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Abstract

Experimental Determination of the 8B Neutrino Spectrum

by

Wesley Thomas Winter

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Stuart J. Freedman, Chair

Knowledge of the energy spectrum of 8B neutrinos is an important ingredient for interpreting

experiments that detect energetic neutrinos from the Sun. The neutrino spectrum deviates from

the allowed approximation because of the broad alpha-unstable 8Be final state and recoil order

corrections to the beta decay. I have measured the total energy of the alpha particles emitted

following the beta decay of 8B. The spectrum measured here is inconsistent with a previous

measurement of comparable precision, but is in good agreement with a subsequent measurement.

The alpha energy spectrum is fit using the R-matrix approach, which gives a functional form for

the beta decay strength function for the transition from 8B to the 8Be resonance. The with

Professor Stuart J. Freedman
Dissertation Committee Chair
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Chapter 1

Solar Neutrinos: Origin and Detection

Over a half century has passed since scientists first detected neutrinos emitted by the Sun.

Unlike photons, which are easily detectable and scatter repeatedly as they traverse the solar vol-

ume, neutrinos are weakly interacting. Neutrinos pass mostly unhindered from the Solar core to

detectors deep within the Earth, where only a tiny fraction of the neutrino flux is observed. Orig-

inally, it was thought that these neutrinos would be unchanged from the moment of their creation

as byproducts of the nuclear fusion processes that drive the Sun. By studying these neutrinos

scientists would, in essence, be looking directly into the solar core.

Using solar neutrinos to study the process of solar fusion is simple in principle. However, the

experimental implementation was difficult and the initial results were inconclusive. The desire to

solve these problems fueled a massive effort across several branches of physics. Laboratory mea-

surements of nuclear reactions were performed with ever-increasing precision. Theoretical mod-

els of the Sun, using experimental nuclear data as inputs, became more sophisticated. Helioseis-

mology, the study of surface sound waves on the Sun, was developed and from it came measure-

ments that verified the solar models. Concurrently, solar neutrino detection advanced as experi-

mental techniques were improved and new detection methods were implemented. Despite the ad-

vances, results from solar neutrino detection experiments remained inconsistent with theoretical
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predictions. Even more puzzling, experiments with different neutrino energy thresholds were in-

consistent with one another. These discrepancies became known as the solar neutrino problem.

Considering the effort devoted to solving the solar neutrino problem, it is gratifying that the

solution is nontrivial; it has changed scientists’ views of neutrinos themselves and the fundamen-

tal theories that describe their behavior. The problem is not fully solved; new questions have been

raised and discoveries in the area of neutrino physics continue to be made.

This thesis deals primarily with a new laboratory measurement involving the nuclear decay

of 8B, an isotope produced in the Sun. This decay provides a majority of the neutrinos detected

in Solar neutrino experiments so far. Some implications of this measurement are discussed. This

initial chapter provides a description of the solar nuclear fusion reactions from which neutrinos

are created, various methods of detecting these neutrinos, and an introductory look at the 8B

isotope and its decay.

1.1 Nuclear Fusion and Beta Decay in the Solar Core

The Sun, 150 million kilometers from Earth, is the dominant source of energy for all atmo-

spheric and surface activity on the planet. Its enormous energy output, 4 1026 Watts, results

from the fusion of light nuclei. Fusion occurs only in the solar core, the central region of the Sun,

comprising 1% of its total volume. Here temperatures reach up to 15 million degrees Kelvin.

The particular process responsible for most of the Sun’s power, known as hydrogen burning, is a

sequence of exothermic fusion reactions that transforms four protons into an alpha particle. Hy-

drogen burning, and other nuclear fusion processes occurring in the solar core, produce the solar

neutrinos detected on Earth.

1.1.1 Fundamental Principles of Solar Fusion Processes

Solar models attempt to describe the many facets of solar energy production in terms of

nuclear fusion reactions. They are detailed in both their theoretical construction and experimental
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inputs. The basic ideas behind solar fusion and solar neutrino production, however, may be

understood employing only a few fundamental principles of physics. These principles, and some

of their implications, are listed below:

Conservation of Energy A central tenet of both modern and classical physics, this principle is

certainly applicable to solar fusion. In all the nuclear reactions occurring in the solar core, energy

is conserved.

Mass-Energy Equivalence Introduced by Einstein in 1905, the relation between mass and energy

is crucial to an understanding of solar fusion. As an example, for the reaction that produces an α

particle from two lighter 3He nuclei,

3He 3He α 2p (1.1)

the total mass of the 3He nuclei in the initial state (mi 5616 78 MeV/c2) is greater than the

mass of the α particle and protons in the final state (m f 5603 89 MeV/c2) by Δm mi

m f 12 89 MeV/c2. To conserve energy, the final state products must possess kinetic energy of

magnitude ΔE Δmc2 12 89 MeV.

Decrease of Nucleon Mass with Increasing Atomic Number The binding between individual

nucleons inside a nucleus is provided by the strong interaction. The strength of the bond is

given by the mass difference between a nucleus and its constituent nucleons, multiplied by c2.

Tightly bound nuclear systems will have a smaller mass per nucleon than more loosely bound

systems. An empirical result of nuclear physics is that for a nucleus of mass M and atomic

number A there is a general decrease in the mass per nucleon M A as A increases. This trend

holds up to 56Fe, which has the most tightly bound nucleons. The ratio M A for some nuclei

involved in solar fusion is plotted as a function of A in Fig. 1.1.

The decrease of M A with increasing A shows that when lighter nuclei are fused to form

heavier nuclei, an amount of energy (of order MeV) must be released in the form of kinetic or

electromagnetic energy. Hydrogen burning, which accounts for the great majority of the Sun’s

energy output, is a process by which four protons fuse into an α particle. As illustrated in Fig.

1.1, the tightly-bound α particle resides at a local minimum ofM A. Furthermore, all nuclei with
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Figure 1.1. The mass per nucleon for many of the nuclei involved in solar fusion processes.
Unshaded circles indicate unstable nuclei. Note that there are no stable nuclei for A 5 and 8.

A 5 are unstable (5He and 5Li decay immediately to an α particle and a free nucleon). These

properties conspire to make the α particle a waiting point in the solar fusion chain.

The importance of nuclear binding energy in solar fusion reactions can be seen by consider-

ing the 3He+3He reaction. All possible nuclear products and the energy release associated with

the reaction are shown in Table 1.1. The only exothermic reaction is the α-producing fusion pro-

cess shown in Eq. 1.1. The reactions with negative energy release represent fission processes,

where the 3He nucleus dissociate into smaller constituents. These fission reactions are energet-

ically inaccessible given the relatively small thermal energies (a few keV) of nuclei in the Sun.

The important result that fusion processes drive the Sun is a result of the decrease of M A for

increasing A.

Conservation of Baryon Number Baryon number, defined as 1 for nucleons and 1 for anti-

nucleons, is a conserved quantity for both the strong and weak interactions. Processes in the Sun
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Product Nuclei Energy Release
4He + 2 p 12.850 MeV
3He + 3He 0 MeV
3He + p + d -5.50 MeV

t + 3 p -6.97 MeV
3He + 2 p + n -7.73 MeV

2 d + 2 p -10.99 MeV
3 p + n + d -13.23 MeV
4 p + 2 n -15.46 MeV

Table 1.1. Possible final states for the reaction 3He+3He, and their associated energy releases.
Negative energy releases indicate endothermic reactions.

are generally not energetic enough to produce anti-nucleons (in any case, an anti-nucleon would

quickly annihilate with a nucleon), and resonances such as Δ-particles quickly de-excite back to

a nucleon. Thus, the conservation of baryon number is equivalent to stating that the number of

nucleons in the Sun is conserved.

Conservation of Electric Charge and Lepton Number Electric charge and lepton number are

conserved quantities for both the strong and weak interactions. In nuclei, the fraction of nucleons

which are protons, Z A, decreases as A increases. Hence, as lighter nuclei are fused to form

heavier nuclei in the Sun, protons are being converted to neutrons.

Conservation of charge requires that a positively charged particle must be emitted when a

proton is converted to a neutron. In solar fusion reactions, the mass difference between the initial

and final states is of order 1 10 MeV (as seen in Fig. 1.1). The only positively charged particle

light enough to be created in these processes is a positron, with mass 0.511 MeV/c2, which is an

anti-particle.

The conservation of lepton number explains the emission of neutrinos from the sun. Leptons

are particles that do not participate in the strong interaction. Uncharged leptons are called neutri-

nos. The only charged leptons existing in the solar core are electrons and positrons, since heavier

leptons are generally not energetically accessible. Lepton number, defined as +1 for leptons and

-1 for anti-leptons, is a conserved quantity. Hence, as a proton is converted into a neutron and a

positron, a neutrino must be emitted to conserve lepton number.
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The fundamental processes of solar fusion, in which protons are converted to neutrons as

heavier nuclei are formed, may be expressed as:

p n e νe β decay (1.2)

and

p e n νe electron capture (1.3)

Fusion processes in the solar core utilize the p n reaction and never the inverse. Hence

positrons must be emitted to conserve charge, and neutrinos must be emitted to conserve lepton

number. By a similar argument, the inverse process n p requires the emission of electrons and

anti-neutrinos. Note then that the Sun is pure source of neutrinos (no anti-neutrinos).

A further property of beta decay and electron capture is that for each interaction a quantum

number called flavor is conserved. There are three types of charged leptons with their own

individual flavors: electrons, muons, and taus. Electron flavor is defined as 1 for electrons and

1 for positrons. Therefore, at the moment of their creation solar neutrinos must have electron

flavor 1 and they are termed electron-type neutrinos. The heavier charged leptons, with electron

flavor 0, have their own quantum numbers and their own associated neutrinos.

