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Abstract 

Using a recently developed effective field theory for the interactions of nucleons at non- 
relativistic energies, we calculate the rate for the fusion process p + p -+ d + e + + Pe to 
leading order in the momentum expansion. Coulomb effects are included non-perturbatively in a 
systematic way. The resulting rate is independent of specific models for the strong interactions at 
short distances and is in agreement with the standard result in the zero-range approximation. @ 
1999 Elsevier Science B.V. All rights reserved. 

The first step in the different nuclear processes in the Sun which generate the observed 

luminosity is pro ton-proton  fusion p + p ~ d + e + + Pe [ 1 ]. It was explained more 

than sixty years ago by Bethe and Critchfield [2] when nuclear physics was still in 

its infancy. When the field had more matured, it was reconsidered in the light of  

more modern developments  by Salpeter [3] and later by Bahcall and May [4] .  But 

in spite of  the enormous progress in nuclear physics during this time, the methods 

and approximations made in these different calculations were essentially the same. The 

obtained accuracy in the obtained fusion rate was just a few percent. Including higher 

order electromagnetic  and strong corrections the uncertainty in the rate is now around 

one percent [5,6] .  This is very impressive as for a strongly interacting process at low 

energies very ordinary perturbation theory cannot be used. 

In the light of  the importance this fundamental process plays in connection with the 

solar neutrino problem and possible neutrino oscillations [ 1 ], it is natural to reconsider 

this process from the point of  view of  modern quantum field theory instead of  the old 

potential models  used previously. A first attempt in this direction was made by Ivanov et 

al. [ 7 ]. They obtained then a result which was significantly different from the standard 
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result based upon potential models. Subsequently it was pointed out by Bahcall and 
Kamionowski [ 8] that their effective nuclear interaction was not consistent with what 
is known about proton-proton scattering at low energies where Coulomb effects are 

important. 
The approach of Ivanov et al. [7] is based upon relativistic field theory which is 

not very suitable for the description of a low-energy process such as proton-proton 

fusion in the Sun. All the large-momentum degrees of freedom correspond to physics at 

short distance scales which are not relevant for this process. When they are integrated 
out, one is left with a non-relativistic effective theory where they are absorbed into 
non-renormalizable interactions. The corresponding coupling constants must then be 
determined from experiments at low energies. In such a non-relativistic theory the 
important Coulomb effects can also systematically be included. 

A step in this direction has recently been taken by Park et al. using chiral pertur- 

bation theory in the low-energy limit [9]. They obtain results in good agreement with 

previous potential calculations by using Weinberg's power counting and phenomenolog- 

ical nucleon wavefunctions which fit low-energy scattering data very well. A different 

approach to the same problem with consistent power counting has recently been for- 

mulated by Kaplan, Savage and Wise in terms of an effective theory for non-relativistic 
nucleons [ 10]. It involves a few basic coupling constants which have been determined 
from nucleon scattering data at low energies. With no more free parameters it can then 
be used to make predictions for the deuteron form factor and quadrupole moment [ 11 ], 
deuteron polarizabilities and Compton scattering on deuterons [ 12]. The obtained results 
are in good agreement with experimental data. In this approach higher order corrections 
can also be derived in a systematic way. Going to higher energies, the effects of pions 
must be included using the established counting rules. These will cause the well-known 

D-mixture into the deuteron wavefunction. 

