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Determination of S;4(0) from published data
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The experimental landscape for thBe+p radiative capture reaction is rapidly changing as new high
precision data become available. We present an evaluation of existing data, detailing the treatment of system-
atic errors and discrepancies, and show how they constrain the astropl$/fsicadr (S;;), independent of any
nuclear structure model. With theoretical models robustly determining the behavior of the subthreshold pole,
the extrapolation error can be reduced and a constraint placed on the s®peldding only radiative capture
data, we findS;/(0)=20.7+0.6sta) £ 1.0(sys) eV b if data sets are completely independent, while if data sets
are completely correlated we firf| (0)=21.4+0.8sta) + 1.4(sys) eV b. The truth likely lies somewhere in
between these two limits. Although we employ a formalism capable of treating discrepant data, we note that the
central value of th&factor is dominated by the recent high precision data of Jungétaais[Phys. Rev. C68,
065803(2003)], which imply a substantially higher value than other radiative capture and indirect measure-
ments. Therefore we conclude that further progress will require new high precision data with a detailed error
budget.
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[. INTRODUCTION straints on the astrophysic8 factor using:(i) the energy
dependence of the best structure modgl$,a pole model
The comparison of measured and prediéBdsolar neu-  parametrization independent of structure models, @inda
trino fluxes represents a test of solar models and an opportigonstrained pole model parametrization, where theory is
nity to learn about the properties of the electron neutrinosised to robustly determine the behavior of the subthreshold
produced in the Sun. Recent measurements at Sll@ave  pole.
determined the total flux of active neutrinos emitted in giie
decay of°B with a combined statistical and systematic pre-
cision of 9%. The implications of solar and reactor neutrino Il. FITTING PROCEDURE
flux measurements for neutrino mixing parameters are ex- |t is often desirable to determine an average or best-fit
plored in, e.g., Refg§2,3]. Theoretical predictions of tl8  yepresentation of experimental data, and the uncertainties in
solar neutrino flux are now substantially more uncertain thar,ch a representation. The standard techniques are generally
the experimental measurements. Recent predictions have URot discussed in the literature, and are assumed to be well
certainties of 20944] and 15%[5]. The latest effort to esti-  known. We detail here a formalism needed to properly take
mate the theoretical uncertainty found a value of 2@ into account correlated data and systematic errors.
This error is completely dominated by the uncertainty in  \when modeling data, one generally uses a maximum like-

the heavy element abundance of the Sun, which haghood or minimumy? formalism to determine the best fit.
recently been revised to a level 2.5 times larger thanrhe )2 s usually defined as:

the previous adopted valug/]. The contribution to the
theoretical error budget made b, has now been 2.3 (y(Xi) - Mi)z
estimated at 3.6% based on the recommendation of X= i : ’
S,/(0)=21.4+0.5(expt)+0.6 (theor) eV b given in Ref.
[8]. Even if the uncertainty due t8;, represents a small Wherey; ando; are the mean and standard deviation of the
fraction of the total theoretical uncertainty, in our view an ith data point ang(x) is the value calculated from the model
independent determination of its value based on the available are using to describe the data as a function of the inde-
experimental data and theoretical models is worthwhilependent variablex [e.g., y(x) — S;(E)]. As an example, a
Here we provide reliable determinations of the total uncerdinear model consists dP parameters an® basis functions
tainty in theSfactor, and find that nearly all previous analy- [i.e.,y(x):E"f:l a,Y p(X)]. Minimizing x? defined in this way
ses have underestimated the error. also minimizes the variance in the best fit model, but is lim-
In this paper we detail our fitting procedure, presentingited in that it assumes the data points are independent and
formalisms for propagating systematic errors and combininghere is no explicit prescription for dealing with systematic
multiple data sets, some of which were first presented in Refrrors or multiple data sets. A more general treatment has
[9]. We then describe the available data relevant forbeen described recently in an analysis of reaction cross sec-
Be(p, y)®B, and present the data sets used in this analysigions relevant for big bang nucleosynthe$j. We shall
Next we briefly discuss the structure models used to extrapadopt a similar procedure for studying tfee(p, 7)®B reac-
late experimental data to solar energies, and the question tibn. A clear understanding of how statistical and systematic
how the models can be tested. Finally, we present our corincertainties propagate through the analysis is an essential

1)

Oj

0556-2813/2004/7@)/0458019)/$22.50 70045801-1 ©2004 The American Physical Society



CYBURT, DAVIDS, AND JENNINGS PHYSICAL REVIEW C70, 045801(2004)

aspect of this approach. It is assumed that the dominant sy8¥e adopt a total normalization error defined as the quadratic

tematic error is the normalization uncertainty, which can besum of the intrinsic normalization error and this discrepancy

parametrized by a relative uncertairgyfor each data set. error, as was done in R€].