The fundamental properties discussed above provide enough background for the basic hy-

drogen burning process to be understood. Hydrogen burning uses nuclear fusion to convert four

protons into an alpha particle while also releasing positrons, neutrinos, gamma rays, and final

state kinetic energy. The nuclear reactions contributing to the hydrogen burning process and their

corresponding energy releases are shown in Table 1.2. The neutrino energy, which is about 7.5%

of the total energy release, does not heat the Sun because nearly all neutrinos pass directly out of

the Sun without interacting.
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Initial Nuclei Products Energy Release Average Neutrino Energy
p + p d + e + νe 1.442 MeV 0.265 MeV

p + p + e d + νe 1.442 MeV 1.442 MeV
d + p 3He + γ 5.494 MeV –

3He + 3He 4He + 2 p 12.860 MeV –

Table 1.2. The fundamental reactions of the hydrogen burning nuclear fusion process. The energy
releases from these reactions account for the vast majority of the Sun’s power.

1.1.2 Nuclear Reaction Rates and Solar Time Scales

As described in the previous section, the Sun’s massive energy output results from the fusion

of light nuclei into heavier ones. For two nuclei to fuse via the strong interaction, the electric

Coulomb barrier between the nuclei must be overcome. As an example, again consider the reac-

tion where two 3He nuclei fuse to form an α particle (Eq. 1.1). If the strong interaction overcomes

the Coulomb repulsion when the 3He nuclei are separated by distances r 2r3 (hard-sphere in-

teraction), the height of the Coulomb energy barrier ECoul is,

ECoul
1
4πε0

2e 2

2r3
3MeV (1.4)

Where the radius of 3He is taken to be r3 2 fm.

The Coulomb energy barrier is much higher than the kinetic energy of 3He nuclei in the

Sun. The high temperatures in the Sun are a result of gravitational pressure and they reach

Tmax 1 6 107 K in the solar core. A typical energy for 3He nuclei in the core is thus

kBTmax 1.4 keV, and the distribution of energy among 3He nuclei is well-described by a clas-

sical Boltzmann distribution. The situation in the Sun is markedly different from the conditions

at nuclear accelerators, where nuclei are accelerated to energies comparable to the Coulomb bar-

rier. In general, any nuclear reaction occurring in the Sun must result from quantum mechanical

tunneling of low energy ( 1 keV) nuclei through the large ( 1 MeV) Coulomb barrier.

There are four main points one must consider in calculating nuclear reaction rates: (1) The

probability that a nucleus has a given thermal energy, (2) the rate of collisions that such a nucleus

experiences, (3) the probability that this collision leads to penetration of the Coulomb barrier,
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and (4) the probability that a reaction takes place after barrier penetration occurs. These steps are

discussed in order below:

(1) Maxwell-Boltzmann Distribution As discussed above, the temperatures in the Sun are suffi-

ciently high that a classical Boltzmann distribution may be used. Thus, the probability that a state

with energy E will be occupied is proportional to the Boltzmann factor exp E kBT . Account-

ing for the density of states at a given energy, the probability f E that a particle has energy E is

given by

f E
2
π

1
kBT 3 2 Eexp

E
kBT

(1.5)

(2)Frequency of Collisions Earlier in this section the 3He nucleus was considered to have a

radius of 2 fm. This value was assigned on the basis that the nucleon radius is about 1.4 fm and

that the nuclear size grows as A1 3. For calculations of barrier penetration, this is an appropriate

value to use. However, in considering the collision rate between nuclei a different length scale

must be invoked. In this approximation the nucleus is given an associated length scale, λ, defined

as follows: When nuclei are separated by distances less than λ they experience a collision, thus

the possibility of tunneling through the Coulomb must be considered. When nuclei are separated

by distances greater that λ, there is no possibility of interaction. It is reasonable to define λ as the

de Broglie wavelength,

λ
h
p

(1.6)

where p is the momentum of the nucleus. Note that the de Broglie wavelength of a typical light

nucleus in the Sun is of order 0.1 nm, roughly 100 times larger than the nuclear size.

Using the hard-sphere scattering approximation and working in the center-of-mass reference

frame, the collision rate per unit time and volume, N, is given by

N
πλ2vn1n2
1 δ12

(1.7)

where v is the relative velocity of the nuclei and n1 2 are the number densities of the colliding

nuclei. The Kronecker delta function (δi j 1 when i j and δi j 0 when i j) is included to

prevent double counting when collisions between identical nuclei are considered. Incorporating
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the Maxwell-Boltzmann distribution (Eq. 1.5) yields the probability that a nucleus has a given

energy. Expressing Eq. 1.7 in terms of energy gives

dN
dE

2π 2n1n2exp E
kBT

MkBT 3 2 1 δ12
(1.8)

where dN dE is number density of collisions for a given range of energies in the solar core.

(3) Coulomb Barrier Penetration In general, for two nuclei with charges Z1 and Z2, a reduced

mass M, and relative energy E , the probability P of tunneling through the Coulomb barrier to

nuclear separation R may be calculated using the WKB approximation and by making some

simplifying approximations. This method was first employed by Gamow to describe α decay [1].

The result is

P e 2πη (1.9)

where

η
Z1Z2e2 2M
8πε0

1
E

1 2MZ1Z2e2

π3ε0

1 2

R (1.10)

is called the Gamow penetration factor. The thermal energies in the Sun are sufficiently low so

that the first term in Eq. 1.10 is much larger than the second term. The second term is thus ignored

to simplify the discussion.

The rate of nuclear interactions as a function of energy is then given by the product of the rate

of collisions dN dE and the probability of barrier penetration exp 2πη . Fig. 1.2 shows these

exponential functions, one increasing and one decreasing with energy. The resulting product is

a broad, nearly symmetric function, also shown in Fig. 1.2. The peak of this function, called

the Gamow Peak, is located near 30 keV, well above the average thermal energy 3
2kBT 1.4 keV,

indicating that most solar fusion events result from interactions between nuclei on the high energy

tail of the Maxwell-Boltzmann distribution.

(4)Probability of Nuclear Reaction All that remains in determining the nuclear reaction rate is

to calculate the probability that a given reaction occurs once the barrier is penetrated.

To simplify discussion, some new terms will be defined. First, consider the rate of hard-

sphere interactions per unit volume, Eq. 1.7, multiplied by the probability of barrier penetration,

9
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Figure 1.2. (Top panel) The density of nuclear collisions, dN dE , and the probability of barrier
penetration, exp 2πη , are shown for the example case of 3He-3He interactions, and their func-
tional forms are indicated. The product of the functions, which gives the rate of nuclear reactions
as a function of energy, is shown. (Bottom panel) Here the product is shown on a linear scale to
emphasize the features of the curve. The maximum of the curve is called the Gamow peak.

Eq. 1.9,

N P
πλ2vn1n2
1 δ1δ2

e 2πη 2π3 2

mE
e 2πη vn1n2

1 δ1δ2
(1.11)

where the definition of the de Broglie wavelength, Eq. 1.6, is used. The right hand side of Eq.
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1.11 suggests that the factors within the parentheses be considered as a cross section, σ, where

σ
2π3 2

mE
e 2πη (1.12)

This cross section contains the physics of both collision frequency and barrier penetration. In

literature dealing with nuclear cross sections the replacement

2π3 2

m
1 keV b S E (1.13)

is made, so that the cross section appears as

σ
S E
E

e 2πη (1.14)

The newly defined astrophysical S-factor, S E , contains all the nuclear physics not previ-

ously considered. The S-factor is typically measured in laboratory experiments because it is often

difficult, or impossible, to calculate. In practice, the Coulomb barrier is so difficult to overcome

that the S-factor is typically only determined down to a few hundred keV, and an extrapolation

to solar energies must be performed. Models [2] have been suggested to guide the extrapolation

process, and it remains an active area in nuclear astrophysics to measure the S-factor for energies

as low as possible.

Combining the results of the arguments above, the rate density, N f usion, for solar fusion pro-

cesses is given by

N f usion
σv n1n2
1 δ1δ2

(1.15)

where σv is the mean value of the cross section multiplied by velocity, weighted by the

Maxwell-Boltzmann distribution,

σv
8

πMk3BT 3
1 2

f0
∞

0
dES E exp

E
kBT

2πη (1.16)

The quantity f0 is accounts for the increase in reaction rate due to the screening of nuclear charge

by free electrons. This quantity was introduced and approximated [3] in 1954 and has recently
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Reaction Q (MeV) Eν (MeV) S0 (keV barns) t (years)
p + p d + e + νe 1.442 0.265 (4.07 0.21) 10 22 1010

p + p + e d + νe 1.442 1.442 1012
d + p 3He + γ 5.494 2.5 10 4 10 8

3He + 3He α + 2 p 12.860 (5.15 0.98) 103 105
3He + p α + e + νe 19.795 9.625 8 10 20 1012

3He + 4He 7Be + γ 1.442 1.442 0.54 0.03 1012
7Be + e 7Li + νe 0.862 0.862 10 1

0.384 0.384
7Li + p 2 α 17.374 52 25 10 5

7Be + p 8B + γ 0.137 0.0243 0.001 102
8B 8Be + e + νe 17.980 6.710 10 8

8Be 2 α

Table 1.3. Reactions associated with the proton-proton chain. The Q-values, average neutrino
energies, S-factors, and time scales of the reactions are indicated. This table was motivated by a
similar table in Ref. [5], which also contains references to the experimental data.

been subject to a more thorough treatment involving numerical solutions of the Schrödinger equa-

tion [4].