Most recently, proton-neutron fusion p + n --, d ÷ y has been calculated in this theory 
by Savage, Scaldeferri and Wise [ 13 ] including the effects of virtual pions. When the 

process is taking place at very low energies, one can omit the effects of pions and replace 
them by slightly different couplings of the nucleons alone. From a field-theoretic point 
of view this process is very similar to p ÷ p --+ d ÷ e + ÷ re. The main difference 
is the strong Coulomb effects which is present in the proton-proton channel. These 
have now been calculated and shown to give both a scattering length and an effective 
range for pp low-energy scattering in agreement with data [ 15]. Based upon these 
results, we will here derive the rate for the corresponding pp fusion reaction. This same 
process is also being considered by Savage and Wise [ 14]. At this stage we are only 
interested in the dominant contributions to the fusion rate in order to provide a rough 
comparison with results based upon potential models. This corresponds to the zero- 
range approximation in the potential model approach. In light of previous applications, 
we expect the resulting accuracy to be around 20% or better in the resulting rate. In this 
leading order approximation we ignore effective-range corrections, D-wave admixture, 
vacuum polarization, two-body current interactions and unknown counterterms. 

The strong interactions among the nucleons are now described by the effective La- 
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grangian of Kaplan, Savage and Wise [ 10]. Denoting the nucleon field of mass M by 

N ( x )  and including only the lowest order interaction term in the S-channel, it can be 

written as 

~ . = N  t a t + ~  N - C o ( N T I I N ) . ( N T I I N )  ~, (1) 

where the Hi are projection operators into specific spin and isospin states. More specif- 
ically, for spin-singlet interactions Hi = O'2T2Ti/V/8 while for spin-triplet interactions 
Hi = O'20"iTz/V/8.  Calculating now the scattering amplitude for two nucleons, one finds 

that the coupling constant Co is determined by the scattering length aNN in this chan- 
nel [ 10]. 

For neutron-proton interactions in the spin-triplet channel there is a pole in the 
corresponding Green function corresponding to the deuteron. The residue of the pole 

gives the bound state wavefunction. With only the lowest order contact interaction in 
( 1 ) it is found to be of the form 

8v/-8v/8~ (2) 
,t/.t d ( k )  - k2 + ,~2 

in momentum space. This corresponds to the standard Yukawa form in coordinate space 

where 1/y  represents the size of the deuteron. It determines the value of the correspond- 
ing coupling constant Co in this channel [ 11]. 

In the absence of strong interactions, the incoming proton-proton state with center- 
of-mass momentum p is given by the Coulomb wavefunction [ 16] 

OO 
1 

~p( r )  = - Z ( 2 e  + 1)i g ei~CFg(p)Pe(cos(O) . (3) 
P g=0 

Here p = pr  and o-~ = argF(  1 + g + it/) is the Coulomb phaseshift where the parameter 
r 1 = o~M/2p characterizes the strength of the Coulomb interaction. At low energies 
only the S-wave will contribute. It is given in terms of the confluent hypergeometric or 
Kummer function M ( a, b; z )  as 

Fo(p)  = C~p e - iPM(  1 - irl, 2; 2ip) , (4) 

where the normalization factor Cn = e -~ /21F( l  + it/)I. The probability I~pj,(0)12 to find 
the two protons at the same point is thus equal to the Sommerfeld factor [17] 

2 _ 2rrr/ 
C~7 e 27"~ ~ 1 (5) 

At very low energies when r/ gets large it becomes exponentially small and is the 
dominant effect in the fusion reaction. 

The available energy in the process is set by the neutron-proton mass difference and 
the deuteron binding energy B = 2.225 MeV. It corresponds to a momentum 3' = BY/-B-~ 
of the bound nucleons equal to 45.71 MeV. The temperature in the core of the Sun is 
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Fig. 1. Feynman diagrams which contribute in leading order to proton-proton fusion. The solid lines are 
nucleons and the wiggly line represents the weak current. Between the protons there are exchanged Coulomb 
photons represented by the shaded blobs while the crossed circles represents the deuteron wavefunctions. 

approximately 15 x 106 K which corresponds to an average proton momentum around 

p = !.5 MeV. The kinetic energy of the lepton pair will therefore be much smaller 

than 9' and it is a very good approximation to just ignore it. In the following the weak 
current is therefore assumed to carry zero momentum and the evaluation of  the different 
Feynman diagrams will much simplify. 

