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The proton–proton fusion reaction, pp → de+ν , is studied in pionless effective field theory (EFT) with
di-baryon fields up to next-to leading order. With the aid of the di-baryon fields, the effective range
corrections are naturally resummed up to the infinite order and thus the calculation is greatly simplified.
Furthermore, the low-energy constant which appears in the axial-current-di-baryon–di-baryon contact
vertex is fixed through the ratio of two- and one-body matrix elements which reproduces the tritium
lifetime very precisely. As a result we can perform a parameter free calculation for the process. We
compare our numerical result with those from the accurate potential model and previous pionless EFT
calculations, and find a good agreement within the accuracy better than 1%.

© 2008 Published by Elsevier B.V.
1. Introduction

The proton–proton fusion process, pp → de+νe , is a funda-
mental reaction for the nuclear astrophysics, especially important
for the understanding of the star evolutions [1] and solar neutri-
nos [2–4]. However, the process has never been studied experi-
mentally because the event is extremely unlikely to take place in
the laboratory at the proton energies in the sun. The calculation of
the transition rate and its uncertainty has naturally become a chal-
lenge to nuclear theory. The first calculation of the process was
carried out by Bethe and Critchfield [5] in 1938. This estimation
was improved by Salpeter [6]1 in 1952. Later, small corrections,
such as the electromagnetic radiative corrections, were considered
by Bahcall and his collaborators [8,9] in the framework of effective
range theory. Recently, accurate phenomenological potential mod-
els were employed to study the process [10,11]. Furthermore, in
Ref. [12] the two-nucleon current operators were calculated from
heavy-baryon chiral perturbation theory (HBχPT) up to next-to-
next-to-next-to leading order (N3LO), and Park et al. obtained quite
an accurate estimation (∼ 0.3% uncertainty) for the process by fix-
ing an unknown parameter, so-called low energy constant (LEC),
which appears in the two-nucleon-axial-current contact interaction
in terms of the tritium lifetime [13,14].

The kinetic energy relevant to the pp fusion process at the core
of the sun is quite low, kTc � 1.18 keV, where Tc is the core tem-
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perature of the sun, Tc � 13.7 × 106 K, and k is the Boltzmann
constant. The proton momentum at the core, pc � √

2mpkTc �
1.5 MeV, where mp is the proton mass, is still significantly small
compared to the pion mass, mπ � 140 MeV. Therefore, we may
regard the pion as a heavy degree of freedom for the pp fusion
process. It may be convenient and suitable to employ a pionless
effective field theory (EFT) [15], in which the pions are integrated
out of the effective Lagrangian for the process in question. The pp
fusion process in the pionless theory has been studied by Kong
and Ravndal [16] up to next-to leading order (NLO) and by Butler
and Chen [17] up to fifth order (N4LO). Thanks to the perturba-
tive scheme in EFT, the accuracy of the N4LO calculation would, in
principle, be (Q /Λ)4 ∼ (1/3)4 � 1%, where Q /Λ ∼ 1/3 is a typi-
cal expansion parameter in the pionless theory. However, because
of lack of the experimental data to fix an unknown LEC L1A which
appears in the two-nucleon-axial-current contact interaction in the
pionless effective Lagrangian, an uncertainty estimated in the pio-
nless EFT for the pp fusion process is still significantly larger than
what is expected from the counting rules of the theory.

In this work, we employ a pionless EFT with di-baryon fields
[18–20].2 The amplitude for the pp fusion process at the zero
proton momentum is calculated up to NLO. We introduce two
di-baryon fields [24], which have the same quantum numbers as
those of S-wave two-nucleon states (1 S0 and 3 S1 states), as aux-
iliary fields: after integrating out the di-baryon fields we do have

