing the chiral order, all curves are normalized
at pnorm = 30MeV in fig. 6. In the same figure (with the
same normalization) we also show the change in the shape
that comes from different values of the scattering length:
the dark (blue) band is generated by a variation of ann by
±1 fm around the central value of −18.9 fm. Clearly, the
theoretical uncertainty is negligibly small compared to the
signal of interest.

One might ask if there are possible higher order ef-
fects not considered in this work that distort the picture
presented. E.g., it was argued recently that the ∆(1232)
can influence even the πd scattering length in a numer-
ically significant way [25]. In a theory without explicit
∆ those effects would translate into enhanced local oper-
ators. Other potentially large effects are investigated in
ref. [18]. However, as we demonstrate above, none of the
effects discussed so far distorted the quasifree or the FSI
structure individually. Only their relative importance was
changed. Since our favoured kinematics has only a very
small admixture of the quasi-free term, we are convinced
that our uncertainty estimate is indeed reliable.

One way to quantify the theoretical uncertainty is via
the use of the function S, defined as

S(ann, Φ) =

pmax
∫

0

dpr

(

F (pr|a(0)
nn , Φ(0))

−N(ann, Φ) F (pr|ann, Φ)
)2

w(pr), (6)

where pmax =
√

MNQ is the maximum value of pr, and
F (pr|ann, Φ) is proportional to the five-fold differential
cross-section as defined in eq. (5). In the latter we re-
frained from showing the angular dependence in favor of
the parametric dependence of the cross-section on the nn
scattering length ann as well as the multi-index Φ, which
symbolizes the dependence of the cross-section on the cho-
sen chiral order and the wave functions used, as outlined
above. The weight function w(pr) was introduced to allow
us to suppress particular regions of momenta in the anal-
ysis —the role of w(pr) will be discussed in detail below.

2 Within the framework of ChPT with a consistent power-
counting scheme, the quantitative impact of the wave function
dependence is governed by the order at which a counter term
appears that can absorb this model dependence. The corre-
sponding counter term for the γd as well as the πd reaction
arises at N3LO.

For simplicity we may assume that S is dimensionless; all
dimensions can be absorbed into the constant C defined
in eq. (5).

The value a
(0)
nn denotes the central value of the scatter-

ing length (−18.9 fm) for which we perform the estimate
of the theoretical uncertainty3 whereas Φ(0) corresponds
to the baseline type of calculation, namely leading order
with chiral wave functions as specified in the appendix.
The relative normalization N(ann, Φ) is fixed by demand-
ing that S gets minimized for any given pair of parameters
ann, Φ (∂S/∂N = 0). This gives

N(ann, Φ) =

pmax
∫

0

dpr F (pr|a(0)
nn , Φ(0))F (pr|ann, Φ)w(pr)

pmax
∫

0

dpr F 2(pr|ann, Φ)w(pr)

.

(7)
Obviously S is the continuum version of the standard χ2

sum, i.e. it characterizes the mean-square deviation from

the baseline cross-section F (pr|a(0)
nn , Φ(0)). In this way we

determine the theoretical uncertainty in full analogy to
the standard method of data analysis.

In order to quantify the theoretical uncertainty we may
define Φmax as that chiral order and choice of wave func-

tion, where S(a
(0)
nn , Φmax) gets maximal:

S(a(0)
nn , Φmax) = max

Φ

{

S(a(0)
nn , Φ)

}

. (8)

Therefore S(a
(0)
nn , Φmax) provides an integral measure of

the theoretical uncertainty of the differential cross-section.
Demanding that the effect of a change in the scattering
length by the amount ∆ann matches that by the inclusion
of higher orders etc., we can identify ∆ann as an uncer-
tainty in the scattering length. Expressed in terms of S,
we may define ∆ann via

S(a(0)
nn + ∆ann, Φ(0)) = S(a(0)

nn , Φmax). (9)

This relation is illustrated in fig. 7. The dashed horizontal

line corresponds to S(a
(0)
nn , Φmax), where we use w(pr) =

1. The dashed parabolic line shows the corresponding

S(a
(0)
nn + ∆ann, Φ(0)) as a function of ∆ann. The calcu-

lation is performed for θr = 90◦, and θπ = 0◦. The cross-
ing point of the curves corresponds to ∆ann = 0.16 fm,
which can be identified as the theoretical uncertainty for
the extraction of the scattering length.

