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The experimental landscape for the7Be+p radiative capture reaction is rapidly changing as new high
precision data become available. We present an evaluation of existing data, detailing the treatment of system-
atic errors and discrepancies, and show how they constrain the astrophysicalS factor sS17d, independent of any
nuclear structure model. With theoretical models robustly determining the behavior of the subthreshold pole,
the extrapolation error can be reduced and a constraint placed on the slope ofS17. Using only radiative capture
data, we findS17s0d=20.7±0.6sstatd±1.0ssystd eV b if data sets are completely independent, while if data sets
are completely correlated we findS17s0d=21.4±0.5sstatd±1.4ssystd eV b. The truth likely lies somewhere in
between these two limits. Although we employ a formalism capable of treating discrepant data, we note that the
central value of theS factor is dominated by the recent high precision data of Junghanset al. [Phys. Rev. C68,
065803(2003)], which imply a substantially higher value than other radiative capture and indirect measure-
ments. Therefore we conclude that further progress will require new high precision data with a detailed error
budget.
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I. INTRODUCTION

The comparison of measured and predicted8B solar neu-
trino fluxes represents a test of solar models and an opportu-
nity to learn about the properties of the electron neutrinos
produced in the Sun. Recent measurements at SNO[1] have
determined the total flux of active neutrinos emitted in theb+

decay of8B with a combined statistical and systematic pre-
cision of 9%. The implications of solar and reactor neutrino
flux measurements for neutrino mixing parameters are ex-
plored in, e.g., Refs.[2,3]. Theoretical predictions of the8B
solar neutrino flux are now substantially more uncertain than
the experimental measurements. Recent predictions have un-
certainties of 20%[4] and 15%[5]. The latest effort to esti-
mate the theoretical uncertainty found a value of 23%[6].
This error is completely dominated by the uncertainty in
the heavy element abundance of the Sun, which has
recently been revised to a level 2.5 times larger than
the previous adopted value[7]. The contribution to the
theoretical error budget made byS17 has now been
estimated at 3.6% based on the recommendation of
S17s0d=21.4±0.5sexpt.d±0.6 stheor.d eV b given in Ref.
[8]. Even if the uncertainty due toS17 represents a small
fraction of the total theoretical uncertainty, in our view an
independent determination of its value based on the available
experimental data and theoretical models is worthwhile.
Here we provide reliable determinations of the total uncer-
tainty in theS factor, and find that nearly all previous analy-
ses have underestimated the error.

In this paper we detail our fitting procedure, presenting
formalisms for propagating systematic errors and combining
multiple data sets, some of which were first presented in Ref.
[9]. We then describe the available data relevant for
7Besp,gd8B, and present the data sets used in this analysis.
Next we briefly discuss the structure models used to extrapo-
late experimental data to solar energies, and the question of
how the models can be tested. Finally, we present our con-

straints on the astrophysicalS factor using:(i) the energy
dependence of the best structure models,(ii ) a pole model
parametrization independent of structure models, and(iii ) a
constrained pole model parametrization, where theory is
used to robustly determine the behavior of the subthreshold
pole.

II. FITTING PROCEDURE

It is often desirable to determine an average or best-fit
representation of experimental data, and the uncertainties in
such a representation. The standard techniques are generally
not discussed in the literature, and are assumed to be well
known. We detail here a formalism needed to properly take
into account correlated data and systematic errors.

When modeling data, one generally uses a maximum like-
lihood or minimumx2 formalism to determine the best fit.
The x2 is usually defined as:

x2 = o
i
Sysxid − mi

si
D2

, s1d

wheremi andsi are the mean and standard deviation of the
ith data point andysxd is the value calculated from the model
we are using to describe the data as a function of the inde-
pendent variablex [e.g., ysxd→S17sEd]. As an example, a
linear model consists ofP parameters andP basis functions
[i.e., ysxd=op=1

P apYpsxd]. Minimizing x2 defined in this way
also minimizes the variance in the best fit model, but is lim-
ited in that it assumes the data points are independent and
there is no explicit prescription for dealing with systematic
errors or multiple data sets. A more general treatment has
been described recently in an analysis of reaction cross sec-
tions relevant for big bang nucleosynthesis[9]. We shall
adopt a similar procedure for studying the7Besp,gd8B reac-
tion. A clear understanding of how statistical and systematic
uncertainties propagate through the analysis is an essential
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aspect of this approach. It is assumed that the dominant sys-
tematic error is the normalization uncertainty, which can be
parametrized by a relative uncertaintyen for each data setn.
This global normalization error induces correlations between
data points in the same data set. The correlation between two
data points is given by[9]