The main result of this section is the rate of fusion, Eq. 1.15. The partial lifetime of a type-1

nucleus, T1, in the presence of type-2 nuclei follows easily:

T1
1 δ12
n2 σv 12

(1.17)

1.1.3 Solar Fusion Processes and Emitted Neutrinos

In the previous section the plausibility of solar nuclear reactions was established, and the

reaction rates were estimated from basic physical arguments. In this section details of the solar

fusion chains will be presented, with an emphasis on the nature of the emitted neutrinos.

Specifics of reactions occurring in the p-p chain are given in Table 1.3. The cross sections

have been determined by experiment and are given as S-factors extrapolated to zero energy, S0.

Approximate timescales of the reactions are calculated using Eq. 1.17. This equation is implic-

itly dependent on the relative abundances of nuclear species and on the temperature variation

throughout the Sun. These variables are determined using the Standard Solar Model [6]. For
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Reaction Q (MeV) Eν (MeV) S0 (keV barns) t (years)
12C + p 13N + γ 1.943 (4.07 0.21) 10 22 1010

13N + e 13C + νe 2.221 0.707 1012
13C + p 14N + γ 7.551 2 10 4 10 8

14N + p + γ 15O + γ 7.297 (5.15 0.98) 103 105
15O 15N + e + νe 2.754 0.997 8 10 20 1012

15N + p 16O + γ 12.128 0.54 0.03 1012
15N + p 12C + α 4.966 10 1

16O + p 17F + γ 0.600 52 25 10 5

17F 17O + e + νe 2.762 0.999 0.0243 0.001 102

Table 1.4. Reactions associated with the CNO chain. The Q-values, average neutrino energies,
S-factors, and time scales of the reactions are indicated. This table was motivated by a similar
table in Ref. [5], which also contains references to the experimental data.

reactions that emit neutrinos, the average neutrino energy is given. Note that β-decays produce

a broad neutrino spectrum because the decay energy is shared between two leptons. In contrast,

electron capture reactions produce monoenergetic neutrino lines.

It was previously stated that, with the creation of an α-particle at A 4, the p-p chain reaches

a waiting point. As seen in Table 1.3, the

3He 4He 7 Be γ (1.18)

reaction allows a path for fusion to continue to heavier elements. This reaction is important in

the context of solar neutrinos, since it leads to a concentration of 8B that produces relatively high

energy neutrinos.

The CNO cycle is a second fusion chain that, in addition to the dominant p-p chain, powers

the Sun. Details of the CNO cycle are shown in Table 1.4. In the CNO cycle, as in the p-p chain,

energy production arises from the fusion of four protons into an α-particle. The presence of C, N,

and O nuclei merely act as catalysts for the reaction. In the Sun, the CNO chain is responsible for

only about 1-2% of the solar energy production. It is included here because it produces neutrinos

which are, in principle, detectable.

The flux of emitted neutrinos resulting from solar fusion processes are shown in Fig. 1.3,

taken directly from Ref. [6]. Knowledge of the neutrino flux emanating from the solar core is
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Figure 1.3. The energy spectrum of neutrinos emitted from the solar core. 8B neutrinos provide
the dominant flux of neutrinos with energies above 8 MeV. This figure is taken directly from Ref.
[6].

a crucial input for the interpretation of experiments which detect solar neutrinos. The Standard

Solar Model [6] describes in detail the concentrations of various nuclei throughout the Sun, the

frequency of solar fusion reactions, and the flux of neutrinos emitted as byproducts of the fusion

reaction chains.

1.2 Solar Neutrino Detection: Methods and Results

A simple argument, based on a few fundamental physical principles, that the Sun acts as a

neutrino source was laid out in the previous section. The nuclear processes which power the Sun

and produce neutrinos were identified, and a rudimentary description of the cross sections and

time scales of these reactions was developed.

Due to the weakly interacting nature of neutrinos, experimental detection of solar neutrinos
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requires the use of large detectors in an extremely low-background environment. Event rates in

solar neutrino detectors are typically on the order of one event per day or less. The realization

of these detectors is difficult, and they are generally located deep underground to shield against

background from cosmic ray interactions. This section will describe the various methods used to

detect neutrinos and the primary results of solar neutrino experiments.

1.2.1 Solar Neutrino Detection Methods

Four distinct classes of reactions have been used to detect solar neutrinos. They are (1)

elastic scattering of neutrinos on electrons, (2) neutrino capture on a nucleus, (3) inelastic charged

current scattering of neutrinos on deuterons, and (4) neutral current scattering of neutrinos on

deuterons.

The section on the solar neutrino problem, Section 1.2.3, will motivate the need to differen-

tiate experimentally between electron-type neutrinos, νe, and neutrinos of other flavor, denoted

here as νµ τ. A detailed description of the weak interaction, including interactions of various

neutrino flavors with matter, will be given in Chapter 2. However, the four neutrino detection re-

actions listed above may be understood qualitatively using only basic results of weak interaction

physics. The four reactions are discussed in order below.

(1) Elastic Neutrino-Electron Scattering

Elastic ν-e scattering offers an attractive method of detecting solar neutrinos because the

neutrino energy spectrum may be inferred from the energy spectrum of the recoil electrons. Ad-

ditionally, νe-e scattering is fundamentally different from νµ τ-e scattering because the charged

current channel is open for νe-e scattering. Charged current reactions cannot contribute to νµ τ-e

reactions because solar neutrinos lack the energy to create the heavier µ or τ leptons in the final

state.

Diagrams indicating the interactions between the various neutrino flavors and detector elec-

trons are shown in Fig. 1.4. The charged and neutral current contributions to νe-e scattering are
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Figure 1.4. A schematic diagram of elastic neutrino-electron scattering reactions. Electron-type
neutrinos, νe, may interact with target electrons through either the charged or neutral weak cur-
rent. Mu- or tau-type neutrinos, νµ τ, may interact only through the neutral current. The cross
sections are proportional to the squares of the amplitudes represented by the diagrams.

constructive, that is, the amplitudes for the two processes add in such a way that the probability of

interaction is higher than for the neutral current νµ τ-e scattering. Quantitatively, the probability

of νe-e scattering is roughly 6 times higher than that for νµ τ scattering [7]. The full calcula-

tion of Ref. [7] was performed using the charged and neutral current interactions dictated by the

Standard Model, outlined in Chapter 2, combined with the complications arising from radiative

corrections, which are discussed in the context of nuclear beta decay in Chapter 6. The cross

sections [7] for νe-e and νµ τ-e scattering processes are shown in Fig. 1.5. Note that, despite the

drastic dependence of the cross sections on neutrino energy, the ratio between νe-e and νµ τ-e

cross sections remains roughly constant at a value near 6.

The determination of the solar neutrino energy spectrum from the recoil electron spectrum

requires an understanding of the recoil electron spectrum from a monoenergetic neutrino source.

For example, the recoil electron spectrum [7] from the dominant 7Be electron capture line, a

nearly monoenergetic source of neutrinos with energy 862 keV, is shown in Fig. 1.6. Note that
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the shapes of the recoil electron spectra for νe-e and νµ τ-e scattering differ. In principle, then,

the flavor components of the solar neutrino flux may be determined experimentally through ν-

e scattering. In practice, however, this is nearly impossible since the difference between the

normalized νe-e and νµ τ-e recoil spectra are small (1-5%), and this difference is compounded by

the factor of 6 between the νe-e and νµ τ-e cross sections (Fig. 1.5).

Experimentally, the ν-e scattering process has been observed using photomultiplier tubes to

detect the Cerenkov radiation from recoil electrons in water tanks. Additionally, some proposed

neutrino detectors, using methods quite different from water Cerenkov detectors, are designed to

be sensitive to ν-e scattering events. These experiments will be outlined briefly in Section 1.2.2.

(2) Neutrino Capture (Inverse Beta Decay)

Neutrino capture was, historically, the first method used to detect solar neutrinos [8]. Neu-

trino capture is sometimes referred to as inverse beta decay, which differs from beta decay in that
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the neutrino is present in the initial state (the analogous beta decay, in this case, would require

an antineutrino in the final state). An illustration of the neutrino capture process is shown in Fig.

1.7(a).

Neutrino capture proceeds via the charged weak current to convert an electron-type neutrino

into an electron, while increasing the charge of the interacting nucleus by one (transforming a

nuclear neutron into a proton). As with charged current ν-e scattering, the channel is energetically

closed to mu- and tau-type neutrinos.

The final state electron, along with characteristic gamma rays from the possible de-excitation

of the final state nucleus, could be detected to signal a neutrino capture event. In practice, how-

ever, it is often the radioactive final state nuclei which are detected; the radioactive atoms are

chemically separated from the detector and counted as they decay.
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Figure 1.7. Diagrams of the amplitudes of (a) neutrino capture (inverse beta decay) for the special
case of a 37Cl target, and (b) charged and (c) neutral current ν-d scattering. Neutral current ν-d
scattering is sensitive to all flavors of neutrino, while charged current ν-d scattering and neutrino
capture are sensitive only to electron type neutrinos. The shaded gray areas in the figure indicate
weak interaction vertices subject to corrections induced by the strong interaction.

The method of radiochemical separation was developed by Ray Davis, Jr. and his collabora-

tors in the Homestake experiment, which reported the first observation of solar neutrinos in 1968

[8]. Descriptions of various neutrino capture experiments are given in Section 1.2.2.