2 We have employed the same formalism in the studies of the two-body pro-
cesses, such as neutron-neutron fusion [21], radiative neutron capture on a proton
at BBN energies [22], and neutral pion production in proton–proton collision near
threshold [23].
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the ordinary pionless theory without the di-baryon fields. How-
ever, as have intensively been discussed in Refs. [18,19,25,26], with
the aid of the di-baryon fields, resummation of the effective range
correction up to the infinite order is naturally introduced, which
greatly simplifies the calculation of higher order corrections to the
wave functions. In addition, the new counting rules make the ex-
pansion parameter Q much improved, and it is not necessary to
employ the power divergence subtraction scheme [27] any longer.
Furthermore, by assuming that the leading order (LO) contribu-
tion in the di-baryon–di-baryon-current contact interaction can be
determined mainly from the one-body current interaction as dis-
cussed in Ref. [19], we can reproduce the results from the effective
range theory [28] in the LO calculations of the pionless EFT with
the di-baryon fields. The NLO correction, the di-baryon–di-baryon-
current contact interaction denoted by the unknown LEC l1A , is
approximately presumed to be the two-body (2B) current correc-
tion in the pionful calculations. We fix the LEC l1A by using the
relative strength of the two-body matrix element to that of the
one-body contribution, δ2B [14], which has been determined from
the accurate tritium lifetime datum. (We discuss it in detail later.)
Consequently we can make our estimation of the pp fusion am-
plitude free from unknown parameters. Moreover, though our cal-
culation is rather simple and is only up to NLO, we can obtain a
result comparable to that from the accurate potential model calcu-
lation within the accuracy better than ∼ 1%.

This Letter is organized in the followings: in Section 2, we in-
troduce the pionless effective Lagrangian with the di-baryon fields
up to NLO, and in Section 3, we fix the LECs which appear in the
initial and final two-nucleon states by using the effective range pa-
rameters. In Section 4, the amplitude for the pp fusion process is
calculated up to NLO. We show our numerical results in Section 5.
In Section 6, discussion and conclusions are given.

2. Pionless effective Lagrangian with di-baryon fields

For the low-energy process, the weak-interaction Hamiltonian
can be taken to be

H = G F V ud√
2

lμ Jμ, (1)

where G F is the Fermi constant and V ud is the CKM matrix ele-
ment. lμ is the lepton current lμ = ūeγμ(1 − γ5)vν , and Jμ is the
hadronic current. We will calculate the two-body hadronic current
Jμ from the pionless effective Lagrangian with di-baryon fields up
to NLO.

We adopt the standard counting rules of pionless EFT with di-
baryon fields [18]. Introducing an expansion scale Q < Λ(� mπ ),
we count the magnitude of spatial part of the external and loop
momenta, |�p| and |�l|, as Q , and their time components, p0 and l0,
as Q 2. The nucleon and di-baryon propagators are of Q −2, and
a loop integral carries Q 5. The scattering lengths and effective
ranges are counted as Q ∼ {γ ,1/a0,1/ρd,1/r0} where γ , a0, ρd
and r0 are the effective range parameters for the S-wave N N scat-
tering; γ ≡ √

mN B , where B is the deuteron binding energy, a0 is
the scattering length in the 1 S0 channel, ρd and r0 are the effec-
tive ranges in the 3 S1 and 1 S0 channel, respectively. The orders of
vertices and transition amplitudes are easily obtained by counting
the numbers of these factors in the Lagrangian and diagrams, re-
spectively. As discussed below, some vertices acquire factors like r0
and ρd after renormalization and thus their orders can differ from
what the above naive dimensional analysis suggests. Note that we
do not include the higher order radiative corrections, such as the
vacuum polarization effect [29] and the radiative corrections from
one-body part [30].
A pionless effective Lagrangian with di-baryon fields may be
written as [18,19]

L = LN + Ls + Lt + Lst , (2)

where LN is a one-nucleon Lagrangian, Ls is the spin-singlet
(1 S0 state) di-baryon Lagrangian including coupling to the two-
nucleon, Lt is the spin-triplet (3 S1 state) di-baryon Lagrangian
including coupling to the two-nucleon and Lst describes the weak-
interaction transition (due to the axial current) from the 1 S0 di-
baryon to the 3 S1 di-baryon.