Cin,jn
= s1 + en

2dsin
2 din,jn

+ en
2min

m jn
, s2d

where sin
is now the statistical uncertainty of theith data

point of data setn anddin,jn
is the Kronecker delta. Using this

correlation matrix, one can define a more generalx2:

x2 = o
i,j

Ci,j
−1fysxid − migfysxjd − m jg, s3d

where we have left off the data set subscriptn for clarity.
Given the simple form of the covariance matrix in Eq.(2),
the inverse can be found analytically[9], and we obtain

Ci,j
−1 =

di,j

s1 + e2dsi
2 −

e2mim j

s1 + e2d2si
2s j

2

1 +
e2

s1 + e2dok
Smk

sk
D2 , s4d

where we have again suppressed the indexn. When the sys-
tematic errors are smaller than the statistical errors
senmin

,sin
d or in the limit of large data sets, thex2 of Eq.

(3) reduces to that of Eq.(1), with the statistical error
weighting thex2 rather than the total error.

We stress that thex2 quantity is a statistical device only;
its minimum value tells us only how good the fit is within
statistical uncertainties and its curvature tells us only about
the statistical uncertainties in the fit. This is seen as a 1/ÎN
scaling in the best fit uncertainty, whereN is the number of
data points. Systematic errors are not reduced by this factor.
The total uncertainty then consists of the statistical error and
the intrinsic normalization error. Statistical errors contain no
information about the quality of the fit. This can be seen by
arbitrarily shifting data points away from each other, keeping
their absolute uncertainties the same. We need an additional
measure of how far data fall from the best fit. How then do
we address the quality of the fit?

In Ref. [9], such a discrepancy error is defined as a mea-
sure of the fit quality. The discrepancy error is the weighted
dispersion of the data relative to the best fit:

edisc
2 =

o
i,j

Ci,j
−1fysxid − migfysxjd − m jg

o
i,j

Ci,j
−1ysxidysxjd

. s5d

The absolute size of this discrepancy error tells us how well
the data are described by the best fit, while its size relative to
the intrinsic normalization error quantifies possible unknown
systematics. One may be tempted to reduce the size of the
discrepancy error by the number of degrees of freedom(e.g.,
x2→x2/n), but this is inappropriate because it assumes that
the unknown errors we are trying to take into account can be
propagated through the data analysis. As discussed earlier,
systematics are not reduced by 1/ÎN as are statistical errors.

We adopt a total normalization error defined as the quadratic
sum of the intrinsic normalization error and this discrepancy
error, as was done in Ref.[9].

We summarize our procedure for analyzing single data
sets as follows.

(i) We find best fits and statistical uncertainties, where the
statistical errors of the data points dominate thex2 analysis.

(ii ) The total normalization error is the quadratic sum of
the intrinsic normalization error and our quality-of-fit mea-
sure, the discrepancy error.

We are then left with the remaining question of how to
treat multiple data sets. We discuss two methods. The first
method, adopted in Ref.[9], treats the data sets as totally
correlated and comprising a single data set. The second
method treats the data sets as if they were completely inde-
pendent. Reality is likely between these two possibilities;
however at present we have no good prescription for deter-
mining how correlated data sets actually are, and therefore
present results for these two limiting cases. Additionally,
both methods yield similar results, suggesting that the meth-
ods are accurate and robust. Generally, the totally correlated
method yields more conservative uncertainties as the intrin-
sic normalizations are not treated statistically.

A. Completely correlated data sets

Assuming that individual data sets are totally correlated
simplifies the analysis. Since the exact nature of the
correlation is unknown, we cannot rigorously define a
correlation matrix, so we continue to use the definition
in Eq. (2) sCin,jm

=dn,mCin,jn
d and its inverse in Eq.(4)

sCin,jm
−1 =dn,mCin,jn

−1 d, generalized for multiple data sets. By vir-
tue of the large data set limit for the inverse covariance ma-
trix, we are led to the conclusion that the precise nature of
the correlations is relatively unimportant, as the statistical
uncertainties dominate thex2 analysis.

As before, the total normalization error is the quadratic
sum of the intrinsic normalization error and the discrepancy
error setot

2 =enorm
2 +edisc

2 d. The discrepancy error as defined in
Eq. (5) is valid for a single data set and hence also for the
case of totally correlated data sets. Since the individual data
sets are completely correlated, the overall normalization er-
ror must be some average of the individual normalization
errors. We adopt the normalization error prescription of
Ref. [9]:

enorm
2 =

o
n

en
2

xn
2

o
n

1

xn
2

, s6d

whereen are the individual data set normalization errors, and
xn

2 is thex2 per datum of data setn with respect to the best
fit. This weighting scheme gives more weight to data sets
that agree with the best fit model. We also point out that this
normalization error assignment is bounded by the smallest
and largest normalization errors and is not reduced by the
number of data sets. This reflects the fact that the data sets
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are completely correlated and the normalization errors can-
not be treated statistically in this case.

