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Abstract
The Trojan Horse method is a powerful indirect technique that provides
information to determine astrophysical factors for binary rearrangement
processes x + A → b + B at astrophysically relevant energies by measuring
the cross section for the Trojan Horse reaction a + A → y + b + B in
quasi-free kinematics. We present the theory of the Trojan Horse method
for resonant binary subreactions based on the half-off-energy-shell R matrix
approach which takes into account the off-energy-shell effects and initial and
final state interactions.

1. Introduction

The presence of the Coulomb barrier for colliding charged nuclei makes nuclear reaction cross
sections at astrophysical energies so small that their direct measurement in the laboratory is very
difficult, or even impossible. Consequently, indirect techniques often are used to determine
these cross sections. The Trojan Horse (TH) method is a powerful indirect technique which
allows one to determine the astrophysical factor for rearrangement reactions. The TH method,
first suggested by Baur [1], involves obtaining the cross section of the binary x + A → b + B

process at astrophysical energies by measuring the two-body to three-body (2 → 3) TH
process, a + A → y + b + B, in the quasi-free (QF) kinematics regime, where the ‘Trojan
Horse’ particle, a = (xy), is accelerated at energies above the Coulomb barrier. After
penetrating through the Coulomb barrier, nucleus a undergoes breakup leaving particle x to
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interact with target A while projectile y flies away. From the measured a + A → y + b + B

cross section, the energy dependence of the binary subprocess, x + A → b + B, is determined.
The main advantage of the TH method is that the extracted cross section of the binary

subprocess does not contain the Coulomb barrier factor. Consequently, the TH cross section
can be used to determine the energy dependence of the astrophysical factor, S(E), of the
binary process, x + A → b + B, down to zero relative kinetic energy of the particles x and A

without distortion due to electron screening [2, 3]. The absolute value of S(E) must be found
by normalization to direct measurements at higher energies. At low energies where electron
screening becomes important, comparison of the astrophysical factor determined from the TH
method to the direct result provides a determination of the screening potential.

Even though the TH method has been applied successfully to many direct and resonant
processes (see [4] and references therein), there are still reservations about the reliability of
the method due to two potential modifications of the yield from off-shell effects and initial
and final state interactions in the TH 2 → 3 reaction. Here we will address the theory of the
TH method for resonant binary reactions x + A → b + B.

2. Trojan Horse

The TH reaction is a many-body process (at least four-body) and its strict analysis requires
many-body techniques. However some important features of the TH method can be addressed
in a simple model. Let us consider the TH process assuming that nuclei y, x and B are
constituent particles, i.e. we neglect their internal degrees of freedom. For simplicity, we
disregard the spins of the particles. The TH reaction amplitude is given in the post form by

M̃(P, kaA) = 〈
χ

(−)
kyF

�
(−)
F

∣∣�VyF

∣∣�(+)
i

〉
. (1)

Here, �
(+)
i is the exact a + A scattering wavefunction, �

(−)
F is the wavefunction of the system

F = b + B = x + A,χ
(−)
kyF

(ryF ) is the distorted wave of the system y + F, ϕi is the bound state
wavefunction of nucleus i, rij and kij are the relative coordinate and relative momentum of
nuclei i and j, P = {kyF , kbB} is the six-dimensional momentum describing the three-body
system y, b and B in the final system, �VyF = VyF − UyF , VyF = Vyb + VyB = Vyx + VyA is
the interaction potential of y and the system F and UyF is their optical potential. The surface
approximation suggested in [5] was the first serious attempt to address the theory of the TH
method. The surface approximation assumes that the TH reaction amplitude has contributions
from the external region where the interaction between the fragments b and B (x and A) can
be neglected and the wavefunction �

(−)
F can be replaced by its leading asymptotic form
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where �
(+)
F ≡ �

(+)

kbB (F ) and �
(−)

kbB (F ) = �
(+)∗
−kbB (F ), u

(+)
kij

(rij ) is the outgoing spherical wave, FbB

is the b + B elastic scattering amplitude, MbB→xA is the b + B → x + A reaction amplitude
inverse to the binary reaction x + A → b + B and vij is the relative velocity of nuclei i and j .
The expression for the TH reaction amplitude in the surface approximation is given by

M̃(P, kaA) ∼ MbB→xA

〈
χ

(−)
kyF

ϕAu
(−)
kxA

(rxA)
∣∣�VyF
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(+)
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where the exact initial scattering wavefunction �
(+)
i is replaced by ϕaϕAχ

(+)
kaA

(raA) and

χ
(+)
kaA

≡ χ
(+)
aA is the distorted wave describing the scattering of the nuclei a and A in the

initial state of the TH reaction. For simplicity we do not take into account here the Coulomb
interactions. However, in the case of the resonant binary reaction x +A → b +B the dominant
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contribution comes from the nuclear interior where both channels x + A and b + B are coupled
and where the asymptotic approximation for �

(+)
F cannot be applied7.