In the previous section we showed that the signal re-
gion is located at momenta lower than 30MeV. On the
other hand, the theoretical uncertainty of the differential
cross-section is largest for large values of pr due to the on-
set of the quasi-free contribution. In view of these two facts
it seems reasonable to use such weight functions w(pr)
that suppress the contribution of large momenta. For in-
stance, we may use w(pr) = Θ(pcut − pr) for the weight

3 Note that the theoretical uncertainty practically does not
change when the central value of the scattering length varies
in the relevant interval ±1 fm.



V. Lensky et al.: Neutron-neutron scattering length from the reaction γd → π+nn 345

-0.2 -0.1 0 0.1 0.2
∆ann [fm]

0

0.5

1

1.5

S
  [

a.
u.

]

Fig. 7. The functions S(a
(0)
nn, Φmax) and S(a

(0)
nn + ∆ann, Φ(0))

are shown by the horizontal and parabolic curves, respectively.
The solid curves are obtained by adding the weight factor in
eq. (6) that cuts all momenta above 30 MeV in distinction from
the dashed ones. The calculation is performed for the scattering

length a
(0)
nn = −18.9 fm, θr = 90◦, and θπ = 0◦. The value of

∆ann corresponding to the crossing point of the horizontal and
parabolic curves determines the theoretical uncertainty of the
calculation.

function. If we choose, e.g., pcut = 30MeV the theoreti-
cal uncertainty of the extraction of the scattering length
reduces to 0.07 fm, as is demonstrated by the solid lines
in fig. 7. This figure nicely illustrates that the parabolic
curve that represents the signal changes only very little
when a restriction to small values of pr is applied. At the
same time this procedure significantly reduces the value

of the uncertainty S(a
(0)
nn , Φmax).

The observation that the dependence of the function

S(a
(0)
nn + ∆ann, Φ(0)) on ∆ann is very well approximated

by a parabola allows for a more systematic study of the
pcut-dependence of the theoretical uncertainty. We there-
fore define

α(pcut) =
S(a

(0)
nn + ∆ann, Φ(0)|pcut)

(∆ann)2
, (10)

where the explicit pcut-dependence is introduced into the
function S through the weight function w as explained
above. The dashed and the solid parabola in fig. 7 can then
be written as α(pcut) (∆ann)2, with α(pmax) = 41 fm−2

and α(30MeV) = 33 fm−2. In the upper panel of fig. 8 we
show α(pcut) as the solid line. In the same panel the dashed
line represents the measure of the theoretical uncertainty

given by S(a
(0)
nn , Φmax|pcut), multiplied by a factor of 40.

This figure makes more quantitative the statement made
above: for very small values of pcut we cut into the sig-
nal region and therefore α shows a very rapid variation.
However, as soon as pcut is larger than 30MeV it goes to
a plateau (in the figure indicated by the arrow). On the
other hand, the theoretical uncertainty is monotonically
growing once pcut is larger than 30MeV. From this figure
we deduce that the ideal value for pcut is between 25 and

0 10 20 30 40 50 60 70
p

cut
 [MeV]

0

10

20
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50

0 10 20 30 40 50 60 70
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∆a
nn

  [fm
]

Fig. 8. Upper panel: comparison of the pcut-dependence of

functions S(a
(0)
nn, Φmax|p

cut) (dashed curve) and α(pcut) (solid
curve). The calculation is performed for the scattering length

a
(0)
nn = −18.9 fm, θr = 90◦, and θπ = 0◦. Lower panel: the cor-

responding theoretical uncertainty ∆ann as a function of pcut.

40MeV. This translates into a theoretical uncertainty be-
tween 0.05 and 0.1 fm, as illustrated in the lower panel of
the same figure. The value of θπ also has some impact on
the theoretical uncertainty, however, in its whole parame-
ter range the estimated uncertainty stays below 0.1 fm for
pcut = 30MeV.

Clearly, also the experimental data, once they exist,
should be analyzed using a procedure analogous to the
one given above. This means that the scattering length is
to be extracted from a χ2 fit of the theoretical curves to
the data. In this work we used the calculation at LO as
baseline result and the results at higher orders to estimate
the theoretical uncertainty. Consequently, we propose to
use the momentum spectrum calculated at LO in the fit-
ting procedure of the experiment. The corresponding an-
alytical expressions are given in the appendix, where only
terms that contain the NN final-state interaction in the
S-wave are retained. A priori there is no reason to neglect
NN P -waves. However, we have shown in ref. [14] that the
net effect of the contributions in question is very small
and, therefore, we also omit them in eq. (A.1). The only
parameter to be adjusted, besides the scattering length,
is the overall normalization. In this fitting procedure only
those data points should be included that are below a
given pcut, in order to keep the theoretical uncertainty
small.
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5 Conclusions

In the present paper we investigated the possibility to
extract the neutron-neutron scattering length ann from
experimental spectra on the reaction γd → π+nn. The
transition operator was calculated to high accuracy from
chiral perturbation theory. It turned out that this reaction
is indeed very well suited for a determination of the nn
scattering length. Specifically, we found that for a proper
choice of kinematics the theoretical uncertainty for the ex-
traction of the nn scattering length from γd → π+nn can
be as low as 0.1 fm. Thus, it is of the same order as that
claimed for π−d → γnn [19] and nd → pnn [4,7].