The expectation value and statistical variance of the best
fit model are denotedEfysxdg andVSfysxdg, respectively. In-
cluding the normalization error, the total variance in the best
fit model is VTfysxdg=s1+etot

2 dVSfysxdg+etot
2 Efysxdg2. This

completes our description of the formalism for completely
correlated data sets, which we refer to as the correlated nor-
malization analysis.

B. Completely independent data sets

If data sets are truly independent from each other, we can
treat the normalizations statistically, once best fits and statis-
tical errors are found for each data set. We consider only
linear models, for whichysxd=op=1

P apYpsxd, where theYpsxd
are known functions, and follow the prescription laid out in
the previous section for each data set. The expectation value
and statistical variance ofysxd areEfysxdg=op=1

P âpYpsxd and
VSfysxdg=op,q=1

P Cp,qYpsxdYqsxd, respectively. With the best
fit parametersâsnd

p and parameter covarianceCp,q
snd for each

data setn in hand, we can combine individual data sets and
find a global best fit. Upon minimization, thex2 can be de-
composed as

x2 = xmin
2 + o

n
o

p,q=1

P

Cp,q
snd−1sap − âp

snddsaq − âq
sndd, s7d

where the calligraphicCp,q
snd is the covariance between thepth

and qth parameters of thenth data set, with best fit param-
eters given byâp

snd, provided there are at least as many data
pointsN as fitting parametersP. Note that with linear models
all parameters are Gaussian, i.e., thex2 is a quadratic func-
tion of the parameters.

In order to combine multiple data sets, we must first re-
place the statistical varianceVSfysxdg with the total variance
VTfysxdg. In other words, we replace the parameter covari-
ance matrixCp,q

snd for each data setn with s1+etot,n
2 dCp,q

snd

+etot,n
2 âp

sndâq
snd. Inserting this new parameter covariance into

Eq. (7), we minimize thex2 to find the best fit parameters
and their statistical covariances, which now include the nor-
malization errors of each data set.

We also need to quantify how well data sets agree with
each other. The variance of the best global fit contains no
information about the mutual consistency of data sets. This is
seen if we shift the mean values of data points in a single
data set, but keep the same absolute uncertainties. The pa-
rameter covariance is not changed, even though data sets can
be severely discrepant. Thus we need to define a global dis-
crepancy error. To do this, we calculate the renormalizations
needed for the global best fit to minimize thex2 for indi-
vidual data sets. The dispersion of these renormalizations
provides an estimate of the discrepancy between data sets.
We find renormalizationsan and their total errorssn for each
data set and then their dispersion according to

edisc
2 =

o
n

San − 1

sn
D2

o
n

1

sn
2

. s8d

This definition is similar to that discussed for the individual
data sets, except that here no correlations exist between data
sets. Given the global best fitEfysxdg and its statistical vari-
ance VSfysxdg, the total variance in this case is given by
VTfysxdg=s1+edisc

2 dVSfysxdg+edisc
2 Efysxdg2. We refer to this

formalism as the independent normalization analysis.

III. DATA

With these formalisms in place, we now discuss the data
available to constrain the astrophysicalS factor of the
7Besp,gd8B reaction. In some cases there is sufficient reason
to exclude data sets from the analysis. We consider only low
energy data,Ecm,425 keV, when determining the best fits
to S17sEd as nuclear structure uncertainties complicate and
render more uncertain the extrapolation when higher energy
data are included[8,10,11].

A. Radiative capture data

Initially, we considered the data sets of Kavanagh[12],
Parker[13], Vaughnet al. [14], Filipponeet al. [15], Strieder
et al. [16], Hammache-1[17], Hammache-2[18], Hasset al.
[19], Junghans-BE1[20], Junghans-BE3[8], and Babyet al.
[21]. We exclude the data of Kavanagh[12], Parker[13], and
Vaughn et al. [14] because these authors do not present
enough information to adequately determine a normalization
error. We do not use the measurement of Hasset al. [19]
simply because the data lie above our 425-keV energy cutoff.

Several details of our analysis bear mention here. One of
the two target thickness determinations in the Filipponeet al.
measurement[15] relies on the7Li sd,pd reaction. We adopt
the recommendation of Ref.[22] for the value of this reac-
tion cross section. The Hammache-2[18] data consist of
three points, two of which are measured relative to the third.
Ideally, one would like to include all three points, but not
enough information is given on the third point to determine
an intrinsic normalization error. We thus adopt the two rela-
tive measurements as the data set, using the third to deter-
mine the normalization error. Reference[8] presents data
from their BE1 measurement renormalized using the BE3
data. These renormalized BE1 data are not independent of
the BE3 data. Therefore we consider here the BE3 data[8]
and the original BE1 data[20], which are independent. Fi-
nally we note that there is some discussion in the literature
[8] regarding the uncertainties in the data of Babyet al. [21].
We take the uncertainties for this measurement from Table II
of Ref. [21].