(3) Inelastic Charged Current Neutrino-Deuteron Scattering

The inelastic ν-d charged current reaction, shown in Fig. 1.7(b), dissociates the deuteron

while converting the neutron into a proton. The interaction of the neutrino with the deuteron

includes vertex corrections arising from the strong interaction [9, 10]. The ν-d charged current

scattering process is sensitive only to the electron-type neutrino. In principle, then, detectors

observing charged current ν-d scattering should measure the same flux as detectors using neutrino

capture, as both are sensitive only to the νe flux.

To date, only the SNO heavy water experiment [11] has observed charged current ν-d scat-

tering. SNO uses a water Cerenkov detection scheme to detect the final state electrons. Naturally,

this detector is also sensitive to ν-e scattering processes; the two processes may be resolved by

their different angular distributions of final state electrons with respect to the Sun [11].

(4) Inelastic Neutral Current Neutrino-Deuteron Scattering

The inelastic ν-d neutral current reaction, illustrated in Fig. 1.7(c), dissociates the deuteron

into its component proton and neutron. Again, the effect of the strong interaction on the ν-d
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vertex must be considered [12]. The capture of the final state neutrons leads to a gamma ray,

providing a unique experimental signature.

The ν-d neutral current interaction has the same cross section for all neutrino flavors. This

process thus provides the greatest experimental sensitivity to mu- and tau-type neutrinos (in ν-e

scattering, the sensitivity to the νµ τ component of the solar neutrino flux was 6 times smaller than

the sensitivity to the νe flux). Again, SNO [11] is the only experiment utilizing ν-d scattering.

1.2.2 Solar Neutrino Experiments

This section provides a brief overview of solar neutrino detection experiments, in approxi-

mate chronological order. For each experiment, the basic methods are discussed, as well as the

sensitivity to the various neutrino flavors. A discussion of the main results of these experiments

will be postponed until Section 1.2.3, where the history of the solar neutrino problem, and its

solution, are outlined.

Homestake (1965-1998) The Homestake experiment [13] consisted of a 615 ton ( 100,000 gal-

lon) tank of perchlorethylene (C2Cl4) positioned 4800 feet below the surface in the Homestake

mine in South Dakota. The experiment provided the first evidence for solar neutrinos, which in-

teracted via the 37Cl(νe,e)37Ar neutrino capture reaction. This reaction has a threshold of roughly

800 keV, and has good sensitivity to the higher energy portion of the solar neutrino spectrum.

This is due to transitions to excited states in 37Ar, which increase the capture rate by a factor of

20 compared to what would be expected from transitions to the ground state of 37Ar alone [14].

The final state radioactive 37Ar was chemically extracted from the perchlorethylene where

it was identified in proportional chambers as it decayed [13]. The Homestake experiment is

of particular importance for several reasons: it verified that solar neutrinos could be detected

experimentally, it remained on line for over 30 years and was the only solar neutrino detector

operational until 1988, and it remains the only source of 37Cl neutrino capture data.

KamiokaNDE (1988-1996) KamiokanNDE (Kamioka Nucleon Decay Experiment) [15], located
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in the Kamioka mine in Japan, was a water Cerenkov detector consisting of 3000 gallons of pure

water surrounded by approximately 1000 photomultiplier tubes (PMTs) to detect the Cerenkov

light from ν-e scattering recoil electrons. The experiment was originally operated (1983) to

search for the decay of protons and bound neutrons; it was upgraded in 1988 to detect solar

neutrino events.

Gallex (1991-1997) The Gallex experiment [16] detects neutrinos using the 71Ga(νe,e)71Ge neu-

trino capture reaction. The detector, located at the Gran Sasso National Laboratory in Italy,

consisted of roughly 30 tons of gallium in the form of GaCl3 solution in HCl. The threshold for

the 71Ga neutrino capture is 233 keV, lower than the Homestake threshold. Gallium detectors are

unique in that they are the currently only detectors sensitive to neutrinos from p-p fusion. As in

the Homestake experiment, the 71Ge products are chemically separated and their decays counted

using proportional chambers.

SAGE (1991-present) SAGE (ruSsian American Gallium Experiment) is a 71Ga neutrino capture

experiment [17] located at the Baksan Neutrino Observatory in Russia. Like Gallex, the SAGE

experiment utilizes neutrino capture on 71Ga. The gallium is in the form of roughly 50 tons in the

(liquid) metal form. The 71Ge products are extracted chemically and counted.

Super-Kamiokande (1996-present) After KamiokaNDE had success detecting solar neutrinos

using Cerenkov radiation [15], the larger Super-Kamiokande (SuperK) [18] water Cerenkov de-

tector was constructed in the same underground laboratory. The SuperK detector consists of 50

kilotons of water (22 kilotons fiducial volume), surrounded by over 11,000 PMTs. Increased

statistics were obtained from the larger detector, and data on the solar neutrino spectrum and flux

was first released in 1998 [19].

GNO (1998-2003) The GNO (Gallium Neutrino Observatory) experiment [20] was the successor

of the Gallex experiment, and used the same sample of GaCl3 in HCl solution. The extraction

method and data acquisition methods [21] were significantly upgraded from Gallex.
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1.2.3 The Solar Neutrino Problem and Solution

The solar neutrino problem originated in 1968 when the Homestake 37Cl capture experiment

[8] placed a limit on the solar neutrino flux that was less than half of solar model predictions [22].

As noted in the previous section, additional solar neutrino data have since been collected by the

Gallex, SAGE, and GNO 71Ga capture experiments and the Kamiokande, Super-Kamiokande,

and Sudbury Neutrino Observatory (SNO) water Cherenkov experiments [23]. These further flux

measurements remain inconsistent not only with current solar model predictions [6] but also with

each other (when standard electroweak theory is assumed).

Oscillations between neutrinos of different flavor provide the most likely solution to this

problem. That is, electron-type neutrinos created by weak processes in the solar core oscillate

to different flavor eigenstates as they travel from the solar interior to detectors on Earth. These

flavor oscillations are due to a non-zero neutrino mass and are enhanced by the presence of

matter, and will be discussed in Chapter 2. The first conclusive evidence that solar neutrinos

are indeed changing flavor was provided by measurements of charged- and neutral-current ν-d

scattering at SNO [11]. Global analysis of solar neutrino data [23] show that neutrino oscillation

scenarios yield good agreement between experiments and solar models. The KamLAND reactor

experiment [24], which detects anti-neutrinos created in nuclear power stations, further supports

the oscillation interpretation.

1.3 Neutrinos from 8B Beta Decay

The most carefully studied component of the solar neutrino flux is due to neutrinos from the

β decay of 8B. As seen in Fig. 1.3, 8B neutrinos account for about 99.9% of the total solar neu-

trino flux above 1.8 MeV, and are thus accessible to solar neutrino detectors of all thresholds. The
8B neutrinos account for most of the signal in the Homestake 37Cl neutrino capture experiment

[13] and nearly all of the solar neutrino events in the Kamiokande [15], Super-Kamiokande [18],

and the Sudbury Neutrino Observatory (SNO) [11] water-Cerenkov experiments. Most of the
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Figure 1.8. Nuclear levels relevant to the 8B decay chain. The β-decay proceeds through the
broad 2 resonance structure in 8Be peaked at an excitation energy of 3.0 MeV with a width of
1.5 MeV. Decay to the 0 ground state in 8Be is second forbidden and is highly suppressed.

signal of 71Ga neutrino capture experiments Gallex [16], GNO [20], and SAGE [17], is due to the

p-p fusion neutrinos due to their lower threshold.

As discussed in the previous section, the results from the SNO heavy water detector conclu-

sively demonstrate the existence of a νµ τ component of the solar neutrino flux [11]. The solar

neutrino data is explained by flavor oscillations and non-zero neutrino mass [25].

Neutrino oscillations are dependent on neutrino energy, hence the neutrino oscillation so-

lution implies that the solar 8B νe energy spectrum is distorted. Knowledge of the primary 8B

neutrino spectrum is thus a necessary ingredient for the proper interpretation of the solar neu-

trino data. This is especially true for water-Cerenkov detectors which measure the differential

solar neutrino energy spectrum. A distortion of the νe component of the spectrum would provide

further evidence for neutrino oscillations, and would allow another avenue to determine solar

neutrino mixing parameters. No such distortion of the νe spectrum has yet been observed [25].

A determination of the physics of leptonic flavor mixing from observations of the solar neu-

trino spectral shape requires an understanding of the decay of 8B. The 8B ground state (Jπ=2 )
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undergoes an allowed β transition to a broad range of excitation energies in the 8Be daughter.

The width of the 8Be daughter is large since it decays promptly into two α particles. The neutrino

spectrum of an allowed β-decay between two sharp nuclear states is well-understood; in the case

of 8B the neutrino spectrum depends strongly on the excitation energy profile of the α-unstable
8Be daughter, which must be determined experimentally. A diagram illustrating the 8B decay

chain is shown in Fig. 1.8. This thesis deals with a determination of the 8B neutrino spectrum

based on a new measurement of the alpha spectrum.

I define the 8B β decay strengthfunction as the probability that a given differential range

of excitation energies in 8Be will be populated by the 8B β decay. The strength function is

determined by measurements of the α particle energy spectrum following the breakup of the

daughter 8Be nucleus, and is used to construct the neutrino spectrum. A discussion of the levels

relevant to 8B β decay and a phenomenological R-matrix description of the strength function is

given in Chapter 3. Previous measurements of the α spectrum are discussed in Chapter 4. The

primary content and bulk of original work of this thesis consists of a measurement and analysis

of the α spectrum. The experiment is described in Chapter 5.