To lowest order in the strong interaction between the protons, the transition matrix 

Tfi is given by the first diagram in Fig. 1. After being hit by the weak current, the 
proton-proton system is transformed into a bound deuteron. The value of the diagram 
is thus seen to be 

8V/8v/~f  (2"rr) 3d3k k 2 1 A ( p )  = + yz~kp(k) , (6) 

where ~pp(k) is the Fourier transformed wavefunction of the incoming proton-proton 
scattering state. To first order in the four-proton l Sl coupling Co we have the diagram 

in Fig. lb. Within the loop the protons move in the Coulomb field of  each other. This 

motion is described by the standard Coulomb propagator Gc ( E) = 1 / ( E -  Ho - Vc + ie ) 
where H0 is the free, non-relativistic Hamiltonian and Vc is the Coulomb potential. In 

momentum space it takes the form 

d3 q Oq(k )Oq(k ' )  
G c ( E ; k , k ' ) = M  (2¢r)3 p 2 _ q Z  + i e  , (7)  

when expressed in terms of the Coulomb wavefunctions for the center-of-mass energy 
E = p2 /M.  As illustrated in Fig. 2 it includes the free propagator plus the effects of  one, 
two and more exchanged static photons. In this way we find for the diagram in Fig. lb  
the value CoB(p)  where 

d3k d3U 1 
B ( p )  = 8V/8V/~ (277.) 3 ( 2 ~ )  3 k2+y-----------~Gc(E;k,k') (8) 
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Fig. 2. The full Coulomb propagator is formed from the infinite sum of exchanged static photons. 

is a convergent integral. 
The protons can suffer another rescattering as in Fig. lc before they are converted 

to a deuteron by the weak interaction. Denoting this extra bubble in the diagram by 
Jo(p),  the full diagram is then just CoJo times the previous diagram. The magnitude 
of the bubble equals the probability amplitude for the two protons to propagate from 
zero spatial separation back to zero separation, i.e. Jo(P) = Gc(E;O,O). In terms of 
the representation (7) of the Coulomb propagator, it is given by the integral 

f d3q 2~-r/(q) 1 
Jo(P) = M (27r) 3 e 2~rn(q-----S~ 1 p2 _ q2 + ia ' (9) 

which has an ultraviolet divergence. After regularization, it will give a renormalization 
of the coupling constant Co. 

We can now continue to add in more such rescattering diagrams in Fig. lc. They 

form a geometric series which sums up to Co/( 1 - CoJo). All the diagrams including 
the first then gives for the hadronic part of the full transition amplitude, 

Tfi(p)  = A (p )  + B ( p )  
C0 

1 - C o J o ( p )  ~v(°) '  (1o) 

where the last factor ~j,(O) = C~ e ia° gives the amplitude for the two incoming protons 
to meet at the first vertex. It can be written in a more compact and recognizable form 
by introducing the proton-proton scattering state, 

I+v) = 1 + GcVo)" I~bv), 
n=] 

(11) 

where the strong interaction potential (p Iv01 q) = Co is included to all orders in addition 
to the Coulomb interaction. Then we see that the matrix element (10) is just the overlap 
integral between this wavefunction and the deuteron wavefunction (2), 

f d3 k Tfi(p)  = ~ g , ,~(k)+v(k) ,  (12) 

as follows from the expressions in (6) and (8). This form of the transition matrix 
element was written down first by Bethe and Chritchfield [2] and used subsequently by 
everyone considering the process in potential models. 