B. Coulomb dissociation data

We considered the Coulomb dissociation(CD) data of
Kikuchi et al. [23,24], Iwasa et al. [25], Schümannet al.
[26], and Davidset al. [11,27]. We exclude the measure-
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ments of Kikuchiet al. [23,24] and Iwasaet al. [25] due to
concerns over the way these data were analyzed. The data
from these measurements were not analyzed using a cut on
the maximum scattering angle of the8B center of mass, cor-
responding semiclassically to a minimum impact parameter.
This means that the effects of nuclear absorption, diffraction
dissociation, andE2 transitions are present in the data, and
that the inferredE1 S factors may not be reliable. Since we
lack the detailed experimental information required to cor-
rect for these effects, we do not consider these data here.
Hence we include only the CD data of Schümannet al. [26]
and Davids and co-workers[11,27], which were analyzed
using scattering angle cuts to minimize the nuclear andE2
contributions and their associated uncertainties.

IV. THEORETICAL STRUCTURE MODELS

In general, two classes of models have been used to de-
scribe the structure of8B: single particle potential models
that treat8B as ap-wave proton coupled to a7Be core in its
ground state, and microscopic cluster models that include
two configurations of the three clusters3He, a, and a proton.
Recently, most experimenters have used the cluster model of
Descouvemont and Baye(DB) [28] to extrapolate their data
to zero energy. This generator coordinate method employs a
central nucleon-nucleon interaction along with Coulomb and
spin-orbit interactions. Reference[28] used the Volkov II
nucleon-nucleon interaction[29], while a more recent pre-
liminary effort by Descouvemont and Dufour(DD) [30] opts
for the Minnesota force[31], which describes low mass sys-
tems better. These cluster models include excited7Be con-
figurations. The single particle potential models generally
employ a central Woods-Saxon+Coulomb potential, and op-
tionally a spin-orbit interaction, which can be neglected in
calculations of theE1 S factor provided the central potential
depth is properly adjusted. In these models, thep-wave po-
tential depth is fixed by the8B binding energy. The depths
for the other partial waves can be chosen identically, but a
better choice is to fix them using the well-measureds-wave
scattering lengths for channel spin 1 and 2 in the isospin
mirror system7Li+ n [32]. The scattering lengths in the
7Be+p system have also been measured[33], but with much
lower precision. The scattering lengths for the dominantS
=2 channel are consistent between the isospin mirrors, but
there is a 2.7s discrepancy in the value for theS=1 channel.
This discrepancy is not understood at present, and deserves
attention in the future. In this work, we consider the DD
cluster model and the7Li+ n potential model of Davids and
Typel (DT) [11], which reproduces the7Li+ n scattering
lengths. These models well represent their respective classes.

Both of these models have virtues. The cluster model al-
lows more configurations than does the potential model, and
therefore might be expected to describe the physics better.
On the other hand, the potential model is simple, and has
been tuned to reproduce the elastic scattering data. Figure 1
shows the shapes predicted by the potential and cluster
models.

V. STRUCTURE-MODEL-DEPENDENT ANALYSIS

With the theoretical structure models described briefly in
Sec. IV, our fitting procedure involves only a single param-

eter, an absolute normalization. We fit data using the DT
7Li+ n potential model and the DD cluster model employing
the formalism presented in Sec. II. Our results are summa-
rized in Tables I and II.

We first derive best fits for individual experiments. The
S17s0d determinations are in excellent agreement with previ-
ous analyses[8,11]. In general, the discrepancy errors are
smaller than or comparable to the intrinsic normalization er-
rors of each data set. Note that the central values ofS17s0d
for the radiative capture data range from 18 to 20 eV b and
21 to 22 eV b for non-Junghans and Junghans data sets, re-
spectively, while the CD data lie in the range of 16–19 eV b.
This hints at some level of disagreement among the radiative
capture data sets, especially when comparing the two Jung-
hans experiments[8,20] with the other radiative capture data,
in addition to that between the radiative capture and the CD
data.