A pionless one-nucleon Lagrangian in the heavy-baryon formal-
ism reads

LN = N†
{

iv · D − 2ig A S · 	 + 1

2mN

[
(v · D)2 − D2] + · · ·

}
N, (3)

where the ellipsis represents terms that do not appear in this cal-
culation. vμ is the velocity vector satisfying v2 = 1; we choose
vμ = (1, �0), and Sμ is the spin operator 2Sμ = (0, �σ). Covariant
derivative Dμ reads as Dμ = ∂μ − i

2 �τ · �Vμ where �Vμ is the ex-

ternal isovector vector current, and 	μ = − i
2 �τ · �Aμ , where �Aμ is

the external isovector axial current. g A is the axial-vector coupling
constant and mN is the nucleon mass.

The Lagrangians that involve the di-baryon fields are given by

Ls = σss†
a

[
iv · D + 1

4mN

[
(v · D)2 − D2] + 	s

]
sa

− ys
[
s†

a
(
N T P (1 S0)

a N
) + h.c.

]
, (4)

Lt = σtt
†
i

[
iv · D + 1

4mN

[
(v · D)2 − D2] + 	t

]
ti

− yt
[
t†

i

(
N T P (3 S1)

i N
) + h.c.

]
, (5)

Lst = −
[(

r0 + ρd

2
√

r0ρd

)
g A + l1A

mN
√

r0ρd

][
s†

ati Aa
i + h.c.

]
, (6)

where sa and ti are the di-baryon fields for the 1 S0 and 3 S1 chan-
nel, respectively. The covariant derivative for the di-baryon field is
given by Dμ = ∂μ − iC V ext

μ where V ext
μ is the external vector field.

C is the charge operator for the di-baryon field; C = 0,1,2 for the
nn, np, pp channel, respectively. σs,t is the sign factor σs,t = ±1
and 	s,t is the mass difference between the di-baryon and two
nucleons, ms,t = 2mN + 	s,t . ys,t is the di-baryon–two-nucleon

coupling constant. P (S)
i is the projection operator for the S =1 S0

or 3 S1 channel;

P (1 S0)
a = 1√

8
σ2τ2τa, P (3 S1)

i = 1√
8
σ2σiτ2,

Tr
(

P (S)†
i P (S)

j

) = 1

2
δi j, (7)

where σi (τa) is the spin (isospin) operator. Note that, as men-
tioned in the Introduction, we separate the di-baryon–di-baryon-
current contact interaction in Eq. (6) into the LO and NLO terms.
The LO interaction proportional to g A is determined by the one-
body axial-current interaction and the factor 1

2 (r0 + ρd)/
√

r0ρd is
included so as to reproduce the result from the effective range the-
ory at LO. The NLO correction is parameterized by the LEC l1A .
More detailed discussion about the separation of LO and NLO con-
tact interaction with external probe in the di-baryon formalism can
be found in Ref. [19].

3. Initial and final N N channels

The typical energy of the pp fusion reaction is very low, as dis-
cussed in the Introduction, so we can assume that the dominant
channel of the reaction is from the initial 1 S0 pp state to the final
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Fig. 1. Diagrams for the dressed di-baryon propagator including the Coulomb inter-
action. A double-line with a filled circle denotes the renormalized dressed di-baryon
propagator. Double-lines without the filled circle and single-curves denote the bare
di-baryon propagators and nucleon propagators, respectively. Two-nucleon prop-
agator with a shaded blob denotes the Green’s function including the Coulomb
potential. A (spin-singlet) di-baryon–nucleon–nucleon (sN N) vertex is proportional
to the LEC ys .

3 S1 deuteron state. In this section, we fix the LECs which appear
in the initial and final two-nucleon states for the pp fusion process
from the effective range parameters.