It should be stressed, however, that this error was eval-
uated most conservatively —we use our LO calculation as
baseline result and estimate the theoretical uncertainty
from the effects of the higher orders that we calculated
completely. This error can be significantly reduced by fur-
ther studies. For example, if we include in the uncertainty
estimate only the spread in the results due to the use of
different wave functions, the theoretical uncertainty of the
extracted scattering length reduces by one order of mag-
nitude, in agreement with the results at N3LO for the
reaction π−d → γnn [18] when only the FSI region is con-
sidered. This indicates that the theoretical uncertainty is
indeed under control. However, to put this N3LO estima-
tion on more solid ground a complete calculation should
be performed to this order. Most of the operators that are
relevant at this order are the same as those of π−d → γnn,
given explicitly in ref. [26]. A counter term that enters at
this order can be fixed from other processes [19], e.g., from
nd scattering [27], the reaction NN → NNπ [28], or from
weak decays [19]. Once this is done we may use our cal-
culation to order χ5/2 as baseline result and estimate the
theoretical uncertainty from the then available N3LO cal-
culation.

Our results show that for those angular configurations
that suppress the quasi-free production the inclusion of
higher-order effects (NLO, N2LO, and χ5/2) as well as
the use of different wave functions leads only to a mi-
nor change in the momentum dependence of the five-fold
differential cross-sections. Based on this observation we
propose to use the momentum spectrum calculated at LO
for the extraction of the neutron-neutron scattering length
from the data. This procedure has the advantage that the
corresponding matrix elements can be given in an ana-
lytic form (see appendix) that could be used directly in
the Monte Carlo codes for the experimental analysis. In
this way the non-trivial dependence of the spectra on θπ,
discussed in the paper, can be easily controlled. The scat-
tering length can then be extracted by a two-parameter
fit to the data where, simultaneously to a variation in ann,
the normalization constant needs to be adjusted.

Although we identified the angles θr = 90◦ as the pre-
ferred kinematics, also other configurations could be stud-
ied in order to control the systematics. However, then the
spectra calculated at χ5/2 should be used in the analysis.

We examined the theoretical uncertainty in detail for
a fixed excess energy of Q = 4.65MeV (∆Eγ = 5MeV).
only. However, it should be clear that the procedure can

be easily repeated for any energy within the range of ap-
plicability of our approach (Q ≤ 20MeV). For example,
we checked that the theoretical uncertainty stays below
0.1 fm also at Q = 9.3MeV (∆Eγ = 10MeV). Note that
the number of events in the signal region scales roughly
with

√
Q, the phase space available for the pion. It remains

to be seen from future experiments on γd → π+nn which
energy is the best. Such experiments could be performed
at the HIγS@TUNL facility after the planned upgrade [29]
but also at MAX-lab in Lund, Sweden.
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Appendix A. Leading amplitudes

In this appendix we give explicit expressions for the am-
plitudes that appear at leading order in the calculation
for γd → π+nn. As outlined in the main text these ex-
pressions can be used directly in the analysis of the data,
once available. In addition, they should also prove useful
for the design of the experiment. Note, as outlined in the
text, only near θr = 90◦ the leading-order calculation gives
a sufficiently accurate representation of the spectra. At all
other angles one should use the complete calculation.