To further explore and quantify this disagreement we look
at different combinations of the data in our multiple experi-
ment fits. We first look at the radiative capture data alone. In
these model-dependent analyses, we consider three combina-
tions of the radiative capture data:(i) all but the Junghans
data,(ii ) only Junghans data, and(iii ) all the radiative cap-
ture data. Using the DT7Li+ n potential model, the indepen-
dent normalization method gives forS17s0d in eV b: (i)
19.3±1.0,(ii ) 21.4±0.5, and(iii ) 20.8±1.1; using the corre-
lated normalization method, we find(i) 19.1±2.0, (ii )
21.3±0.7, and(iii ) 21.2±1.4 eV b. For the CD data we find
17.5±1.3 and 17.1±1.6 eV b using the independent normal-
ization and correlated normalization methods, respectively.

FIG. 1. (Color online) Shapes of theS factors predicted by the
Descouvemont and Baye(DB) and Descouvemont and Dufour
(DD) cluster models and the Davids and Typel(DT) potential
model as a function of relative energysEcmd. Shown is the ratio of
the E1 S factor to its value atEcm=0, which allows the shapes of
models with different absolute normalizations to be shown in the
same figure. The shapes of the two cluster models are very similar
at low energies, but substantial deviations exist above 700 keV. The
potential model is seen to have a slightly larger slope at high ener-
gies, but also a very different shape below 400 keV.
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We find that the CD data and the non-Junghans radiative
capture data are consistent, showing approximately a 1s dis-
crepancy, while the CD data and Junghans data are discrep-
ant at a little over the 2s level. Furthermore, there is a 1–2s
disagreement between the Junghans data and the other radia-
tive capture measurements. The Junghans data dominate the
fit when combining all the radiative capture data, due to their
extremely small errors and the size of the data sets. Similar
but somewhat higher results are obtained with the DD cluster
model. Interestingly, the high precision Junghans data are
described slightly better by the DT7Li+ n potential model
than by the DD cluster model, as seen in our quality-of-fit
measure, the discrepancy error, but not at a significant level.
The nature of the discrepancies between the Junghans data
and both the non-Junghans radiative capture data and the CD
data must be understood before we can address which model
describes the data best. In an attempt to go beyond structure-
model-dependent results, we now explore a structure-model-
independent analysis.

VI. POLE MODEL ANALYSIS

Performing a structure-model-independent analysis will
provide insight into the quality of existing data for the

7Besp,gd8B reaction below 425 keV. We use the expansion
suggested by Ref.[10], adopting a three-parameter model:

S17sEd = S17s0d + a
E

QsE + Qd
+ bE, s9d

whereQ=137.5 keV. In addition to terms constant and linear
in energy, this functional form contains a simple pole term, a
universal feature of radiative capture reactions that is inde-
pendent of the details of nuclear structure models. We have
chosen a fit that is linear in its parameters, but one can easily
calculate the nonlinear parameters adopted in Ref.[10]: the
pole term is given bya=−a /S17s0d and the slope term by
c=b /S17s0d. A data set must have at least three data points in
order for us to employ this three-parameter fit. Our results
are summarized in Table III. Of all the data, only the most
recent Junghans-BE3 data set[8] provides a significant
structure-model-independent constraint on the low energy
behavior of the astrophysicalS factor, implying S17s0d
=24.3±4.0 eV b. With this data set providing the only sig-
nificant low-energy constraint onS17, it dominates the fit
when we combine the radiative capture data to find
23.6±3.4 eV b for the Junghans data and 23.4±3.4 eV b for
all the radiative capture data, using the independent normal-
ization method. Using the correlated normalization method
we find 24.1±3.4 eV b for Junghans alone, and
18.9±3.2 eV b if we include all data sets. With the current
data we can place robust constraints on the extrapolated
value S17s0d independent of any particular structure model.
We find that the central value is calculated to lie between 19
and 24 eV b with a total uncertainty of ±3.5 eV b.

We see that in order to place a tighter constraint onS17,
one must assume some low-energy behavior. We now ex-

TABLE I. Best fits to radiative capture(RC) and Coulomb dis-
sociation(CD) data forEcm,425 keV using the DT7Li+ n poten-
tial model. Shown are the best fit astrophysicalS factors and their
standard deviations(statistical) at Ecm=0. Also shown are the two
individual contributions to the total systematic error, the intrinsic
normalization error and the discrepancy error, given in percent. An
additional potential model parameter uncertainty should be added to
the other systematic errors, withemodel=0.01%, reflecting the small
uncertainties in the7Li+ n elastic scattering data.

Data set
(no. of points) S17s0d seV bd enorm edisc

Direct

Filippone (6) 19.3±0.5 11.9% 5.6%

Strieder(2) 17.9±0.6 8.3% 2.7%

Hammache-1(3) 19.4±0.6 4.9% 5.7%

Hammache-2(2) 18.8±1.2 12.2% 8.1%

Junghans-BE1(8) 21.6±0.2 2.7% 0.7%

Junghans-BE3(13) 21.2±0.1 2.3% 1.3%

Baby (3) 19.8±0.7 2.2% 2.2%

Davids (2) 16.6±0.5 7.1% 0.1%

CD Schümann(2) 18.4±0.8 5.6% 0.8%

Indep.
norm.