We can now evaluate the different parts of the transition matrix element (10). The 
first part (6) is most easily found in coordinate space where we have the Coulomb 
wavefunction (4).  It gives 



426 X. Kong, F. Ravndal/Nuclear Physics A 656 (1999) 421-429 

O 0  

= 8v/~C~7 e i°-° / dr r e-~r+ip)rM( 1 - ir I, 2; A(p) 2ipr) 
o 

8v/g-~ C~ e i'~° ( 
- ( y + i p ) 2  2F, \ 1 -  ir/, 2; 2; 2.t~'P. "]. (13) 

y + t p /  

Now the hypergeometric function 2Fl ( a ,  b, b; Z ) = (1 - z  )-~' so that the final result can 
be written as 

A(p) = C n e i~'° 8v/-ff-~ e 2zvarctan(p/7) (14) 
p2 + 3/2 

In the expression (8) for B(p) we notice that the integral over k / gives the complex 
conjugate value of the Coulomb wavefunction at the origin. It therefore takes the form 

/ d3k f d3q 8v/g- ~ ~ q ( k ) _ ~ q ( O )  
B(p) = M ~ (277") 3 k 2 + 3/2 p2 _ q2 + ie 

The integral over k is just the previous result for A(q), so that 

d3q 8v/g~ e 2narctan(q/y) 27rr/(q) 
B(p) = M (2rr)3 q2 + 3/2 p - - 2 ~ - ~ 6  e2~-~ 7 1 ( 15) 

It is seen that when the momentum of the incoming protons is nonzero the integral 
yields a complex result. 

The infinite sum over proton bubble diagrams in Fig. 1 is just the proton-proton 
strong scattering amplitude modified by Coulomb corrections [ 15]. It is given by the 
bubble integral (9). In order to regularize it we use the special PDS scheme constructed 
by Kaplan, Savage and Wise for this effective theory [10]. It is based on ordinary 
dimensional regularization around d = 3 dimensions. The difference lies in that poles 
in d = 2 dimensions are subtracted. This gives rise to terms which depend on the 
regularization point/z. In the present case we obtain with • = 3 - d, 

ceM2 [1 / x v / ~ + l _ 3  C ] /zM 
Jo(P) = ~ + In oeM ~ e - H(r/)  4rr (16) 

Here CE = 0.5772. . .  is Euler's constant and the function 

1 
H(r/)  = ~(ir /)  + 2 ~  - In(it /) .  (17) 

The divergent 1/E piece will be absorbed in counterterms representing electromagnetic 
interactions at shorter scales. This replaces the bare coupling constant Co with the renor- 
malized value Co (/z). Matching the calculated proton-proton scattering amplitude to the 
experimental one, we can determine this coupling constant in terms of the measured 
scattering length ap which gives the cross section in the zero-energy limit [ 15], 

4rr _ 1  [ ~V/~+ I--3CE].  (18) 
mCO(l.*~ ap I'Z + aM In aM 
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The part of  the scattering amplitude which is needed in (10) is therefore 

C o  I ( t  x)  - Jo (P)  = ~ 4- crMH(r l )  . (19)  

This is in general complex because of  the function (17).  Its real part is the more 

phenomenologically relevant function h (r/) = Re ~p (it/) - In r/ while the imaginary part 
is simply C2/2rl .  At very low energies the real part h(r/)  = l / (12r /z)  + O( r / - 4 )  

dominates since the imaginary part is then exponentially small. These functions are well 

known in the context of  proton-proton scattering [ 18]. 

For the very small proton momenta we have in the Sun, one evaluates the transition 

matrix element just as well at zero momentum [4].  The first term (14) is then simply 

IA (p  -+ O)l = V ~ T -  eX , (20) 

where the parameter X = aM/9/ .  It is therefore natural to introduce the standard reduced 
matrix element [3] 

A ( p )  = t r f i ( p ) ] .  (21) 

Using 2~rr/(q) as a new integration variable in the expression (15) for B ( p  --+ 0),  it 

becomes proportional to the integral 

0<3 
f 2x  e(X/rr) arctan(TrX/x) 

I ( X )  = dx  e x _ 1 x2 4- 7r2X 2 , (22) 
o 

which we can only do numerically. We thus have the result 

A(0 )  = e x - a M a p  I ( X  ) . (23) 

The first part is identical with what one obtains in potential models [4] while the second 

part seems to have a different dependence on the parameter X. However, by numerical 

integration, we find that it is in fact exactly the same. So far we have been unable to 
show this equality by analytical methods. 