At leading order only diagrams (a1) and (a2) of fig. 2
contribute. Since only the momentum dependence of the
amplitudes is relevant for the experimental analysis we
drop an overall factor compared to ref. [14]. The corre-
sponding amplitudes read

Ms
(a1) = (u(pr−kπ/2 + qγ/2) + u(−pr−kπ/2 + qγ/2)) ,

M t
(a1) = (u(pr−kπ/2 + qγ/2) − u(−pr−kπ/2 + qγ/2)) ,

M(a2) = 8π
fon(pr)

g(pr)

∫

d3 p

(2π)3
u(p − kπ/2 + qγ/2) g(p)

p2 − p2
r − i0

=
fon(pr)

iqπγ g(pr)

∑

ij

CiDj

p2
r + β2

j

× ln

(

αi − ipr + iqπγ

αi − ipr − iqπγ
· αi + βj − iqπγ

αi + βj + iqπγ

)

(A.1)

where u(p) denotes the S-wave part of the deuteron wave
function in momentum space. We checked by explicit
calculations that the inclusion of the deuteron D-wave
changes only the absolute scale of the differential cross-
sections but not its momentum dependence. Thus, the
D-wave contribution is not taken into account in the
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Table 1. Parameters of the 1S0 form factor and the S-wave
deuteron wave function for the separable representation of the
N2LO chiral NN potential.

1S0 form factor S-wave deuteron w.f.

βi [MeV] Di [MeV] αi [MeV] Ci [MeV1/2]

1 164.53278 31.101228 45.334919 43.543212

2 246.85751 −1310.3056 242.66091 −35.643003

3 329.18224 9455.9603 439.98691 419.25214

4 411.50697 −9666.0268 637.31291 −1833.4708

5 493.83170 −55571.615 834.63891 −3710.8173

6 576.15643 64600.071 1031.9649 24903.150

7 658.48116 149128.85 1229.2909 −31673.576

8 740.80589 −84844.967 1426.6169 26476.636

9 823.13062 −295594.17 1623.9429 −118733.48

10 905.45536 −30332.710 1821.2689 259759.15

11 987.78009 560829.89 2018.5949 −223816.07

12 1070.1048 −307006.25 2215.9209 −
P11

i=1 Ci

parameterization. The quantity qπγ is defined as qπγ =
|kπ − qγ |/2. The labels s and t stand for spin singlet and
triplet final two-nucleon states, respectively —we do not
write out the corresponding spin structures. In the ana-
lytic expression for M(a2) in eq. (A.1) we have taken into

account only the 1S0 partial wave in the final-state in-
teraction. However, in the actual calculations nn P -waves
are included as mentioned in the text. For a discussion of
the effect of nn P -waves see also ref. [14].

To derive the expression for M(a2) we used the fact
that the neutron-neutron scattering amplitude can be rep-
resented to high accuracy in separable form [14,30]. The
neutron-neutron scattering amplitude, f(p, k;E), can be
written in half off-shell kinematics as

f(p, k; k2/MN )=
2π2MNg(p)g(k)

1 − MN

∫

d3q g2(q)
q2

−k2
−i0

= fon(k)
g(p)

g(k)
,

(A.2)

where the corresponding on-shell amplitude fon(k) can
then be expressed in terms of the scattering phase-shifts
through

fon(k) = f(k, k; k2/MN ) =
1

k cot δ(k) − ik
.

For small momenta one can use the effective range expan-
sion for k cot δ = −1/ann +rnnk2/2+O(k4), in agreement
with eq. (1). Here ann is the parameter to be fitted to the
data and rnn = 2.76 fm. We checked that changing the
value of rnn within the bounds allowed (±0.1 fm [1]) leads
to negligible effects on the extraction of the scattering
length. In this way we expressed the matrix element ex-
plicitly in terms of the scattering length. We checked that
the ratio g(p)/g(k) in eq. (A.2) does not change when we
vary the scattering length within acceptable range bounds.

In order to evaluate the convolution of the deuteron
wave function with the nn final-state interaction analyt-
ically, we needed to employ the following parameteriza-
tions for the 1S0 nn form factor g(p) (see eq. (A.2)) and
the S-wave deuteron wave function:

g(p) =
∑

i

Di

p2 + β2
i

, u(p) =
∑

i

Ci

p2 + α2
i

, (A.3)

where the parameters corresponding to the ChPT calcula-
tion at N2LO with cut-offs {Λ, Λ̃} = {550MeV, 600MeV}
(see ref. [21] for details) are listed in table 1. Note that the
coefficients in the parameterization of the wave function
have to fulfill the relation

∑

Ci = 0 in order to ensure the
regularity of the deuteron wave function at the origin in
coordinate space [31].

The squared and averaged amplitude to be used in
the expression for the differential cross-section, defined in
eq. (5) is

|M(pr, θr, φr, θπ, φπ)fit|2 =
∣

∣

∣
Ms

(a1) + M(a2)

∣

∣

∣

2

+ 2
∣

∣

∣
M t

(a1)

∣

∣

∣

2

.

(A.4)
In a fit to data two parameters are to be adjusted,

namely the overall normalization C of eq. (5) and the ob-
ject of desire, ann.
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