In addition to the strength function, the 8B neutrino spectrum is subject to corrections due

to recoil order matrix elements. Angular correlation measurements involving the β decays of 8B

and 8Li, along with radiative decay measurements of excited states of 8Be, are used to extract

the recoil order matrix elements which contribute to 8B β decay. A general discussion of recoil

order effects and a review of past recoil order measurements in the context of their influence on the
8B neutrino spectrum is given in Chapter 6. Finally, the 8B positron and neutrino energy spectra

are deduced, using the strength function and applying recoil order and radiative corrections, and

presented in Chapter 7.

The following chapter continues the introductory material with a discussion of the weak

interaction.

24



Chapter 2

The Weak Interaction

Neutrinos interact with other particles primarily via the weak interaction. Other possible

neutrino interactions, outside of the weak interaction, have important physical implications. For

example, neutrinos may interact electromagnetically due to a small magnetic moment. Experi-

ments show the neutrino magnetic moment is very small, at least ten orders of magnitude smaller

than the electron magnetic moment [26]. Also, neutrinos posses a small mass that leads to gravi-

tational effects that are astrophysically important [27].

In the context of solar neutrino production and detection, however, electromagnetic and grav-

itational neutrino interactions may be ignored. The neutrino interactions relevant to this thesis,

dealing with the production and detection of solar neutrinos, can be described solely in terms of

the weak interaction. This introductory chapter provides an outline of the weak interaction.

In modern physics, the weak interaction is subsumed in the electroweak interaction described

by the Standard Model. The first section in this chapter provides a motivation of the Standard

Model and describes the fundamental nature of the electroweak interaction. The second section

focuses on the behavior of neutrinos themselves and the importance of a nonzero neutrino mass.

The final section deals with low energy nuclear processes such as nuclear β decay, which are

responsible for both the creation of solar neutrinos and their detection.
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2.1 The Standard Model of Electroweak Interactions

A fundamental result of modern physics is that interactions between particles may be con-

structed by imposing invariance under local symmetry transformations on the field generators

for the particles. Local symmetries imposed on field generators are generally referred to as

gauge symmetries, and theories containing interactions arising from gauge symmetries are called

gauge theories. Gauge theories are attractive because they are manifestly renormalizable and all

facets of the interaction stem from an underlying symmetry.

The Standard Model of electroweak interactions is a gauge theory resulting from a

SU(2) U(1) gauge symmetry. This symmetry is selectively applied to particles based on their

chirality in order to describe the parity-violating nature of the weak interaction. Further, a Higgs

field is inserted into the theory to break the gauge symmetry and allow particles to have non-zero

mass. Before constructing the Standard Model, some simpler examples of gauge theories will be

considered.

The Standard Model has been outlined in several textbooks, with its derivation and notation

becoming somewhat standardized. This section follows the approach of the two texts [28, 29]

from which the author learned the subject.

2.1.1 The U(1) Gauge Theory: Electromagnetism

This section will describe the electromagnetic interaction of Dirac particles in terms of the

U(1) gauge symmetry. This example illustrates the basic principles of a gauge theory. The Dirac

Lagrangian, L0, for free non-interacting particles is

L0 ψ iγµ∂µ m ψ (2.1)

where

ψ ψ γ0 (2.2)
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Shifting the wave function by a global U(1) phase θ,

ψ x ψ x eiθψ x (2.3)

leaves the Lagrangian unchanged. A well known result of quantum mechanics is that the sym-

metry of the Lagrangian under global U(1) transformations leads to a conserved current, Jµ,

represented in the case of the Dirac Lagrangian by

Jµ ψγµψ (2.4)

To create a gauge theory for electromagnetism, a local U(1) phase shift α x is imposed on

the wave function,

ψ x ψ x eiα x ψ x (2.5)

The Lagrangian does not remain invariant under the transformation in Eq. 2.5 because it contains

a derivative term that transforms as

∂µψ ∂µψ eiα x ∂µ ∂µα x ψ (2.6)

leading to a new term in the transformed Lagrangian,

L0 L0 ψ iγµ∂µ γµ ∂µα m ψ (2.7)

The Lagrangian may be forced to remain invariant under the U(1) gauge symmetry by sub-

stituting the normal derivative, ∂µ, with the gauge-covariant derivative, Dµ, defined as

∂µ Dµ ∂µ ieAµ (2.8)

The introduction of this term requires the existence of a field, Aµ, with which the particles interact.

Note that the substitution in Eq. 2.8 is equivalent to the canonical momentum substitution, p

p eA, of classical electrodynamics. The new Lagrangian, containing interactions between the

original field, ψ, and a vector field, Aµ, is written as

L ψ iγµDµ m ψ (2.9)
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If the field Aµ is forced to transform as

Aµ Aµ Aµ
1
e
∂µα x (2.10)

then the gauge-covariant derivative transforms under the U(1) gauge symmetry as

Dµ Dµ eiα x Dµ (2.11)

and the Lagrangian of Eq. 2.9 will remain invariant. The field transformation, Eq. 2.10, is the

familiar gauge transformation of the electromagnetic potential. The field, Aµ, introduced to main-

tain the gauge invariance of the Lagrangian, may then be interpreted as the electromagnetic po-

tential.

Finally, a kinetic term of the electromagnetic field must be included in the Lagrangian. Mo-

tivated by classical considerations, the kinetic term is expressed as

LEM
1
4

F µνFµν (2.12)

where

Fµν ∂µAν ∂νAµ (2.13)

is the field strength tensor. Note that the transformation properties of Aµ, Eq. 2.10, imply that Fµν,

and hence LEM, is invariant under gauge transformation. The complete QED Lagrangian may

then be expressed as

LQED ψ iγµDµ m ψ
1
4

F µνFµν (2.14)

Using the definition of the covariant derivative, Eq. 2.8, the Lagrangian may be expressed in a

more transparent form,

LQED ψ iγµ∂µ m ψ eψγµψAµ
1
4

F µνFµν (2.15)

where the interaction of the current, Jµ eψγµψ, with the field, Aµ, takes the familiar form.

This exercise, using the U(1) symmetry group, has revealed a relationship between three

physical factors that are not obviously related:
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The requirement of a local U(1) gauge symmetry.

The form of the interaction between particles and the field, given by the covariant deriva-

tive, D .

The familiar gauge transformation behavior of the electromagnetic field.

A quick look back at the preceding argument will show that any two of the factors above can be

used to obtain the remaining factor. When building electromagnetism from a U(1) symmetry the

result is familiar, the derivation is simple, and the classical theory can be used as a guide. In con-

structing the full electroweak interaction from a gauge symmetry the process is more systematic:

a gauge symmetry is postulated and the covariant derivative is generalized.

2.1.2 The SU(2) Gauge Group

Before moving to a construction of the electroweak Standard Model, some consequences of

using a SU(2) gauge group will be discussed. This will serve to introduce the SU(2) group and it

will illustrate the basic consequences of using a non-commuting symmetry group. For this case,

the wave function, ψ, is an SU(2) spinor containing two Dirac wave functions,

ψ
ψ1

ψ2
(2.16)

The Pauli matrices,

σ1
0 1

1 0
σ2

0 i

i 0
σ3

1 0

0 1
(2.17)

are used as generators of the gauge group. The most general gauge transformation may be ex-

pressed as

ψ ψ G x ψ (2.18)

where

G x exp
i
2
σ jα j x (2.19)
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and α j x , with j 1 2 3, is an arbitrary three-vector transformation parameter.

The implications of SU(2) gauge transformations were studied in 1954 by Yang and Mills

in an attempt to create a theory of the strong interaction [30]. The transformations were applied

to SU(2) spinors containing wave functions for the proton and neutron. The (isospin) symmetry

between protons and neutrons in the strong interaction motivated the gauge requirement. While

this approach failed to reproduce experimental details of the strong interaction, the SU(2) gauge

transformation eventually became a cornerstone of the Standard Model.

The SU(2) group generators, σ j, do not commute with each other and, therefore, elements of

SU(2) do not generally commute. The non-commutative property leads to behavior not encoun-

tered in the simple U(1) example. As in the U(1) treatment, the transformation of the derivative

leads to a new term in the Lagrangian that must be balanced by introducing a covariant deriva-

tive in order for the Lagrangian to remain invariant under gauge transformations. Explicitly, the

derivative transforms as

∂µψ G∂µψ ∂µG ψ (2.20)

The gauge-covariant derivative is given by

Dµ ∂µ igBµ (2.21)

where g is some coupling constant and

Bµ
1
2
σibiµ (2.22)

and the three biµ, with i 1 2 3, represent the interaction fields for each generator of SU(2). For

the Lagrangian to remain invariant under SU(2) gauge transformation the covariant derivative

must transform as

Dµψ Dµψ GDµψ (2.23)

and the potential Bµmust transform as

Bµ Bµ G Bµ
i
g
G 1 ∂µG G 1 (2.24)
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Eq. 2.24 can be derived from Eq. 2.20 and Eq. 2.21. Using the definition of Bµ in terms of the

three fields biµ, Eq. 2.22, yields the gauge transformation law for fields biµ,

biµ b iµ biµ εi jkα
jbk

1
g
δµα

i (2.25)

Note that the non-commuting nature of the gauge group leads to a gauge transformation, Eq. 2.25,

containing a term absent in the gauge transformation for the electromagnetic potential, Aµ of Eq.

2.10.

Finally, a field strength tensor, F i
µν, must be determined for each of the fields bi such that the

Lagrangian of the gauge fields, L f ields, takes the form

L f ields
1
4
F iµνF

iµν (2.26)

The sum runs over both spacetime indices µ and ν as well as the gauge field index i.