In this work we will address the theory of the TH method for the resonant binary
subprocesses x + A → b + B which explicitly takes into account the off-shell character
of x. Equation (1) can be used as a starting point to derive the expression for the TH
reaction amplitude. We assume that the resonant reaction x + A → b + B proceeds through
the formation of the intermediate compound state �i , i.e. we neglect the direct coupling
between the initial x + A and final b + B channels, which contributes dominantly to direct
reactions but gives negligible contribution to resonant ones. An important step in deriving the
resonant contribution to the TH reaction matrix element is the spectral decomposition for the
wavefunction �

(−)
F given by equation (3.8.1) [7]. It leads to the shell-model-based resonant R

matrix representation for �
(−)
F which is similar to the level decomposition for the wavefunction

in the internal region in the R matrix approach:

�
(−)
F ≈

N∑
ν,τ=1

Ṽ bB
ν (EbB)[D−1]ντ�τ . (4)

Here N is the number of the levels included, EbB is the relative kinetic energy of nuclei b and
B,�τ is the bound state wavefunction describing the compound system F excited to the level
τ . D is similar to the level matrix in the R matrix theory and is given by equation (4.2.20b)
[7]. Finally,

Ṽ bB
ν (EbB) = 〈

χ
(−)
bB ϕb

∣∣�VbB |�ν〉 (5)

is the resonant form factor for the decay of the resonance Fν described by the compound state
�ν into the channel b + B. The partial resonance width is given by

�̃ν(EbB) = 2π
∣∣Ṽ bB

ν (EbB)
∣∣2

. (6)

Then the TH reaction amplitude is

M̃
(R)

(P, kaA) ≈
N∑

ν,τ=1

Ṽ bB
ν (EbB)[D−1]ντ M̃τ (kyF , kaA), (7)

where M̃τ (kyF , kaA) is the exact amplitude for the direct transfer reaction a + A → y + Fτ

populating the compound state Fτ of the system F = x + A = b + B:

M̃τ (kyF , kaA) = 〈
χ
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. (8)

The direct transfer reaction is very well described by the DWBA amplitude, i.e. for the
practical analysis we can approximate �

(+)
i ≈ ϕaϕAχ

(+)
aA . Correspondingly, M̃τ (kyF , kaA) can

be replaced by

M̃
DW

τ (kyF , kaA) = 〈
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Correspondingly for the TH reaction amplitude we get from equation (7)

M̃
(R)

(P, kaA) ≈
N∑

ν,τ=1

Ṽ bB
ν (EbB)[D−1]ντ M̃

DW

τ (kyF , kaA). (10)

The DWBA amplitude takes into account the rescattering of nuclei a and A in the initial
state of the TH reaction and enters as a form factor into the TH resonant reaction amplitude

7 Generally speaking, one must be very careful in using the asymptotic approximation for the scattering wavefunction
�

(−)
F because the matrix element with the exact wavefunction in the initial state and ingoing spherical wave u

(−)
kxA

(rxA)

in the final state vanishes after transformation of the volume integral into a surface integral [6].
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reflecting the off-energy shell character of the transferred particle x. Since in the TH method
the astrophysical factor determined from the TH method is normalized to the on-energy-shell
(OES) S factor, the replacement of the exact transfer amplitude by the DWBA one, as we will
see, practically does not affect the final result. The triple differential cross section for the TH
process a + A → y + b + B proceeding through an isolated resonance Fτ is given by

d3σ

dEbB d�kbB
d�kyF

= λ3
�bB(τ)(EbB)

∣∣MDW
τ (kyF , kaA)

∣∣2(
ExA − ERτ

)2
+ �2

τ (ExA)

4

. (11)

Here, λ3 is the kinematical factor, �bB(τ)(EbB) is the observable resonance partial width in
the channel b + B,�τ (ExA) is the total observable width of the resonance Fτ . Note that all
functions T (E) are related to T̃ (E) as T (E) = T̃ (E)

/(
1 − ( d�ττ

dE

)
E=ERτ

)
, where �ττ is the

τ level shift. Also ERτ
is the resonance energy of the resonance Fτ in the channel x + A.

Thus the TH triple differential cross section, in contrast to the OES single-level resonance
cross section, contains the generalized form factor

∣∣MDW
τ (kyF , kaA)

∣∣2
rather than the entry

channel partial resonance width �xA(τ)(ExA) of the binary process x + A → b + B. A simple
renormalization of the TH triple differential cross section allows us to single out the OES
astrophysical factor for the resonant binary subprocess x + A → b + B:

S(ExA) = π

k2
xA

1

λ3
ExA e2πηxA

�xA(τ)(ExA)∣∣MDW
τ (kyF , kaA)

∣∣2
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e2πηxA
�bB(τ)(EbB)�xA(τ)(ExA)(
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)2
+ �2

τ (ExA)

4

. (12)

The DWBA amplitude MDW(kyF , kaA) remains practically constant on the interval of a few
hundreds keV. The same is true for the factor e2πηxA�xA(τ)(ExA). The renormalization of the
TH cross section normalizes it to the experimental astrophysical factor at resonance energy
without affecting its energy dependence.