However, it can be demonstrated by taking first the zero energy limit of  the proton- 
proton wavefunction in the integrand of  the transition matrix element (12) and then 

afterwards integrate. The regular Coulomb wavefunction (4) simplifies then to [16] 

Cr/ _1 /2 i  
Fo(p)  ~ ~ IJ , ,  ( 2 V / ~ p )  , (24) 

v'zr/  

when 2r/>> p. The first part (6) of  the matrix element will now be given by the integral 

• 1 

A ( p  ~ O) = C n e ''~° p2 dp  pl/2 e-Z,p/pll (2 2V/2V/~) , 

o 
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which can be expressed in terms of  a Whittaker function, 

eX/2 
IA(p -~ O)I = V --~ '~ m_l,½ (X )  . 

Now M_l,  ½ ( X )  = X eX/2 and thus we reproduce the first part of  (23).  

In order to calculate B ( p  ---+ 0) we go back to the result (8).  Now we use a different 

representation of  the Coulomb propagator constructed from the regular Fe(p)  and the 

irregular Ge(p)  eigenfunctions [ 19]. We only need the radial part in the S-channel, 

G c ( E ; r , r ' ) e = o -  Mp F0(p<) G0(p>____)) , (25) 
4~  p< p> 

where r< and r> are the smallest and largest of r and r ' ,  respectively, The irregular 
, t 

solution Ge(p)  is normalized so that the Wronskian GoF o - FoG o = 1. In (8) this Green 

function is seen to enter with the argument r '  = 0. Since F o ( p ) / p  = C~ in the limit 

p --* 0, it then simplifies to 

MpGo(p)  
Gc(E;r,O)e=o = - C u  4 ~ p  

In the zero-energy limit 2r/>> p we can then use 

Go(p) ~-~2~'~pKl(2~v/2-~p). 
For the function B ( p )  we thus find in this limit, 

(26) 

_ _  ( X 3  

B ( p  ~ 0) = - - -  d p p  1/2 e-~'p/pKI(2 2 X / ~ ) .  
P 

o 

This integral is now given by the other Whittaker function, 

M2°L ~ eX/2 
B ( p  --+ O) - ~-~ V -~  X W--l'½('~v) ' 

Since W_I, ½ (Y) = W_l -½ (X) we can thus express the result by the simpler integral 

o c  

e -  t 

W_I,_½ ( X )  = X ex/2 dt t2 . 

x 

(27) 

By partial integration it can be written in terms of  the exponential integral function 
El (X).  In this way we finally obtain for the original integral (22),  

1 
I ( X )  = -- - e X E 1 ( x )  , (28) 

X 

in agreement with the standard result [4].  
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With the previous  value y = 4 5 . 7 1 M e V  for the deuteron,  we have X = 0.15 and 

the integral I ( 0 . 1 5 )  = 4.96. C o m b i n e d  with the measured value ap = - 7 . 8 2 f m  for the 

scattering length we then have A ( 0 )  = 2.51 for the reduced matrix element.  A recent  

and most  accurate calculat ion inc luding  higher order corrections based on a potential  

model  [6] gives a value A2(0 )  = 7.05 + 0.02. This corresponds to A ( 0 )  = 2.66. Our 

leading order result  f rom effective field theory which we have found to agree with the 

zero-range approximat ion  of  potential  models  is thus accurate to within 6% percent  of  

the full result. 

In next  order of  the m o m e n t u m  expansion of  the under ly ing  effective field theory 

it is not  clear if the t ransi t ion matrix e lement  can still be given as a s imple overlap 

integral of  the two wavefunct ions  as in (12) .  The corresponding Feynman  diagrams 

for the t ransi t ion matr ix  e lement  are also technical ly more difficult to evaluate because 

they involve  the C o u l o m b  propagator  in new ways. But it is important  to calculate these 

correct ions and verify that they are as small  as is found in potential  models.  
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