The form of F iµν may be motivated by a geometrical consideration of the gauge transformation

[29]. This also provides a more concrete justification for the existence of the covariant derivative

and the interaction fields. The geometrical approach is too advanced for this simple discussion.

The result is simply stated here as

F iµν δνbiµ δµbiν gεi jkb jµb
k
ν (2.27)

The last term in Eq. 2.27 does not appear in the analogous expression for the U(1) field strength

tensor, Eq. 2.13. This term vanishes due to the commutative nature of the U(1) symmetry group.

The full Lagrangian of the SU(2) gauge theory may now be expressed as

L ψ iγµDµ m ψ
1
4
F iµνF

iµν (2.28)

or, expanding the covariant derivative to explicitly show the interaction term,

L ψ iγµδµ m ψ
g
2
biµψγ

µτiψ
1
4
F iµνF

iµν (2.29)

Note that the interaction term takes the form of a field multiplied by a current, as it did in the case

of the U(1) gauge symmetry that produced electromagnetism. In this SU(2) case, the current has
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the same form as the familiar isotopic current,

Jiµ
1
2
ψγµσiψ (2.30)

which is conserved due to global SU(2) invariance. Each component of the current interacts with

one of the fields generated by the gauge transformation.

The full method for generating a gauge interaction theory from the SU(2) group has now been

outlined. This process is more complicated than for the U(1) case. There are three interaction

fields, one for each group generator. The gauge transformation properties of the fields contain

terms not present in the U(1) case that arise from the non-commutative nature of the SU(2) group.

The most immediate physical consequence arising from the from the non-commutative gauge

group is the presence of the quadratic term in the field-strength tensor of Eq. 2.27. This term

leads third and fourth order field terms in the Lagrangian, Eq. 2.29, in addition to the quadratic

terms already seen in the U(1) Lagrangian, Eq. 2.15.

When the theory is quantized, Lagrangian terms quadratic in the field lead to propagators for

gauge bosons. The U(1) gauge boson (the photon), and the three SU(2) gauge bosons all have

associated propagators. Terms that are third and fourth order in the fields, (present in the SU(2)

gauge theory) lead to interaction vertices between three and four gauge bosons, a phenomenon

absent in first order QED.

As in the U(1) case, the SU(2) gauge transformation requirement for the fields, Eq. 2.25,

precludes the existence of a boson mass term. One reason why the Yang-Mills theory failed to

accurately describe the strong interaction between nucleons is that the π ρ η, etc. bosons that

mediate the strong nuclear force are massive and the force is short ranged. The same is true for

the weak interaction, and thus the theory must be modified to include massive gauge bosons. In

the next section, an example is given where the gauge bosons acquire mass due to a phenomenon

known as spontaneous symmetry breaking.
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2.1.3 The Higgs Field and Symmetry Breaking

As in the last section, the SU(2) gauge group will be used. Instead of Dirac fields, an SU(2)

spinor φ, called the Higgs field, containing two complex scalar fields, φ1 and φ2, will be used.

Explicitly,

φ
φ1

φ2
(2.31)

The Lagrangian for the bare Higgs field without gauge interactions, L0, is taken to be

L0 δµφ δµφ V φ (2.32)

where the first term is the usual kinetic term and

V φ µ2φ φ λ φ φ 2 (2.33)

is a potential representing self-interaction of the Higgs field, and µ and λ are arbitrary constants.

If µ 0, the minimum of the potential V φ lies at some non-zero value of the field φ, and

φ acquires a so-called vacuum expectation value, φ . Due to the freedom of a global SU(2)

spinor rotation, the vacuum expectation value may be expressed as

φ
1
2

0

v
(2.34)

where

v
µ
λ1 2

(2.35)

Now the gauge interactions are added by altering the Lagrangian in the usual fashion,

L Dµφ Dµφ V φ
1
4
F iµνF

iµν (2.36)

Because the SU(2) symmetry is still being used, the covariant derivative and field strength tensor

have the same form as in the last section, given by Eqs. 2.21 and 2.27, respectively.

The Lagrangian is no longer invariant under SU(2) gauge transformations because the

Higgs field has taken a vacuum expectation value. In fact, even the global SU(2) symme-

try is broken. The process by which the symmetry is broken by a Higgs field is called

spontaneous symmetry breaking.
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Expanding the kinetic term of the full Lagrangian, Eq. 2.36, at the vacuum state, φ , gives

Dµ φ Dµ φ ∂µ φ
ig
2
σibiµ φ ∂µ φ

ig
2
σibiµ φ

g2

8 0 v σiσ j 0

v
biµb

jµ g2v2

8
biµb

iµ
(2.37)

where the anti-commutator identity σa σb 2δab was used in the last step, and the sums are

over both the space-time indices µ and the gauge generator indices i and j. Thus, the Lagrangian

contains gauge boson mass terms of the form

Lb mass
m2

2
biµb

iµ (2.38)

with

mb
gv
2

(2.39)

The presence of the Higgs field, with its vacuum expectation value, has been shown to break

the SU(2) gauge symmetry and causes the gauge bosons to acquire mass. Further investigation

of the Higgs field requires that the kinetic term in the Lagrangian be expanded about the vacuum

expectation value. This expansion makes explicitly clear the interaction between the four com-

ponents of the Higgs field and the gauge bosons. Three degrees of freedom of the Higgs field

are shown to be massless, while one possesses mass. Using a suitable gauge transformation it is

possible to eliminate the explicit appearance of the three massless Higgs components in the La-

grangian. Instead, those components are absorbed into the Lagrangian of the gauge boson. This

is necessary because a massless gauge boson has only two (transverse) degrees of freedom, while

a massive gauge boson must have three (two transverse and one longitudinal). Essentially, the

massless components of the Higgs field become the longitudinal component of the gauge bosons.

It is a general result that when a symmetry of the Lagrangian is broken, the boson associated

with the generator of that symmetry must acquire mass. Since the entire SU(2) symmetry was

broken in this example, all gauge bosons acquired mass. In the next section, the Standard Model

will be derived. To retain one massless gauge boson, the photon, one symmetry of the Lagrangian

must be left unbroken.
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2.1.4 The Standard Model of ElectroWeak Interactions

In constructing the Standard Model it is necessary to first define the gauge groups. Next,

we define the Higgs field that breaks symmetry and its properties. The part of the Lagrangian

associated with the gauge bosons must be determined to reveal their properties. Later, the mat-

ter particles that participate in the ElectroWeak interaction will be included, and their coupling

to the gauge fields will be defined. Ultimately, the entire interaction Lagrangian, detailing all

electromagnetic and weak interactions between matter, will be found.

The Broken Gauge Symmetry The gauge group of the Standard Model is SU(2) U(1). The

three generators of the SU(2) group, taken as the Pauli matrices of Eq. 2.17, together with the

U(1) generator that provides a simple phase shift, provide four gauge bosons for the theory. The

Higgs field, φ, is again taken as a two-component complex scalar field defined to transform as a

spinor under SU(2). The Higgs field is assigned a U(1) charge Y 1 2, where the U(1) charge

defines the field’s transformation properties under U(1) gauge rotations. Thus, the Higgs field

transforms as

φ φ exp
i
2
σ jα j exp i

β
2
φ (2.40)

where the αi and β parameterize the SU(2) and U(1) gauge transformations, respectively.

Again, the Higgs field is constructed to take a vacuum expectation values defined by

φ
1
2

0

v
(2.41)

From the definition of the SU(2) generators σi, it is easy to see that a gauge transformation

satisfying the properties

α1 α2 0 α3 β (2.42)

will leave φ , and hence the Lagrangian, invariant. Thus, there is still one gauge symmetry,

corresponding to the combination of transformation parameters in Eq. 2.42 that is not broken by

the Higgs field. The remaining symmetry will produce a massless boson, the photon.

The Gauge Fields The gauge fields associated with the SU(2) symmetry will be denoted a iµ,

35



and the associated coupling constant as g. The field associated with U(1) will be denoted as Bµ,

with a coupling constant g . The covariant derivative of the Higgs field is then expressed as

Dµφ ∂µ
i
2
gaiµσ

i i
2
g Bµ φ (2.43)

The gauge boson masses arise from an expansion of the Higgs kinetic term in the Lagrangian,

Dµ Dµ . The computation is similar to that in the last section (see Eq. 2.37, and it will not be

shown explicitly. The resulting term in the Lagrangian is

Lboson mass
v2

8
g2a1µa

1µ g2a2µA
2µ ga3µ g Bµ ga3µ g Bµ (2.44)

The results of this section are better understood in terms of the following combinations of

gauge fields:

Wµ
1
2
a1µ ia2µ (2.45)

Z0µ
1

g2 g 2
ga3µ g Bµ (2.46)

and

Aµ
1

g2 g 2
g a3µ gBµ (2.47)

where the Wµ are identified as the fields of the W-bosons responsible for the charged weak

interaction, Z0µ as the field of the Z-boson responsible for the neutral weak interaction, and Aµ

as the photon field which produces the electromagnetic field. The gauge boson mass term in the

Lagrangian then becomes

Lboson mass
gv
4
Wµ W

µ gv
4
Wµ W

µ g2 g 2v
4

Z0µZ
0µ (2.48)

implying gauge boson masses of mW gv 2 and mZ g2 g 2v 2. The photon field, Aµ,

results from the one remaining symmetry of the Lagrangian and is, therefore, massless.