This global normalization error induces correlations between We summarize our procedure for analyzing single data

data points in the same data set. The correlation between twsets as follows.

data points is given by9] (i) We find best fits and statistical uncertainties, where the

_ > statistical errors of the data points dominate jeanalysis.

Ciin= 1+ ezn)‘rinﬁ'nvlﬁ Ezn'“'n'“Jn’ @) (i) The total normalization error is the quadratic sum of

where o; is now the statistical uncertainty of thith data the intrinsic normalization error and our quality-of-fit mea-

point of data seh and g, ; is the Kronecker delta. Using this sure, the dlscrepancy_error. . .
correlation matrix. one. can define a more engfal We are then left with the remaining question of how to
' 9 treat multiple data sets. We discuss two methods. The first

= Ci_jl[y(xi) — w]ly0q) = 5], (3) method, adopted in Ref9], treats the data sets as totally
i correlated and comprising a single data set. The second
method treats the data sets as if they were completely inde-
pendent. Reality is likely between these two possibilities;
however at present we have no good prescription for deter-
mining how correlated data sets actually are, and therefore
AL L present results for these two limiting cases. Additionally,
S (1 + 20202 both methods yield similar results, suggesting that the meth-
b e, (4)  ods are accurate and robust. Generally, the totally correlated
(1+&)ot 1+ ¢ (Mk) method yields more conservative uncertainties as the intrin-

(1+6 K\ Ok sic normalizations are not treated statistically.

where we have left off the data set subsciptor clarity.
Given the simple form of the covariance matrix in Eg),
the inverse can be found analyticall§], and we obtain

62

-1_
(I

where we have again suppressed the indewhen the sys-

tematic errors are smaller than the statistical errors A. Completely correlated data sets

(€nui <o) or in the limit of large data sets, the? of Eq. Assuming that individual data sets are totally correlated
(3) reduces to that of Eq(l), with the statistical error simplifies the analysis. Since the exact nature of the
weighting they? rather than the total error. correlation is unknown, we cannot rigorously define a

We stress that thg? quantity is a statistical device only; correlation matrix, so we continue to use the definition
its minimum value tells us only how good the fit is within in Eq. (2) (Cin,jmz 5n'mcin'jn) and its inverse in Eq(4)
statistical uncertainties and its curvature tells us onIy_abou@Ci—lj :5n,mci_lj ), generalized for multiple data sets. By vir-
the StatiStica| uncel’taintieS in the f|t Th|S iS seen as ‘a\ll/ tuenyon% the |araen data set ||m|t for the inverse Covariance ma-
scaling in the best fit uncertainty, wheleis the number of  {ix we are led to the conclusion that the precise nature of

data points. Systematic errors are not reduced by this factofhe correlations is relatively unimportant, as the statistical
The total uncertainty then consists of the statistical error angincertainties dominate the¢? analysis.

the intrinsic normalization error. Statistical errors contain N0 As pefore, the total normalization error is the quadratic

information about the quality of the fit. This can be seen bysym of the intrinsic normalization error and the discrepancy

arbitrarily shifting data points away from each other, keepingerror (€2 =€2 _+¢€2,..). The discrepancy error as defined in

their absolute uncertainties the same. We need an additionglq_ (5) is valid for a single data set and hence also for the

measure of how far data fall from the best fit. How then docase of totally correlated data sets. Since the individual data

we address the quality of the fit? , _ sets are completely correlated, the overall normalization er-
In Ref. [9], such a discrepancy error is defined as a mearor must be some average of the individual normalization

sure of the fit quality. The discrepancy error is the weightedy;ors. We adopt the normalization error prescription of

dispersion of the data relative to the best fit: Ref. [9]:
2 Cilly() = willy () = ay] 2
eg'sc: - : (5) E _g
| 3 Cyooy) P o
i norm 1 ’
The absolute size of this discrepancy error tells us how well o X

the data are described by the best fit, while its size relative to

the intrinsic normalization error quantifies possible unknownwhereg, are the individual data set normalization errors, and
systematics. One may be tempted to reduce the size of thﬁﬁ is the x? per datum of data set with respect to the best
discrepancy error by the number of degrees of free@m, fit. This weighting scheme gives more weight to data sets
x>— x?/v), but this is inappropriate because it assumes thathat agree with the best fit model. We also point out that this
the unknown errors we are trying to take into account can b@ormalization error assignment is bounded by the smallest
propagated through the data analysis. As discussed earliemnd largest normalization errors and is not reduced by the
systematics are not reduced byyN as are statistical errors. number of data sets. This reflects the fact that the data sets
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are completely correlated and the normalization errors can- an—1 2
not be treated statistically in this case. > ( e )
The expectation value and statistical variance of the best .= LN nc (8)
fit model are denote&[y(x)] andVdy(x)], respectively. In- > 1
cluding the normalization error, the total variance in the best ; gﬁ

fit model is Vi{y(x)]=(1+e)Vdy(x) ]+ E[y(x)]% This

correlated data sets, which we refer to as the correlated noflata sets, except that here no correlations exist between data
malization analysis. sets. Given the global best #y(x)] and its statistical vari-

ance VJy(x)], the total variance in this case is given by
Vily(0)]=(1+€)Vdy(x) ]+ e EL[Y(X) 2. We refer to this
B. Completely independent data sets formalism as the independent normalization analysis.