All RC but Junghans 19.3±0.7 3.8%

Junghans 21.4±0.4 0.8%

All radiative capture 20.8±0.4 5.1%

Coulomb dissociation 17.5±0.9 5.5%

All but Junghans 19.1±0.3 8.5% 6.2%

Corr. Junghans 21.3±0.1 2.6% 1.4%

norm. All radiative capture 21.2±0.1 5.6% 3.2%

Coulomb dissociation 17.1±0.5 6.7% 5.5%

TABLE II. Same as Table I, except for the DD cluster model. A
model uncertainty should be added to the other systematic errors,
but DD do not present formal errors for this model.

Data set S17s0d seV bd enorm edisc

Direct

Filippone 20.1±0.5 11.9% 6.1%

Strieder 18.8±0.7 8.3% 2.4%

Hammache-1 20.4±0.7 4.9% 5.9%

Hammache-2 19.1±1.2 12.2% 8.2%

Junghans-BE1 22.6±0.2 2.7% 1.0%

Junghans-BE3 22.1±0.1 2.3% 1.4%

Baby 20.9±0.7 2.2% 2.7%

CD Davids 17.4±0.6 7.1% 1.0%

Schümann 19.2±0.9 5.6% 1.6%

Indep. norm. All RC but Junghans 20.3±0.7 4.2%

Junghans 22.3±0.5 1.1%

All radiative capture 21.8±0.4 4.9%

Coulomb dissociation 18.2±1.0 5.3%

Corr. norm. All RC but Junghans 20.0±0.3 8.6% 6.5%

Junghans 22.2±0.1 2.5% 1.6%

All radiative capture 22.1±0.1 5.5% 3.3%

Coulomb dissociation 17.9±0.5 6.7% 5.5%
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plore a constrained pole model which exploits knowledge of
the astrophysicalS factor around its subthreshold pole, on
which all theories agree.

VII. CONSTRAINED POLE MODEL ANALYSIS

In order to pin down theS factor with higher precision,
we need to examine the available theories and determine
what, if any, universal information is available. To do this we
fit each theory, normalized such thatS17s0d;1, using the
pole model form, which now reduces to a two parameter fit,
depending on the pole terma=−a /S17s0d and the slope term
c=b /S17s0d. We fit to four theories, the two potential models
of DT and the cluster-model calculations of DB and DD. Our
results are summarized in Table IV.

As one can see, the pole term is robustly determined, with
aP f44,46g keV. We adopta=45 keV as our canonical
value, and allow this information to propagate through our
data analysis to see how our constraints on the low-energy
behavior ofS17 improve. We thus use the two-parameter fit:

S17sEd = S17s0dF1 − a
E

QsE + QdG + bE, s10d

with the parametera being fixed at 45 keV. Our results are
summarized in Table V.

Using this information, individual experiments determine
S17s0d much more precisely than in the unconstrained pole
model fit. Again the Junghans data provide the strongest con-
straints, 21.4±1.3 eV b[20] and 21.4±0.8 eV b[8], respec-
tively. However, the discrepancy between the two Junghans
data sets and the other radiative capture experiments is quite
apparent, with the fit to the combined Junghans data giving
21.4±0.7 eV b and the other radiative capture data yielding
16.3±2.4 eV b. This is a 2s discrepancy between these two
low-energy extrapolations, using the independent normaliza-
tion method. This tension is somewhat reduced in the corre-
lated normalization method, which yields 21.1±0.8 eV b and
17.9±2.3 eV b for the Junghans and non-Junghans radiative
capture data sets, respectively, a discrepancy slightly more
than 1s. The CD data yield 17.5±2.5 eV b and
17.4±2.6 eV b using the independent normalization and cor-
related normalization methods, respectively. It is quite re-
markable that the non-Junghans radiative capture data and
the CD data agree so well, while both disagree with the
Junghans data. This may be due to the sparseness of the data
in these data sets, but the deviations from the Junghans re-
sults are significant. It would be desirable to have an inde-
pendent confirmation of the Junghans measurements, since
they deviate significantly from the other data and dominate
the central value of combined fits.

At this time, it is unclear what is causing the discrepan-
cies. Arguably, the Coulomb dissociation measurements have
the least in common with the radiative capture measurements
and large systematics of their own, so one could claim that
they are the source of the discrepancy. However, this fails to
explain the discrepancy among radiative capture measure-
ments, namely between the two Junghans experiments[8,20]
and that of Filippone[15], which dominates the non-
Junghans data sets. As shown in Table V, none of the other

TABLE III. Best fit parameters for data withEcm,425 keV with the pole module functional form of Eq.
(9).