In Fig. 1, LO diagrams for the initial pp state in 1 S0 chan-
nel, i.e., the dressed 1 S0 channel di-baryon propagator, are shown
where the two-nucleon bubble diagrams including the Coulomb
interaction are summed up to the infinite order. The inverse of the
propagator in the center of mass (CM) frame is thus obtained by

iD−1
s (p) = iσs(E + δs) − iy2

s J0(p), (8)

with

J0(p) =
∫

d3�k
(2π)3

d3�q
(2π)3

〈�q|Ĝ(+)
C (E)|�k〉, (9)

where Ĝ(+)
C is the outgoing two-nucleon Green’s function including

the Coulomb potential,

Ĝ(+)
C (E) = 1

E − Ĥ0 − V̂ C + iε
. (10)

E is the total CM energy, E � p2/mN , Ĥ0 is the free Hamiltonian
for two-proton, Ĥ0 = p̂2/mN , and V̂ C is the repulsive Coulomb
force V̂ C = α/r: α is the fine structure constant. Employing the di-
mensional regularization in d = 4 − 2ε space–time dimension, we
obtain [31,32]

J0(p) = αm2
N

8π

[
1

ε
− 3C E + 2 + ln

(
πμ2

α2m2
N

)]

− αm2
N

4π
h(η) − C2

η

mN

4π
(ip), (11)

where μ is the scale of the dimensional regularization, C E =
0.5772 . . . , and

h(η) = Reψ(iη) − lnη, Reψ(η) = η2
∞∑

ν=1

1

ν(ν2 + η2)
− C E ,

C2
η = 2πη

e2πη − 1
, η = αmN

2p
. (12)

Thus the inverse of renormalized dressed di-baryon propagator is
obtained as

iD−1
s (p) = iy2

s
mN

4π

[
4πσs	

R
s

mN y2
s

+ 4πσs

m2
N y2

s
p2 + αmNh(η) + ipC2

η

]
, (13)

where 	R
s is the renormalized mass difference

σs	
R
s = σs	s − y2

s
αm2

N

8π

[
1

ε
− 3C E + 2 + ln

(
πμ2

α2m2
N

)]
. (14)

In Fig. 2, a diagram of the S-wave pp scattering amplitude with
the Coulomb and strong interactions is shown. Thus we have the
S-wave scattering amplitude as

i As = (−iysψ0)iDs(p)(−iysψ0)

= i
4π

mN

C2
ηe2iσ0

− 4πσs	
R
s

m y2 − 4πσs p2

m2 y2 − αmNh(η) − ipC2
η

, (15)
N s N s
Fig. 2. Diagram for the S-wave pp scattering amplitude with the Coulomb and
strong interactions. See the caption of Fig. 1 for details.

Fig. 3. Dressed di-baryon propagator without Coulomb interaction (double line with
a filled circle) at leading order. A single line stands for the nucleon, while a double
line represents the bare di-baryon.

Fig. 4. Diagram for the S-wave N N amplitude without Coulomb interaction at lead-
ing order. The double line with a filled circle represents the dressed di-baryon
propagator obtained in Fig. 3.

with

ψ0 =
∫

d3�k
(2π)3

〈�k|ψ(+)

�p 〉 =
∫

d3�k
(2π)3

〈ψ(−)

�p |�k〉 = Cηeiσ0 , (16)

where 〈�k|ψ(±)

�p 〉 are the Coulomb wave functions obtained by solv-

ing the Schrödinger equations (Ĥ − E)|ψ(±)

�p 〉 = 0 with Ĥ = Ĥ0 + V̂ C

and represented in the |�k〉 space for the two protons. σ0 is the
S-wave Coulomb phase shift σ0 = arg �(1 + iη). The S-wave am-
plitude As is given in terms of the effective range parameters as

i As = i
4π

mN

C2
ηe2iσ0

− 1
aC

+ 1
2 r0 p2 + · · · − αmNh(η) − ipC2

η

, (17)

where aC is the scattering length, r0 is the effective range, and
the ellipsis represents the higher order effective range corrections.
Now it is easy to match the parameters σs and ys with the effec-
tive range parameters. Thus we have σs = −1 and

ys = ± 2

mN

√
2π

r0
,

Ds(p) = mNr0

2

1
1

aC
− 1

2 r0 p2 + αmNh(η) + ipC2
η

. (18)