If data sets are truly independent from each other, we can Ill. DATA
treat the normalizations statistically, once best fits and statis-
tical errors are found for each data set. We consider only With these formalisms in place, we now discuss the data
linear models, for whic}y(x):ES=l a,Yp(x), where they(x) available to constrain the astrophysic8l factor of the
are known functions, and follow the prescription laid out in 'Be(p, ¥)®B reaction. In some cases there is sufficient reason
the previous section for each data set. The expectation value exclude data sets from the analysis. We consider only low
and statistical variance gfx) areE[y(x)]:EFF)':1 ayYp(x) and  energy dataE.,<425 keV, when determining the best fits
Vs[y(X)]:E,F;,qzl CoqYp(X)Yq(X), respectively. With the best to S;7(E) as nuclear.structure uncert_ainties complicate and
fit parameterséfn) and parameter covarianc{é)’f; for each render more uncertain the extrapolation when higher energy
data sen in hand, we can combine individual data sets anddat@ are includeg8, 10,11.

find a global best fit. Upon minimization, the can be de-
composed as A. Radiative capture data

Initially, we considered the data sets of Kavandgg],
b Parker[13], Vaughnet al.[14], Filipponeet al.[15], Strieder
a2 =1/ _ a(via _ &) et al. [16], Hammache-117], Hammache-218], Hasset al.
X _Xmin+zn p%zl Coa @~3)(@q=a"), () 1q] junghans-BE120], Junghans-BE$8], and Babyet al.
’ [21]. We exclude the data of Kavanaft?], Parker{13], and

Vaughn et al. [14] because these authors do not present

where the calligraphidg‘) is the covariance between tpth enough information to adequately determine a normalization

andqth parameters of thath data set, with best fit param- error.l We do nothuse th? measurement Olf( Hessl. [19] ,
eters given by“am), provided there are at least as many data>'MPY because_t e data lie aboye our 425- ?V energy cutoft.
Several details of our analysis bear mention here. One of

pointsN as fitting parameterB. Note that with linear models : > . -
the two target thickness determinations in the Filippenal.

all parameters are Gaussian, i.e., jftés a quadratic func- . . :
P fies a d measuremertL5] relies on theLi(d,p) reaction. We adopt

tion of the parameters. : ,
In order to combine multiple data sets, we must first re-tN€ recommendation of Ref22] for the value of this reac-

place the statistical varianaéJy(x)] with the total variance tik?” Ccross section;c Tﬂg hHammache[—JZB] d"l"t"’? Co”Si;’t Or:_
Vi[y(¥]. In other words, we replace the parameter covari-t ree points, two of which are measured relative to the third.

) . ") Ideally, one would like to include all three points, but not
ar;ge Ar(T:])E}\t{r:;(C : fo.r each data sen with (1+€t20_t,n)cp,q, enough information is given on the third point to determine
+eorndy &g - Inserting thls2 new parameter covariance Into 5y jntrinsic normalization error. We thus adopt the two rela-
Eq. (7), we minimize thex” to find the best fit parameters e measurements as the data set, using the third to deter-
and their statistical covariances, which now include the NOMnine the normalization error. Referen¢] presents data
malization errors of each data set. _from their BE1 measurement renormalized using the BE3

We also need to quantify how well data sets agree Witfy,ia These renormalized BEL data are not independent of
each other. The variance of the best global fit contains N¢ne BE3 data. Therefore we consider here the BE3 tRita
information about the mutual consistency of data sets. This i§ g the original BE1 datg20], which are independent. Fi-
seen if we shift the mean values of data points in a single g1y we note that there is some discussion in the literature
data set, but keep the same absolute uncertainties. The ) regarding the uncertainties in the data of Babyl. [21].

rameter covariance is not changed, even though data sets g, take the uncertainties for this measurement from Table I
be severely discrepant. Thus we need to define a global dig; Ref. [21].