Data S17s0d seV bd a seV b MeVd b seV b MeV−1d enorm edisc

RC

Fillipone 38.6±15.7 −8.5±5.4 70.6±37.2 11.9% 3.1%

Hammache-1 −2430±2160 −623±554 −2308±2103 4.9% 0.0%

Junghans-BE1 18.4±10.6 −0.0±3.2 7.1±17.5 2.7% 0.7%

Junghans-BE3 24.3±3.9 −2.0±1.3 18±9 2.3% 1.3%

Baby 55.3±213.1 −11.4±56.2 66±229 2.2% 0.0%

Indep. norm. All RC but Junghans 34.9±13.2 −7.2±4.3 60.2±27.4 1.3%

Junghans 23.6±3.4 −1.7±1.1 16.1±7.1 0.7%

All radiative capture 23.4±3.3 −1.8±1.1 16.6±6.8 3.7%

Coulomb dissociation

Corr. norm. All RC but Junghansa 35.4±13.0 −7.1±4.2 57.2±26.8 6.7% 3.6%

All but Junghansb 29.0±7.9 −5.0±2.9 43.5±21.2 7.7% 5.4%

Junghans 24.1±3.4 −1.9±1.1 18.5±6.9 2.6% 1.3%

All radiative capture 18.9±2.9 −0.1±1.0 5.7±6.1 6.0% 3.2%

Coulomb dissociation −13.5±26.4 9.3±8.6 −53±53 6.5% 3.6%

aAll non-Junghans RC data sets with at least three points.
bAll non-Junghans RC.

TABLE IV. Best fit parameters for several theoretical structure
models belowEcm=425 keV.

Model a skeVd c sMeV−1d

DT 7Li+ n potential 45.7±0.5 0.553±0.007

DT 7Be+p potential 45.0±0.6 0.433±0.007

DB Volkov II 45.5±0.1 0.434±0.001

DD Minnesota 44.5±0.1 0.404±0.002
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radiative capture measurements belowEcm=425 keV pro-
vides a significant constraint onS17s0d. It is unclear which
experiments are responsible for the discrepancy.

With these remaining uncertainties in mind, it is helpful to
remind ourselves that we have defined a rigorous treatment
for exactly these kinds of discrepancies. Our treatment has
examined the level of concordance and quantified it in terms
of a discrepancy error. We thus recommend an astrophysical
S factor at zero energy of

S17s0d = 20.7 ± 1.2 eV b indep. normalization,s11d

S17s0d = 21.4 ± 1.4 eV b corr. normalization s12d

for the radiative capture data, and

S17s0d = 17.5 ± 2.5 eV b indep. normalization,s13d

S17s0d = 17.4 ± 2.6 eV b corr. normalization s14d

for the CD data.
One can compare our low-energyS factor determinations

with those determined from asymptotic normalization coef-
ficients (ANC’s). There are measurements from(i) proton
transfer reactions[34], (ii ) 8B breakup reactions[35], and
(iii ) neutron transfer reactions[36]. The asymptotic normal-
ization coefficient can be very simply related to the astro-
physical S factor, so we quote the measurements in these
terms. These determinations yield(i) 17.3±1.8 eV b,(ii )
18.7±1.9 eV b, and(iii ) 17.6±1.7 eV b for the astrophysical

S factor of the7Besp,gd8B reaction. These values ofS17s0d
agree perfectly with the CD data and non-Junghans radiative
capture data. The ANC-derivedS factors disagree with the
Junghans data at slightly more than the 1s level. Again,
these discrepancies need to be more fully explored to better
determine the low-energy behavior of theS factor.

Thus far we have primarily discussed the low-energy ex-
trapolations of theS factor S17s0d and not the slope. Using
our constrained pole model we find that the slopes based on
the non-Junghans radiative capture, Junghans, and CD data
are all roughly consistent with each other. In fact, the Jung-
hans and CD slopes agree remarkable well, though the CD
data have sizable errors. The non-Junghans radiative capture
slope disagrees at the 1s level with both the Junghans and
the CD data. Again, the non-Junghans fit is dominated by the
Filippone[15] data, with substantial uncertainties. These dis-
crepancies disappear when one uses the correlated normal-
ization method, suggesting that no significant deviation in
the slope is observed and that the constraint on the slope
usingEcm,425 keV data is not particularly strong. The fact
that the statistical errors in this parameter dominate over the
normalization error supports this.