It is convenient to think of the relationship between the original gauge fields a3µ Bµ and the

physical fields Zµ Aµ, given by Eqs. 2.46 and 2.47, as a rotation:

Z

A

cosθw sinθw

sinθw cosθw

a3

B
(2.49)
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The rotation parameter, θw, is called the Weinberg angle or the weak mixing angle and is evi-

dently related to the gauge coupling constants by

cosθw
g

g2 g 2
sinθw

g
g2 g 2

(2.50)

Gauge Interactions of Fermions The interaction of matter particles with the gauge fields will

now be investigated. Generally, the covariant derivative takes the form

Dµ ∂µ gA j
µT

j ig YBµ (2.51)

where T i are matrices generating transformations under some representation of SU(2).

In the Standard Model, all matter fields transform under SU(2) as spinors, for which

T i σi 2 (2.52)

or else they will have no transformation under SU(2),

T i 0 (2.53)

The Higgs field has already been defined to transform as a spinor. The remaining matter fields to

consider are the leptons and quark field. These fermion fields represent the fundamental building

blocks of nature. In the Standard Model lepton and quark fields are separated into two fields, ψL

and ψR, according to chirality:

ψL
1
2
1 γ5 ψ ψR

1
2
1 γ5 ψ (2.54)

where ψ is a generic Dirac spinor. The chirality of the fields is used to define the SU(2) trans-

formation properties, with left-handed fields transforming as spinors, and right handed fields

remaining invariant under SU(2).

Left-handed quarks fields, uL and dL, and lepton fields, eL and νL, are denoted by the SU(2)

spinors

uL

dL

νL

eL
(2.55)
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Because the left-handed components transform as SU(2) spinors, matter particles must come in

pairs. Each pair is referred to as a generation. Experimentally, three generations of quarks and

leptons have been observed. The Standard Model does not limit the number of generations of

particles. However, upon quantization (a matter beyond the scope of this simple discussion) the

theory is only free of anomalies when the number of quark generations is equal to the number of

lepton generations.

Having no SU(2) transformation, the right handed matter fields are then denoted as singlets:

uR dR eR νR (2.56)

Because the neutrino has near-zero mass, the field νR is neglected in the Standard Model. Often it

is said that the Standard Model requires zero neutrino mass. This is misleading, since it is possible

to include νR in the discussion and trivially extend the Standard Model to include neutrino mass.

Problems arise only when the neutrino is described as a Majorana particle (as opposed to a Dirac

particle). In the case of a Majorana neutrino the extension to the theory is more complicated.

Additional aspects of neutrino physics will be discussed in the next section.

Expressing the covariant derivative, Eq. 2.51, in terms of the physical gauge fields, Eqs. 2.45,

2.46, and 2.47, yields

Dµ ∂µ
ig
2
Wµ T Wµ T

ig
cosθW

Zµ T 3 sin2θWQ ieAµQ (2.57)

The term involving the electromagnetic field, Aµ, take its usual form, the electromagnetic coupling

constant e has been defined in terms of the gauge coupling constants,

e
gg
g2 g 2

(2.58)

and the electric charge Q has been defined in terms of the U(1) charge Y and the 3-component of

isospin, T 3,

Q T 3 Y (2.59)

Based on helicity, T3 is given by the SU(2) transformation properties of the lepton or quark fields.

Using the electric charges, it is straightforward to assign a U(1) charge to each of the fields based

on Eq. 2.59. The results are shown in Table 2.1.
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Fermion Field Q T3 Y
νL 0 +1/2 -1/2
eL 1 -1/2 -1/2
uL +2/3 +1/2 +1/6
dL -1/3 -1/2 +1/6
eR -1 0 -1
uR +2/3 0 +2/3
dR -1/3 0 -1/3

Table 2.1. The electric charge, Q, the third component of weak isospin, T3, and the U(1) charge,
Y , for each of the fermion fields in the Standard Model.

Having determined the transformation properties of the fermion fields under the Standard

Model gauge symmetries, the fermion kinetic terms may be expressed using the covariant deriva-

tive of Eq. 2.57,

L uL dL iγµDµ
uL

dL
νL eL iγµDµ

νL

eL

uR iγµDµ uR dR iγµDµ dR eR iγµDµ eR

(2.60)

Using the expression for the covariant derivative, Eq. 2.57, and the weak isospin and U(1)

charge values of Table 2.1, yields

L uL dL iγµ∂µ
uL

dL
νL eL iγµ∂µ

νL

eL

uR iγµ∂µ uR dR iγµ∂µ dR eR iγµ∂µ eR
g
2
Wµ J

µ
W Wµ J

µ
W Z0µJ

µ
Z eAµJ

µ
EM

(2.61)

where the charged weak currents, J µ
W and J µ

W , are given by

J µ
W νLγµeL uLγµdL (2.62)

and

J µ
W eLγµνL dLγµuL (2.63)
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The neutral weak current, JµZ , is given by

JµZ
2

cosθw
νLγµ

1
2
νL eLγµ

1
2

sin2θw eL eRγµ sin2θw νL

uLγµ
1
2

2
3
sin2θw uL uRγµ

2
3
sin2θw uR

dLγµ
1
2

1
3
sin2θw dL dRγµ

1
3
sin2θw dR

(2.64)

and the electromagnetic current, JµEM, is given by

JµEM eγµ 1 e uγµ
2
3
u dγµ

1
3
d (2.65)

The interaction terms between matter fields and electroweak boson fields, given by Eqs. 2.62-

2.65, are one of the two primary results of this chapter. The second, discussed next, deals with

fermion mass in the Standard Model. Fermion mass, specifically neutrino mass, gives rise to

flavor changing phenomena that provide a possible solution to the solar neutrino problem.

Fermion Mass Terms The Lagrangian, L0, for a free Dirac particle with mass m can be

expressed as

L ψ iγµ∂µ m ψ ψLiγ
µ∂µψL ψRiγ

µ∂µψR m ψLψR ψRψL (2.66)

where states of definite chirality are mixed by the mass term. In the Standard Model, the left-

and right-handed chirality eigenstates possess different SU(2) transformation properties. As such,

the fermion mass terms shown in Eq. 2.66 cannot be present in the Standard Model Lagrangian.

Instead, mass terms are generated by the interaction of matter fields with the Higgs field.

The simplest gauge invariant term that couples the electron field to the Higgs field is

Lmass λe νeL eL
φ1

φ2
eR h c (2.67)

which simplifies to
1
2
λeveLeR h c (2.68)

when the vacuum expectation value of the Higgs field is applied. The coupling constant λ, which

gives the interaction strength between the electron fields and the Higgs field, produces an electron
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mass term in the Lagrangian given by

me
1
2
λev (2.69)

The quark mass terms are slightly trickier, since unlike neutrinos, the u-type quarks occu-

pying the first component of the SU(2) spinors possess mass (in this simple formulation of the

Standard Model we have approximated the neutrino as massless). The gauge invariant term gen-

erating the quark masses is given by

Lmass λd uL dL
φ1

φ2
dR λu dL uL

φ1

φ2
uR h c (2.70)

which simplifies to give quark masses

md
1
2
λdv mu

1
2
λuv (2.71)

It should be explicitly noted that the new mass terms generated by interactions between the

fermions and the Higgs field are gauge invariant. This is because the SU(2) and U(1) charges

of the fields composing the Lagrangian terms in Eqs. 2.67 and 2.70 sum to zero. One can easily

verify this by examining Table 2.1, and recalling that the Higgs field, φ, has U(1) charge 1
2 and

transforms as an SU(2) spinor. It was previously stated that a trivial extension of the Standard

Model allows for neutrino mass. This could be performed by postulating the existence of right-

handed neutrino fields, νR, and adding a term to Eq. 2.67 similar to the second term of Eq. 2.70,

generating the mass of the u-type quarks. Gauge invariance of the Lagrangian would then require

that the νR fields have no U(1) or SU(2) charge and thus do not interact via the electroweak force.

Before fermion masses were introduced into the theory, the only input parameters of the

Standard Model were the gauge coupling constants, g and g , and the vacuum expectation value

of the Higgs field, v. These initial three parameters are usually expressed in terms of somewhat

more physical constants e, sin θw, and mW . An often stated deficiency of the Standard Model is

the inclusion of nine new parameters, λi, one for each of the three known generations of leptons,

and two for each of the three known generations of quarks.
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In fact, the new fermion mass terms require four more parameters to be introduced. This is

because the fermion fields are eigenstates of mass but are not necessarily eigenstates of the inter-

actions; that is, the fermion fields of Eqs. 2.67 and 2.70 need not be the same as the fermion fields

that interact with the gauge bosons in Eqs. 2.62-2.65. This complication allows the phenomena

of CP violation and Cabbibo suppression to be explained and, with a slight extension, allows a

parametrization of neutrino oscillations. The next section briefly introduces these concepts.

The CKMMatrix Eigenstates of the gauge interactions, known as flavor eigenstates, must be

related to the mass eigenstates of the previous section via the most general 3 3 unitary matrix.

Assuming the lack of νR fields, and hence neutrino mass, the νL fields may be defined (without

loss of generality) such that no rotation is needed for the leptons. For the quarks, there is sufficient

freedom to define the u-type quark mass eigenstates as flavor eigenstates, and to consider a unitary

transformation between the flavor and mass eigenstates of the d-type quarks.

The three u-type quark fields, which are eigenstates of both mass and flavor, are called the up

(u), charm (s), and top (t) quark fields. The d-type mass eigenstates, called down (d), strange (s),

and bottom (b), are then related to the flavor eigenstates, d s , and b , by

d

s

b

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

d

s

b

(2.72)

The 3 3 unitary matrix is called the Cabbibo-Kobayashi-Maskawa matrix, VCKM , and is filled

with elements Vαβ. There are four degrees of freedom for the most general 3 3 unitary matrix.