crepancy error. To do this, we calculate the renormalizations
needed for the global best fit to minimize thé for indi-
vidual data sets. The dispersion of these renormalizations
provides an estimate of the discrepancy between data sets. We considered the Coulomb dissociatigBD) data of
We find renormalizationg,, and their total errorg-, for each  Kikuchi et al. [23,24, Iwasaet al. [25], Schimanret al.
data set and then their dispersion according to [26], and Davidset al. [11,27. We exclude the measure-

B. Coulomb dissociation data
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ments of Kikuchiet al. [23,24 and lwaseaet al. [25' due to 1.5 S e L S Mt Bl e e e
concerns over the way these data were analyzed. The da e S TpT—— 3
from these measurements were not analyzed using a cut 0 14f - - DB (Volkov Il foree) 3

E «. DD (Minnesota force) E

the maximum scattering angle of tf@ center of mass, cor-
responding semiclassically to a minimum impact parameter.
This means that the effects of nuclear absorption, diffraction
dissociation, ande2 transitions are present in the data, and 5
that the inferrecEl S factors may not be reliable. Since we
lack the detailed experimental information required to cor- = E
rect for these effects, we do not consider these data herex 1.1f
Hence we include only the CD data of Schiimatral. [26] “ :
and Davids and co-workerfl1,27, which were analyzed
using scattering angle cuts to minimize the nuclear B&d
contributions and their associated uncertainties.

13F

E)/S7(0
S

09F i
IV. THEORETICAL STRUCTURE MODELS :

In general, two classes of models have been used to de 087 e e ok n o T hapes
scribe the structure ofB: single particle potential models )
that treaf®B as ap-wave proton coupled to 8Be core in its Relative Energy (MeV)
ground state, .and microscopic cluster models that include g 1. (Color onling Shapes of thé factors predicted by the
two configurations of _the three clustétse, o, and a proton. Descouvemont and BayéDB) and Descouvemont and Dufour
Recently, most experimenters have used the cluster model %D) cluster models and the Davids and Typ@T) potential
Descouvemont a”?' Bay®B) [28] to e_xtrapolate their data  oqel as a function of relative energ@¥..). Shown is the ratio of
to zero energy. This generator coordinate method employs @e g1 s factor to its value aEq,=0, which allows the shapes of
central nucleon-nucleon interaction along with Coulomb andoels with different absolute normalizations to be shown in the
spin-orbit interactions. Referend@8| used the Volkov Il same figure. The shapes of the two cluster models are very similar
nucleon-nucleon interactiof29], while a more recent pre- gt Jow energies, but substantial deviations exist above 700 keV. The
liminary effort by Descouvemont and Dufo(IDD) [30] opts  potential model is seen to have a slightly larger slope at high ener-
for the Minnesota forc¢31], which describes low mass sys- gies, but also a very different shape below 400 keV.

tems better. These cluster models include excige con-
figurations. The single particle potential models generallyeter, an absolute normalization. We fit data using the DT
employ a central Woods-Saxon+Coulomb potential, and opLi+ n potential model and the DD cluster model employing
tionally a spin-orbit interaction, which can be neglected inthe formalism presented in Sec. Il. Our results are summa-
calculations of theEl S factor provided the central potential rized in Tables | and II.
depth is properly adjusted. In these models, phsave po- We first derive best fits for individual experiments. The
tential depth is fixed by théB binding energy. The depths S,7(0) determinations are in excellent agreement with previ-
for the other partial waves can be chosen identically, but aus analyse$8,11]. In general, the discrepancy errors are
better choice is to fix them using the well-measusaglave  smaller than or comparable to the intrinsic normalization er-
scattering lengths for channel spin 1 and 2 in the isospimors of each data set. Note that the central valueS,dD)
mirror system’Li+n [32]. The scattering lengths in the for the radiative capture data range from 18 to 20 eV b and
"Be+p system have also been measuf@8l, but with much 21 to 22 eV b for non-Junghans and Junghans data sets, re-
lower precision. The scattering lengths for the domin@nt spectively, while the CD data lie in the range of 16—19 eV b.
=2 channel are consistent between the isospin mirrors, buthis hints at some level of disagreement among the radiative
there is a 2.4 discrepancy in the value for tlf&=1 channel. capture data sets, especially when comparing the two Jung-
This discrepancy is not understood at present, and deservhans experiments8,20] with the other radiative capture data,
attention in the future. In this work, we consider the DD in addition to that between the radiative capture and the CD
cluster model and thé.i+ n potential model of Davids and data.
Typel (DT) [11], which reproduces théLi+n scattering To further explore and quantify this disagreement we look
lengths. These models well represent their respective classes. different combinations of the data in our multiple experi-