In Fig. 3, LO diagrams for the final deuteron channel, i.e., the
dressed 3 S1 channel di-baryon propagators are depicted. Since in-
sertion of a two-nucleon one-loop diagram does not alter the order
of the diagram, the two-nucleon bubbles should be summed up to
the infinite order. Thus the inverse of the dressed di-baryon prop-
agator for the deuteron channel in the CM frame reads

iD−1
t (p) = iσt(E + 	t) + iy2

t
mN

4π
(ip)

= i
mN y2

t

4π

[
4πσt	t

mN y2
t

+ 4πσt E

mN y2
t

+ ip

]
, (19)

where we have used dimensional regularization for the loop inte-
gral and E is the total energy of the two nucleons, E � p2/mN . The
dressed di-baryon propagators are renormalized via the S-wave
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N N amplitudes. The amplitudes obtained from the diagram in
Fig. 4 should satisfy

i At = (−iyt)
[
iDt(p)

]
(−iyt) = 4π

mN

i

− 4πσt	t

mN y2
t

− 4πσt

mN y2
t

p2 − ip
, (20)

where At is related to the S-wave N N scattering S-matrix via

S − 1 = e2iδt − 1 = 2ip

p cot δt − ip
= i

(
pmN

2π

)
At . (21)

Here δt is the phase shift for the 3 S1 channel. Meanwhile, effective
range expansion reads

p cot δt = −γ + 1

2
ρd

(
γ 2 + p2) + · · · . (22)

Now, the above renormalization condition allows us to relate the
LECs to the effective-range expansion parameters. For the deuteron
channel, one has σt = −1 and

yt = ± 2

mN

√
2π

ρd
,

Dt(p) = mNρd

2

1

γ + ip − 1
2 ρd(γ 2 + p2)

= Zd

E + B
+ · · · , (23)

where Zd is the wave function normalization factor of the deuteron
at the pole E = −B , and the ellipsis in Eq. (23) denotes corrections
that are finite or vanish at E = −B . Thus one has [18]

Zd = γρd

1 − γρd
. (24)

This Zd is equal to the asymptotic S-state normalization constant.
It is to be noted that the order of the LECs yt is now of Q 1/2, and
the deuteron state is also described by the renormalized dressed
di-baryon propagator.

4. Amplitude up to NLO

Diagrams for the pp fusion process up to NLO are shown in
Fig. 5. In the limit p → 0, we have the amplitude from the dia-
grams in the figure as

A = −�ε∗
(d) · �ε(l)G F V ud g A T f i . (25)

Here �ε∗
(d)

is the spin polarization vector of the out-going deuteron,
�ε(l) is the spatial part of the lepton current lμ in Eq. (1), and

T f i �
√

8πγ

1 − γρd

Cηeiσ0

γ 2

[
eχ − aCγχ I(χ) + 1

4
aC (r0 + ρd)γ

2

+ aCγ 2

2g Amp
l1A

]
, (26)

where

I(χ) = 1

χ
− eχ E1(χ), E1(χ) =

∞∫
χ

dt
e−t

t
, (27)

with χ = αmp/γ . We note that the amplitude T f i vanishes at the
p → 0 limit because of the overall factor Cη . The approximation is
taken by keeping p dependence in Cη while ignoring higher order
p/mN corrections in the remaining part. Since p/mN ∼ 0.2%, the
contribution from the higher order p/mN terms will be sub 1% or-
der, which can be neglected conservatively at the uncertainty level
we are considering in the present work. Introducing a “standard
reduced matrix element” [16],

Λ(p) =
√

γ 3

8πC2
η

∣∣T f i(p)
∣∣, (28)

we have a finite and analytic expression of the reduced matrix el-
ement Λ(p) in the p → 0 limit as

Λ(0) = 1√
1 − γρd

{
eχ − aCγ

[
1 − χeχ E1(χ)

]

+ 1

4
aC (r0 + ρd)γ

2 + aCγ 2

2g Amp
l1A

}
. (29)

As mentioned above, we exactly reproduce the result of the ef-
fective range theory at LO, and have a higher order correction
proportional to the LEC l1A at NLO in Eq. (29).