VIII. CONCLUSIONS

We have presented a robust formalism for fitting data that
both properly propagates known systematic uncertainties and
quantifies the quality of fit, incorporating a discrepancy error
into the total systematic error. We discuss two limiting cases,

TABLE V. Results of a constrained pole model fit of radiative capture and Coulomb dissociation data
below Ecm=425 keV. Shown are the best fit astrophysicalS factors, the associated slope parameterb, and
their standard deviations(statistical). Also shown are both the intrinsic normalization errors and the discrep-
ancy normalization errors for combined data sets, all cited in percent, which should be added in quadrature
with the statistical errors to get the total error. An additional systematic error must be added due to the
uncertainty in a; DS17s0d /S17s0d<0.16Da/a, and Db /b<0.80Da/a, which for a=45±1 keV yields
DS17s0d /S17s0d=0.4% andDb /b=1.8%, respectively.

Data set S17s0d seV bd b seV b MeV−1d enorm edisc

Filippone 16.4±2.8 18.1±7.2 11.9% 4.9%

Strieder 30.6±17.2 −17.8±37.6 8.3% 4.0%

Hammache-1 −2.7±16.7 56.2±34.4 4.9% 3.7%

RC Hammache-2 −2.3±16.1 159. ±113. 12.2% 0.0%

Junghans-BE1 21.4±1.1 12.1±2.6 2.7% 0.7%

Junghans-BE3 21.4±0.6 11.3±1.6 2.3% 1.3%

Baby 14.6±8.5 21.9±17.8 2.2% 0.7%

Davids 16.6±2.5 9.1±6.4 7.1% 0.0%

CD Schümann 17.5±4.9 12.5±13.2 5.6% 0.0%

All RC but Junghans 16.3±2.3 17.3±5.0 3.5%

Indep. norm. Junghans 21.4±0.7 11.6±1.4 0.8%

All radiative capture 20.7±0.6 11.3±1.3 4.8%

Coulomb dissociation 17.5±2.3 9.7±5.8 5.1%

All RC but Junghans 17.9±1.4 13.4±3.3 8.0% 5.8%

Corr. norm. Junghans 21.1±0.5 12.3±1.3 2.6% 1.3%

All radiative capture 21.4±0.5 11.0±1.2 5.7% 3.2%

Coulomb dissociation 17.4±2.2 8.7±5.7 6.4% 4.8%
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one in which data sets are considered completely indepen-
dent from each other, and a second in which all data sets are
totally correlated. These two methods, the independent nor-
malization and correlated normalization methods, yield simi-
lar results, providing robust constraints and suggesting that
most previous analyses have underestimated the true uncer-
tainty.

A structure-model-dependent analysis was performed us-
ing the DT7Li+ n potential[11] and the DD Minnesota force
cluster [30] models. The7Li+ n potential model generally
predicts low-energy extrapolatedS factors smaller than the
Minnesota-interaction cluster model. With the available data,
no significant preference for one model is observed. We ex-
plored a structure-model-independent fit to the data, finding
that only the Junghans[8] data placed even modest con-
straints on the low-energyS factor. Identifying a feature
common to all models, the relative strength of the subthresh-
old pole term, we reduced the extrapolation error consider-
ably. Even though we find evidence for discrepancies be-
tween the Junghanset al. radiative capture measurements
and the others[15–21]), our rigorous and careful treatment
of systematic errors provides a robust determination of
S17s0d. Our analysis of indirect Coulomb dissociation data
[11,26] and ANC determinations[34–36] found mutual
agreement and consistency with the radiative capture mea-
surements other than those of Junghanset al.

The dominant source of error in the standard solar model
predictions for the total8B neutrino flux is the uncertainty in
the heavy metal abundance. The dominant nuclear uncertain-
ties stem from uncertainties in the3Hesa ,gd7Be and

7Besp,gd8B reactions. Using a technique similar to that em-
ployed here, the authors of[9] find a total error in theS34
normalization of 17%. If we adopt our determination of
S17s0d using the independent normalization method[Eq.
(11)] and theS34 error assignment from Ref.[9] we find the
following standard solar model(BP04) [6] prediction for the
total 8B solar neutrino flux in units of 106 cm−2 s−1:

fs8Bd = 5.63f1 ± 0.058sS17d ± 0.15sS34d ± 0.21g. s15d

Here we have separated the individual contributions to the
total error in the neutrino flux, those fromS17, S34, and the
other standard solar model parameters, which when added in
quadrature yield a total error of 26%. We can see that the
newS17 error assignment contributes 6% to the total neutrino
flux error.

While S17 now makes only a relatively small contribution
to the total uncertainty in the predicted8B solar neutrino
flux, ongoing measurements ofS34 and improved radiative
opacity tables may reduce the other solar model uncertainties
substantially in the near future. In order to further reduce the
uncertainty onS17, a new high precision measurement with a
detailed error budget would be required.
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