Both of these models have virtues. The cluster model alment fits. We first look at the radiative capture data alone. In
lows more configurations than does the potential model, anthese model-dependent analyses, we consider three combina-
therefore might be expected to describe the physics bettetions of the radiative capture data) all but the Junghans
On the other hand, the potential model is simple, and hadata,(ii) only Junghans data, andi) all the radiative cap-
been tuned to reproduce the elastic scattering data. Figuretire data. Using the DTLi+ n potential model, the indepen-
shows the shapes predicted by the potential and clustefent normalization method gives fd,/(0) in eV b: (i)
models. 19.3+£1.0,(3ii) 21.4£0.5, andiii) 20.8+1.1; using the corre-
lated normalization method, we findi) 19.1+2.0, (ii)

V. STRUCTURE-MODEL-DEPENDENT ANALYSIS 21.3+0.7, andiii) 21.2+1.4 eV b. For the CD data we find

With the theoretical structure models described briefly in17.5+1.3 and 17.1+1.6 eV b using the independent normal-

Sec. IV, our fitting procedure involves only a single param-ization and correlated normalization methods, respectively.
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TABLE |. Best fits to radiative capturé€RC) and Coulomb dis-
sociation(CD) data forE.,,<425 keV using the DTLi+ n poten-
tial model. Shown are the best fit astrophysi€dhctors and their
standard deviationéstatistica) at E.,=0. Also shown are the two

individual contributions to the total systematic error, the intrinsic

Si740) (VD) €norm  Edisc
normalization error and the discrepancy error, given in percent. An
additional potential model parameter uncertainty should be added to Filippone 20.1£0.5 11.9% 6.1%
the other systematic errors, wit,qq4e=0.01%, reflecting the small Strieder 18.8+0.7 8.3% 2.4%
uncertainties in théLi+ n elastic scattering data. Hammache-1 20.4+0.7 4.9% 5.9%
Direct Hammache-2 19.1+1.2 12.2% 8.2%
Data set Junghans-BE1 226402  2.7% 1.0%
(no. of points S0 (VD) éom  aise Junghans-BE3 221401  2.3% 1.4%
Filippone (6) 19.3+05  11.9% 5.6% Baby 20.9+0.7 22% 2.7%
Strieder(2) 17.9+0.6 83% 27% CD Davids 17.4+£0.6 7.1% 1.0%
Hammache-13) 19.4+0.6 49% 5.7% Schimann 19.2+0.9 56% 1.6%
Direct Hammache-22) 18.8+1.2 12.2% 8.1% Indep. norm. All RC but Junghans 20.3+0.7 4.2%
Junghans-BE18) 21.6%£0.2 27% 0.7% Junghans 22.3+0.5 1.1%
Junghans-BE313) 21.2+0.1 23% 1.3% All radiative capture 21.8+0.4 4.9%
Baby (3) 19.8+0.7 22% 2.2% Coulomb dissociation 18.2+1.0 5.3%
Davids(2) 16.6+0.5 7.1% 0.1% Corr. norm. All RC but Junghans 20.0+0.3 8.6% 6.5%
CD Schimann(2) 18.4+0.8 5.6% 0.8% Junghans 22.2+0.1 25% 1.6%
Indep. All RC but Junghans 19.3+0.7 3.8% All radiative capture 22.1+0.1 55% 3.3%
norm. Coulomb dissociation 17.9+0.5 6.7% 5.5%
Junghans 21.4x0.4 0.8%
All radiative capture 20.8+0.4 5.1%
Coulomb dissociation 17.5+0.9 5.5% 'Be(p,y)®B reaction below 425 keV. We use the expansion
All but Junghans 19.1+0.3 85% 6.29% Suggested by Refl10], adopting a three-parameter model:
Corr. Junghans 21.3£0.1 2.6% 1.4% E
norm.  All radiative capture 21.2+0.1 5.6% 3.2% Si#E) = Si0) + am +BE, 9
Coulomb dissociation 17.1+0.5 6.7% 5.5%

PHYSICAL REVIEW C70, 045801(2004)

TABLE II. Same as Table |, except for the DD cluster model. A

model uncertainty should be added to the other systematic errors,

but DD do not present formal errors for this model.