5. Numerical results

We obtain the matrix element Λ(0) in Eq. (29) in terms of the
four effective range parameters, aC , r0, γ and ρd , and the LEC l1A .
The values of the effective range parameters are well known, but
three of them are slightly different in the references. In this work,
we take two sets of the values: one is aC = −7.8063 ± 0.0026 fm,
r0 = 2.794 ± 0.014 fm, and ρd = 1.760 ± 0.005 fm from Table
VIII in Ref. [33]. The other is aC = −7.8149 ± 0.0029 fm, r0 =
2.769 ± 0.014 fm, and ρd = 1.753 ± 0.008 fm from Table XIV in
Ref. [34]. We take an average of numerical values of Λ(0) from the
two sets of the parameters for our numerical result. The value of
the LEC l1A should be fixed by experimental data, but there are
no precise ones for the two-body system. We fix the value of the
LEC l1A indirectly from the relative strength of the two-body ma-
trix element to one-body one, δ2B ≡ M2B/M1B = (0.86 ± 0.05)%
in Eq. (29) in Ref. [14]. This value has been obtained from the accu-
rate potential model calculation for the two-body matrix element
with the current operators derived from HBχPT up to N3LO where
the two-body current operator has been fixed from an accurate ex-
perimental datum, the tritium lifetime, for the three-body system.
Thus we have

l1A = −0.50 ± 0.03, (30)

where we have used our LO amplitude as the one-body input.
This is a good approximation because the difference between the
amplitude from the effective range theory, which is almost the
same as our LO result, and that from accurate potential model
calculations is tiny [12]. For other well known parameters, we
use B = 2.224575 MeV, g A = 1.2695, mp = 938.272 MeV, and
mn = 939.565 MeV, and thus have γ = 45.70 MeV, χ = 0.1498,
and E1(χ) = 1.465.

Employing the values of the parameters mentioned above, we
have ΛLO(0) = 2.641 at LO, and ΛNLO1(0) = 2.662 ± 0.002 from
(a) (b) (c)

Fig. 5. Diagrams for the pp fusion process, pp → de+νe , up to NLO.
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Table 1
Estimated values of Λ2(0). The value in second column is our result. The values in
third, fourth, and fifth column are estimated from the pionless EFT calculation up to
NLO by Kong and Ravndal (KR) [16], that up to N4LO by Butler and Chen (BC) [17],
and an accurate phenomenological potential model calculation [11], respectively

Our result KR(NLO) [16] BC(N4LO) [17] Pot. model [11]

Λ2(0) 7.09 ± 0.02 7.04 ∼ 7.70 6.71 ∼ 7.03 7.05 ∼ 7.06

the first set of the parameter values and ΛNLO2(0) = 2.664 ± 0.003
from the second one up to NLO. Thus we have an average value

ΛNLO(0) = 2.663 ± 0.004, (31)

and Λ2
NLO(0) = 7.09 ± 0.02 where the estimated error bars mainly

come from those of the effective ranges, r0 and ρd , and the LEC
l1A .

In Table 1, we compare our numerical result for Λ2(0) with
those from other theoretical estimations, the pionless EFT with-
out di-baryons up to NLO by Kong and Ravndal (KR) [16], that
up to N4LO by Butler and Chen (BC) [17], and the accurate phe-
nomenological potential model calculation [11]. We find that our
numerical result is in good agreement with the values from the
former theoretical estimations within the accuracy less than 1%.
As discussed before, the uncertainties of the estimations from the
pionless EFT without di-baryon fields are still large, ∼4.5% for
the KR’s estimation up to NLO, and ∼2.3% for the BC’s one up
to N4LO, mainly because of the unfixed LEC L1A . Though the re-
sults in the previous pionless EFT calculations have the unfixed
LEC L1A , we can directly compare our result of the amplitude Λ(0)

in Eq. (29) to the expressions in Eq. (7) in Ref. [17], and fix the
value of the LEC L1A . Assuming the higher order LEC K̄1A = 0, we
have L1A = 1.27 ± 0.12 fm3, which is consistent with our previous
estimation, L1A = 1.18 ± 0.11 fm3 in Ref. [21]. When comparing
our result with that from the accurate phenomenological poten-
tial model calculation, we find that our result is overestimated by
∼0.5% mainly because we have not included the important contri-
bution from the vacuum polarization effect.