For two interfering resonances we need to consider the two-level, two-channel case.
This requires the half-off-energy-shell (HOES) R matrix formalism. Here we address this
formalism for a simple case when the distances between two resonances are significantly
larger than their total widths. Then the OES reaction amplitude in the R matrix formalism
is given by the sum of the amplitudes of each resonance (see equation (XII,5.15) [8]). The
corresponding expression for the HOES reaction amplitude can be obtained by the replacement
of the resonance partial widths in the entry channel of the binary reaction x +A → b+B by the
corresponding generalized form factors MDW

τ (kyF , ka), τ = 1, 2. Thus the triple TH cross
section in the presence of two interfering resonances in the subsystem F = x + A = b + B is
given by

d2σ

dEbB d�kyF
d�kbB

= λ3

∣∣∣∣∣
∑
τ=1,2

�
1/2
bB(τ)(EbB)MDW

τ (kyF , kaA)

ExA − ERτ
+ i�τ (ExA)

2

∣∣∣∣∣
2

. (13)

We assume that ER1 < ER2 . The goal of the THM is to determine the energy dependence
of the astrophysical factor at the astrophysically relevant energies. The ratio MDW

21 =
MDW

2 (kyF , kaA)
/
MDW

1 (kyF , kaA) is practically constant in the interval of a few hundred
keV, ExA � ER1 . Normalizing the TH cross section to the OES S factor at E = ER1 , where
the contribution from the second resonance can be neglected, gives the astrophysical factor
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Figure 1. Comparison of the calculated astrophysical factor ST H (E) for 15N(p, α)12C (solid
line), where E ≡ ExA, with the direct data [9–11].

determined from the TH reaction

ST H (ExA) = π e2πηxA
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This astrophysical factor is to be compared with the OES astrophysical factor determined from
direct measurements

S(ExA) = π e2πηxA

2µxA

�xA(1)(ExA)

∣∣∣∣∣
[

�
1/2
bB(1)(EbB)

ExA − ER1 + i�1(ExA)

2

+
�

1/2
bB(2)(EbB)γ(xA)21

ExA − ER2 + i�τ (ExA)

2

]∣∣∣∣∣
2

. (15)

Here, γ(xA)21 = γ(xA)2/γ(xA)1 = �
1/2
xA(2)(ExA)

/
�

1/2
xA(1)(ExA) and γ(xA)τ is the reduced width

for the τ th resonance in the channel x + A. Each amplitude MDW
2 (kyF , ka) is complex,

but the ratio MDW
21 may have a small imaginary part. The normalization of the TH S factor

to the OES one at resonance energy plays a crucial role in the TH method. After such
a normalization, we need to know only the ratio of the DWBA amplitudes to calculate
ST H (ExA). This ratio can be approximated by the ratio of the corresponding amplitudes
calculated in a plane wave approximation, because a simple plane wave approximation
gives similar angular and energy dependence to the DWBA but fails to reproduce the
absolute value. It explains why a simple plane wave approximation worked so well in
the previous TH analyses (see [4] and references therein). Note that in the plane wave
approximation MDW

21 = W(xA)2(pxA)/W(xA)1(pxA), where the form factor W(xA)τ (pxA) =
〈j0(pxAr)|〈VxA(r)〉xA

∣∣IFτ

xA(r)
〉
, I

Fτ

xA = 〈ϕA|�τ 〉, j0(pxAr) is the s-wave Bessel function,
〈VxA(r)〉xA = 〈ϕA|VxA|ϕA〉. If MDW

21 ≈ γ(xA)21, the astrophysical factor ST H (ExA) reproduces
the OES S factor S(ExA) at energies ExA � ER1 . In figure 1 the astrophysical factor ST H (ExA)

for 15N(p, α)12C calculated using equation (14) for the TH reaction 15N(d, nα)12C is compared
with the experimental S(ExA) obtained from direct measurements. There are two 1− interfering
resonances at ER1 = 312 keV and ER2 = 962 keV. MDW

21 has been calculated taking into
account the d–15N Coulomb interaction in the initial state of the TH reaction and plane wave
approximation was used for n–16O at energy Ed15N = 4.20 MeV. We find that MDW

21 ≈ 1.13

5



J. Phys. G: Nucl. Part. Phys. 35 (2008) 014016 A M Mukhamedzhanov et al

while γ(xA)21 = 1.1 ± 0.1. It explains why the calculated ST H (ExA) shown in figure 1 is in an
excellent agreement with the direct data.
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