Data set

whereQ=137.5 keV. In addition to terms constant and linear
in energy, this functional form contains a simple pole term, a
We find that the CD data and the non-Junghans radiativeniversal feature of radiative capture reactions that is inde-
capture data are consistent, showing approximately di¢-  pendent of the details of nuclear structure models. We have
crepancy, while the CD data and Junghans data are discrephosen a fit that is linear in its parameters, but one can easily
ant at a little over the @ level. Furthermore, there is a 12  calculate the nonlinear parameters adopted in Réf.: the
disagreement between the Junghans data and the other radi@le term is given bya=-a/S;4(0) and the slope term by
tive capture measurements. The Junghans data dominate teB/S,/0). A data set must have at least three data points in
fit when combining all the radiative capture data, due to theiorder for us to employ this three-parameter fit. Our results
extremely small errors and the size of the data sets. Similaare summarized in Table Ill. Of all the data, only the most
but somewhat higher results are obtained with the DD clusterecent Junghans-BE3 data s] provides a significant
model. Interestingly, the high precision Junghans data aretructure-model-independent constraint on the low energy
described slightly better by the DLi+ n potential model behavior of the astrophysica® factor, implying S;0)
than by the DD cluster model, as seen in our quality-of-fit=24.3+4.0 eV b. With this data set providing the only sig-
measure, the discrepancy error, but not at a significant levehificant low-energy constraint of,;;, it dominates the fit
The nature of the discrepancies between the Junghans datkeen we combine the radiative capture data to find
and both the non-Junghans radiative capture data and the CI3.6+3.4 eV b for the Junghans data and 23.4+3.4 eV b for
data must be understood before we can address which modall the radiative capture data, using the independent normal-
describes the data best. In an attempt to go beyond structurization method. Using the correlated normalization method
model-dependent results, we now explore a structure-modelve find 24.1+3.4eV b for Junghans alone, and
independent analysis. 18.9+3.2 eV b if we include all data sets. With the current
data we can place robust constraints on the extrapolated
value S;/(0) independent of any particular structure model.
We find that the central value is calculated to lie between 19
and 24 eV b with a total uncertainty of £3.5 eV b.
Performing a structure-model-independent analysis will We see that in order to place a tighter constraintSpn
provide insight into the quality of existing data for the one must assume some low-energy behavior. We now ex-

VI. POLE MODEL ANALYSIS
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TABLE lIl. Best fit parameters for data with;,,<425 keV with the pole module functional form of Eq.

9).
Data S,A0) (eVb) a(eVbMeV) B(eVbMeV?l eom Edisc

Fillipone 38.6+£15.7 -8.5+5.4 70.6+£37.2 11.9% 3.1%
Hammache-1 -2430+2160 -623+554 -2308+2103 4.9% 0.0%

RC Junghans-BE1 18.4+£10.6 -0.0£3.2 7.1£17.5 2.7% 0.7%
Junghans-BE3 24.3+3.9 -2.0+£1.3 18+9 23% 1.3%
Baby 55.3+213.1  -11.44+56.2 66+229 2.2% 0.0%

Indep. norm. All RC but Junghans 34.9+13.2 -7.2%¥4.3 60.2+27.4 1.3%
Junghans 23.6£3.4 -1.7x1.1 16.1+7.1 0.7%
All radiative capture 23.4+3.3 -1.8+1.1 16.6+6.8 3.7%
Coulomb dissociation

Corr. norm.  All RC but Junghafls  35.4+13.0 -7.1+£4.2 57.2+26.8 6.7% 3.6%
All but Junghan® 29.0+£7.9 -5.0£2.9 43.5+21.2 7.7% 5.4%
Junghans 24.1+3.4 -1.9+1.1 18.5+6.9 26% 1.3%
All radiative capture 18.9+2.9 -0.1+£1.0 5.7+6.1 6.0% 3.2%
Coulomb dissociation  -13.5+26.4 9.3+8.6 -53+53 6.5% 3.6%

aAll non-Junghans RC data sets with at least three points.
PA| non-Junghans RC.

plore a constrained pole model which exploits knowledge of Using this information, individual experiments determine
the astrophysicab factor around its subthreshold pole, on S;(0) much more precisely than in the unconstrained pole
which all theories agree. model fit. Again the Junghans data provide the strongest con-
straints, 21.4+1.3 eV p20] and 21.4+0.8 eV §8], respec-
tively. However, the discrepancy between the two Junghans
In order to pin down theS factor with higher precision, data sets and the other radiative capture experiments is quite
we need to examine the available theories and determingpparem, with the fit to the combined Junghans data giving
what, if any, universal information is available. To do thiswe 21 4+0.7 eV b and the other radiative capture data yielding
fit each theory, normalized such th&(0)=1, using the 15342 4 eV b. This is a@ discrepancy between these two
pole model form, which now reduces to a two parameter fity,,;_energy extrapolations, using the independent normaliza-
depending on the pole terar-a/$,7(0) and the slope term i, method. This tension is somewhat reduced in the corre-
c=pB/S170). We fit to four theories, the two potential models |a¢ed normalization method, which yields 21.1+0.8 eV b and
of DT and the cluster-model calculations of DB and DD. Our17 912 3 eV b for the Junghans and non-Junghans radiative

results are summarized in Table IV. , _capture data sets, respectively, a discrepancy slightly more
As one can see, the pole term is robustly determined, Wlﬂehan 1. The CD data yield 17.5+25eVb and

ae|[44,463 kﬁv' :’r\]/.e .a(?optat:.45 tkeV as Ol:r tchanonlrc]:al 17.4+2.6 eV b using the independent normalization and cor-
valug, and allow this information 1o propagaté through our,g .04 normalization methods, respectively. It is quite re-

ggg\igﬁlﬁg tﬁnsfgvgovv\og?r:ucsozzg?r?éstxg_tg?alr?]vgigrﬁtrg%arkable that the non-Junghans radiative capture data and
7!mp ' P "the CD data agree so well, while both disagree with the