As a last remark we would like to note that the precedent pio-
nless EFT calculations include the higher order corrections in both
wave functions and vertices with external probe. The contribution
to Λ(0) from the wave functions read 2.51, 2.54 and 2.58 at LO,
NLO and N4LO, respectively. In our calculation with di-baryon field,
higher order corrections to the wave functions are incorporated
naturally by the summation of effective range contribution to in-
finite order, which gives Λ(0) equal to 2.64. A great advantage of
the pionless EFT with di-baryon field lies in that we do not need to
care the higher order contribution to the wave function, and it is
sufficient to take into account only the corrections to the vertices
with external probe. This advantage reduces the number of Feyn-
man diagrams dramatically, and makes the calculation of higher
order terms very simple.

6. Discussion and conclusions

In this work, we employed the pionless EFT with di-baryon
fields including the Coulomb interaction, and calculated the ana-
lytic expression of the amplitude for the pp fusion process, pp →
de+νe , up to NLO. Employing the assumption to distinguish LO
and NLO terms in the contact di-baryon–di-baryon-axial-current
interaction, we reproduced the expression for the amplitude of
the effective range theory at LO. The LEC l1A , which appears in
the contact di-baryon–di-baryon-axial-current interaction at NLO,
is fixed by using the relative strength of the two-body amplitude
to the one-body one, δ2B , which has been determined from the tri-
tium lifetime in the HBχPT calculation, and thus we could perform
the parameter-free-calculation for the pp fusion process. We find
that our numerical result of squared reduced amplitude Λ2(0) is
in good agreement with those of the recent theoretical calculations
within the accuracy better than 1%.

As mentioned in the Introduction, the current theoretical un-
certainties for the pp fusion process is ∼0.3% in the HBχPT cal-
culation up to N3LO [14]. To improve our result to a few tenth%
accuracy, it would be essential to include the higher order correc-
tions in the modified counting rules discussed in the neutron beta
decay calculation [30]: the next higher order corrections would be
the α order and 1/mN corrections. It is known that the higher α
order corrections, such as the vacuum polarization effect [9] and
the radiative corrections from the one-body part [30],3 are sig-
nificant, whereas the corrections from the 1/mN terms would be
pc/mN ∼ 0.16%. It would be worth calculating the S factor for the
pp fusion process in a few tenth% accuracy with the pionless EFT
with di-baryon fields including those higher order corrections.

Another issue that we would need to clarify is the value of
the LEC l1A , which has been fixed in this work by using the re-
sult from the HBχPT calculation. As discussed, e.g., in Refs. [14,
35], the LECs which appear in the two-di-baryon-axial-current or
four-nucleon-axial-current contact interactions, denoted by l1A in
the pionless EFT with di-baryon fields, L1A in the pionless EFT
without di-baryon fields, and d̂R in HBχPT, are universal. In other
words, those LECs are shared by the processes, such as, the pp fu-
sion process (pp → de+νe) [12–14,16,17], nn fusion process (nn →
de−ν̄e) [21], neutrino deuteron reactions (νed → ppe− , νed →
npνe) [36,37], muon capture on the deuteron (μ−d → nnνμ) [38,
39], radiative pion capture on the deuteron (π−d → nnγ [40] and
its crossed partner γ d → nnπ+ [41]), tritium beta decay [14], and
hep process (p3He → 4He e+νe) [14]. If these LECs are determined
by using the experimental data from one of the processes, the lat-
tice simulation [42], or the renormalization group method [43],
then we can predict the other processes in each of the formalisms
without any unknown parameters. In this respect, it may be worth
fixing the LEC l1A in the same formalism, the pionless EFT with di-
baryon fields, from, e.g., the tritium lifetime extending our formal-
ism to the three-body systems with electroweak external probes.
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