Junghans data. This may be due to the sparseness of the data
in these data sets, but the deviations from the Junghans re-
sults are significant. It would be desirable to have an inde-
pendent confirmation of the Junghans measurements, since
they deviate significantly from the other data and dominate
the central value of combined fits.

At this time, it is unclear what is causing the discrepan-
cies. Arguably, the Coulomb dissociation measurements have

VII. CONSTRAINED POLE MODEL ANALYSIS

E
SiAE) = 517(0){1 -am} + BE, (10

with the parametea being fixed at 45 keV. Our results are
summarized in Table V.

TABLE IV. Best fit parameters for several theoretical structure
models belowE.,,=425 keV.

Model a (keV) ¢ (MeVY the least in common with the .radiative capture measur'ements
and large systematics of their own, so one could claim that

DT Li+n potential 45.7+0.5 0.553+0.007 they are the source of the discrepancy. However, this fails to

DT "Be+p potential 45.0+0.6 0.433+0.007 explain the discrepancy among radiative capture measure-

DB Volkov I 45.5+0.1 0.434+0.001 ments, namely between the two Junghans experinjér6|

DD Minnesota 44.5+0.1 0.404+0.002  and that of Filippone[15], which dominates the non-

Junghans data sets. As shown in Table V, none of the other
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TABLE V. Results of a constrained pole model fit of radiative capture and Coulomb dissociation data
below E.,=425 keV. Shown are the best fit astrophysi€dhctors, the associated slope param¢ieand
their standard deviationstatistica). Also shown are both the intrinsic normalization errors and the discrep-
ancy normalization errors for combined data sets, all cited in percent, which should be added in quadrature
with the statistical errors to get the total error. An additional systematic error must be added due to the
uncertainty ina; AS;4(0)/S;7(0)=~0.16Aa/a, and AB/B~0.8Qa/a, which for a=45+1 keV yields
AS,/(0)/S;7(0)=0.4% andAB/B=1.8%, respectively.

Data set S1740) (eV b) B (eV b Mev? €norm Egisc
Filippone 16.4+2.8 18.1+7.2 11.9% 4.9%
Strieder 30.6+17.2 -17.8+37.6 8.3% 4.0%
Hammache-1 -2.7+16.7 56.2+34.4 4.9% 3.7%
RC Hammache-2 -2.3+16.1 159.£113. 12.2% 0.0%
Junghans-BE1 21.4+1.1 12.1+2.6 2.7% 0.7%
Junghans-BE3 21.4+0.6 11.3+1.6 2.3% 1.3%
Baby 14.6+8.5 21.9+17.8 2.2% 0.7%
Davids 16.6+£2.5 9.1+6.4 7.1% 0.0%
CD Schimann 17.5+4.9 12.5+13.2 5.6% 0.0%
All RC but Junghans 16.3£2.3 17.3£5.0 3.5%
Indep. norm. Junghans 21.4x0.7 11.6x1.4 0.8%
All radiative capture 20.7+£0.6 11.3+1.3 4.8%
Coulomb dissociation 17.5+2.3 9.7+5.8 5.1%
All RC but Junghans 17914 13.4+£3.3 8.0% 5.8%
Corr. norm. Junghans 21.1+£0.5 12.3+£1.3 2.6% 1.3%
All radiative capture 21.4x0.5 11.0£1.2 5.7% 3.2%
Coulomb dissociation 17.4%2.2 8.7£5.7 6.4% 4.8%

radiative capture measurements bel@y,=425 keV pro-  Sfactor of the’Be(p, )®B reaction. These values &(0)
vides a significant constraint o®,(0). It is unclear which  agree perfectly with the CD data and non-Junghans radiative
experiments are responsible for the discrepancy. capture data. The ANC-derived factors disagree with the
With these remaining uncertainties in mind, it is helpful to Junghans data at slightly more than the tevel. Again,
remind ourselves that we have defined a rigorous treatmerhese discrepancies need to be more fully explored to better
for exactly these kinds of discrepancies. Our treatment hadetermine the low-energy behavior of tBdactor.
examined the level of concordance and quantified it in terms Thus far we have primarily discussed the low-energy ex-
of a discrepancy error. We thus recommend an astrophysicédapolations of theS factor S;(0) and not the slope. Using
Sfactor at zero energy of our constrained pole model we find that the slopes based on
_ . — the non-Junghans radiative capture, Junghans, and CD data
S140) =20.7£1.2 eV b indep. normalization, (11) are all roughly consistent with each other. In fact, the Jung-
o hans and CD slopes agree remarkable well, though the CD
S0)=21.4+1.4 eV b corr. normalization (12)  data have sizable errors. The non-Junghans radiative capture
for the radiative capture data, and slope disagrees at therlevel with both the Junghans and
the CD data. Again, the non-Junghans fit is dominated by the
Si7(0)=17.5+2.5 eV b indep. normalization, (13) Filippone[15] data, with substantial uncertainties. These dis-
crepancies disappear when one uses the correlated normal-
S1A0)=17.4+2.6 eV b corr. normalization (14) ization method, suggesting that no significant deviation in
the slope is observed and that the constraint on the slope
for the CD data.

o usingE;,<425 keV data is not particularly strong. The fact
One can compare our low-ener§factor determinations

) A { mn that the statistical errors in this parameter dominate over the
with those determined from asymptotic normalization coef-normalization error supports this.

ficients (ANC’s). There are measurements frqi proton
transfer reaction§34], (ii) ®B breakup reaction$35], and
(iii ) neutron transfer reactiori86]. The asymptotic normal-
ization coefficient can be very simply related to the astro- We have presented a robust formalism for fitting data that
physical S factor, so we quote the measurements in theséoth properly propagates known systematic uncertainties and
terms. These determinations yie(@) 17.3£1.8 eV b,(ii)  quantifies the quality of fit, incorporating a discrepancy error
18.7+1.9 eV b, andiii) 17.6+1.7 eV b for the astrophysical into the total systematic error. We discuss two limiting cases,

VIIl. CONCLUSIONS
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one in which data sets are considered completely indeperBe(p, v)®B reactions. Using a technique similar to that em-
dent from each other, and a second in which all data sets agdoyed here, the authors ¢9] find a total error in theS;,
totally correlated. These two methods, the independent normormalization of 17%. If we adopt our determination of
malization and correlated normalization methods, yield simi-S,(0) using the independent normalization methfi.
lar results, providing robust constraints and suggesting thati1)] and theS;, error assignment from Ref9] we find the
most previous analyses have underestimated the true unceésilowing standard solar mod€BP04) [6] prediction for the

tainty. total 8B solar neutrino flux in units of ocm2 s7%;
A structure-model-dependent analysis was performed us- 8
ing the DT’Li+ n potential[11] and the DD Minnesota force ¢(°B) =5.641+0.058S,7) £ 0.15S3) +0.21]. (15)

7 . .
cluster [30] models. The'Li+n potential model generally oo e have separated the individual contributions to the
pr_ed|cts Iov_v-energ_y extrapolatéﬁlfactor_s smaller '_[han the qtal error in the neutrino flux, those fro®-, Sy, and the
Minnesota-interaction cluster model. With the available datayinar standard solar model parameters, which when added in
no significant preference for one model is observed. We exgadrature yield a total error of 26%. We can see that the
plored a structure-model-independent fit to the data, finding,e\y s _ error assignment contributes 6% to the total neutrino
that only the Junghanf8] data placed even modest con- g« error.

straints on the low-energ factor. Identifying a feature — \ypile S . now makes only a relatively small contribution
common to all models, the relative strength of the subthreshe, ia total uncertainty in the predicté® solar neutrino

old pole term, we reduced the extrapolation error considers, ongoing measurements &, and improved radiative
ably. Even though we find evidence for discrepancies beg ity tables may reduce the other solar model uncertainties
tween the Junghanet al. radiative capture measurements g ,pstantially in the near future. In order to further reduce the

and the other§15-21), our rigorous and careful treatment | ncertainty ors,,, a new high precision measurement with a
of systematic errors provides a robust determination ofjaiqiled error budget would be required.

S,/0). Our analysis of indirect Coulomb dissociation data
[11,26 and ANC determinationg34—-3q found mutual
agreement and consistency with the radiative capture mea-
surements other than those of Junghenal. This work was supported by the Natural Sciences and
The dominant source of error in the standard solar modeEngineering Research Council of Canada. We acknowledge
predictions for the totdB neutrino flux is the uncertainty in helpful discussions with Shung-ichi Ando, Sam Austin, Carlo
the heavy metal abundance. The dominant nuclear uncertai@arbieri, Michael Hass, Kurt Snover, Jean-Marc Sparenberg,
ties stem from uncertainties in théHe(a,y)’Be and Lukas Theussel, and Brian Fields.
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