To illustrate this it is often written explicitly as

VCKM

c12c13 s12c13 s13exp iδ

s12c23 c12s23s13exp iδ c12c23 s12s23s13exp iδ s23c13

s12s23 c12c23s13exp iδ c12s23 s12c23s13exp iδ c23c13

(2.73)

Here ci j cosθi j and si j sinθi j . The four parameters of the unitary transformation, θ12 θ13,

θ23, and δ are further input parameters to the Standard Model determined by experiment.

The representation of Eq. 2.73 is the standard representation advocated by the Particle Data
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Group. As will be discussed in the next section, for the case of neutrino mass, a similar matrix

may be used to parameterize neutrino flavor oscillations.

The CKM matrix has some basic physical manifestations. For instance, the Vus value, about

1 4, is responsible for the decreased strength of weak processes coupling the u and s quarks,

compared to couplings between the u and d quarks. This phenomenon, historically known as

Cabibbo suppression, led to the first phenomenological flavor mixing matrix . Another important

manifestation stems from the δ phase parameter accounts for CP violating processes, a puzzle

first noticed in the decay of neutral kaons.

Conclusions This completes the rudimentary discussion of the Standard Model. In summary,

the SU(2) U(1) gauge symmetry is broken by some Higgs field. This leads to an interaction

between fermion fields and gauge bosons that describes the observed electroweak interactions.

These interactions depend on only three parameters: e, sinθw, and mW . As mentioned previously,

three degrees of freedom of the Higgs field become longitudinal components of the three massive

bosons, providing mass and charge. The last component, not yet discussed, should exist as a

scalar particle known as the Higgs boson. No conclusive experimental evidence for the Higgs

boson has been found.

The addition of fermion mass terms requires coupling between the Higgs field and the

fermions. This requires nine further parameters, one for each massive particle. Furthermore,

the CKM matrix requires four more parameters, which allow for flavor changing processes to

occur.

The next section discusses the physics of neutrino flavor oscillations. These oscillations of

neutrinos from one flavor to another depend on both a non-zero neutrino mass and a mixing

matrix for leptons analogous to the CKM matrix.
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2.2 Neutrino Oscillations

The term neutrino oscillations refers to the quantum phenomenon of a neutrino created in a

certain flavor eigenstate changing, or oscillating, to a different flavor eigenstate as it propagates.

The experimental evidence [23] for neutrino oscillations was briefly discussed in the context

of the solar neutrino problem in Section 1.2.3. This section provides a brief description of the

physics behind neutrino oscillations and, specifically, implications for 8B neutrinos created in the

Solar core. The high density of electrons in the Sun which drops off adiabatically (in the context

of neutrino oscillations) with solar radius, coupled with the phenomenon of matter enhanced

neutrino oscillations, will be shown to have a significant effect on the 8B neutrino energy spec-

trum.

As with the Standard Model material of the previous section, the physics of neutrino oscil-

lations has been discussed extensively in review papers and books. As a result, the associated

terminology and notation have become rather standardized. The material in this section roughly

follows the notations and approach of the book Neutrino Astrophysics by John Bahcall [5].

2.2.1 Vacuum Oscillations

In Section 2.1, it was noted that the quark mass eigenstates were not the same as the the

flavor eigenstates which participate in the weak interaction. Without loss of generality, the u-type

quarks were taken to be eigenstates of both mass and flavor, while the d-type quarks required the

CKMmatrix to describe the change of basis between mass and flavor eigenstates as shown in Eq.

2.72. If we allow neutrinos to have a non-zero mass, an analogous situation exists for leptons.

We take the charged leptons to be eigenstates of both mass and flavor, while the neutrino flavor

eigenstates να (α=e,µ,τ) are described in terms of the mass eigenstates ν j (j=1,2,3) by a mixing

matrixUα j,

να t ∑
j
Uα jexp

i
E jt ν j (2.74)
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The mixing matrixUα j is called the Maki-Nakagawa-Sakata matrix, or MNS matrix. The proba-

bility, then, that a neutrino created in flavor eigenstate να will behave as a να at some later time t

is given by

νβ t να 0 2 ∑
j k
Uα jUβ jUαkUβkexp

i
E j Ek t (2.75)

For solar neutrino experiments unable to provide a definite energy resolution, such as the

Homestake 37Cl neutrino capture experiment that first detected an apparent deficit in the solar

neutrino flux [13], it is convenient to average Eq. 2.75 over neutrino energies. Following Bahcall,

who showed [31] that an average over a range of energies leads to cancellations between terms in

Eq. 2.75 where j k, we obtain

νe t νe 0 2 ∑
j
Ue j 4 (2.76)

which is the probability that an electron-type neutrino created at time t 0 is observed as an

electron-type neutrino at some later time t. The condition that the MNS matrix be unitary places

a restraint on the smallness of νe t νe 0 2, given by

νe t νe 0 2 1
N

(2.77)

where N 3 is the number of lepton flavors. This provides the important result that the solar νe

flux may be reduced by at most a factor of 3 by neutrino oscillations in a vacuum. In fact, for

vacuum oscillations to reduce the observed solar νe by a factor even close to 3, which is near

what the original Homestake experiment observed [13], both the MNS mixing angles and the

Earth-Sun distance would have to be fine tuned; that is to say, the MNS mixing angles would

have to be much larger than those of the CKM matrix, and the Earth-Sun distance would have to

be in a narrow range defined by the large MNS mixing angles. Vacuum oscillations thus do not

offer a desirable solution to the solar neutrino problem, and it is now known conclusively [23]

that matter-enhanced oscillations are required to offer a solution. Matter-enhanced oscillations

are discussed in the next section. It is convenient, however, to carry on the discussion of vac-

uum oscillations so as to introduce terminology and equations which have useful analogs in the

discussion of matter-enhanced oscillations.
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For simplicity we consider only two flavor and mass eigenstates, and the mixing matrix then

only requires one parameter θV , the vacuum mixing angle. The change of basis is then given by

νe

νµ

cosθV sinθv

sinθV cosθv

ν1

ν2
(2.78)

The probability that a νe interacts as a νe at some later time is then

νe t νe 0 2 1 sin22θV sin2
E2 E1
2

t (2.79)

This equation simplifies to the well-known expression

νe t νe 0 2 1 sin22θV sin2
πl
LV

(2.80)

where l is the distance traveled by the neutrinos, the LV is the vacuum oscillation length,

LV
4πE
Δm2c3

(2.81)

and Δm2 is the difference of the squares of the neutrino masses,

Δm2 m21 m22 (2.82)

Note then the important point that neutrino oscillation experiments are sensitive only to this Δm2

value, and not the masses of the neutrinos themselves.

The inclusion of matter effects on neutrino oscillations is described most easily by explicitly

defining a Hamiltonian. In this context the Hamiltonian is referred to as themassmatrix, denoted

for vacuum oscillations as M0. Any neutrino state can naturally be described in the flavor basis

as

ν t ce t νe cµ t νµ (2.83)

Note that one may include all three neutrino flavors with the same technique, although this is

apparently quite a burden in practice. Two flavors are adequate for this discussion which seeks

only to highlight the general ideas of mixing. After symmetrizing the mass matrix, the coefficients

ce µ t may be shown to evolve with time as

i
ce t

cµ t

ΔV
2

cos2θV sin2θV

sin2θV cos2θV

ce t

cµ t
(2.84)
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where the term ΔV is defined in terms of the vacuum oscillation length,

ΔV
2π c
LV

Δm2c4

2E
(2.85)

and the mass matrix M0 is taken to be the 2 2 matrix operating on the right-hand side of Eq.

2.84.

2.2.2 Matter-Enhanced Oscillations

The seminal works of Wolfenstein [32, 33] in 1978 and 1979, and Mikheyev and Smirnov

[34, 35, 36] laid the groundwork for matter-enhanced neutrino oscillations. The need for fine-

tuning in vacuum oscillation solutions to the solar neutrino problem was undesirable, and matter-

enhanced oscillations provide a way around this problem. The presence of electrons in the Sun,

the density of which is large in the solar core and drops to zero as the neutrinos propagate out

of the Sun, allows for matter-enhanced mixing to occur. Electron-type neutrinos emitted in the

solar core are free to interact via W exchange with solar electrons. It is the forward scattering

amplitude of this process which produces matter-enhanced mixing, and is termed the MSW effect

after the original researchers.

The equations describing vacuum oscillations are easily generalized to describe MSW oscil-

lations. The mass matrix serving as a Hamiltonian for the two-state neutrino system is expanded

to

M M0 Mmatter (2.86)

where the new (matter-enhanced) term is given by

Mmatter 2GFne νe νe (2.87)

where GF is the Fermi constant, ne is the electron number density, and the νe projection operator

indicates that only electron-type neutrinos take part in the process.

The behavior in time of the flavor eigenstates is given by a generalization of Eq. 2.84,

i
ce t

cµ t

ΔM
2

cos2θM sin2θM

sin2θM cos2θM

ce t

cµ t
(2.88)
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Figure 2.1. The production of 8B due to nuclear fusion in the solar core, as a function of distance
from the solar center. This graph is a result of a recent publication of the Standard Solar Model
by Bahcall et al. [6].

where ΔV is replaced by ΔM,

ΔM ΔV cos2θV 2GFne 2 ΔV sin2θV 2 1 2 (2.89)

and the new mixing angle in matter θM is given by

tan2θM
tan2θV

1 LV
Le sec2θV

(2.90)

and the neutrino-electron interaction distance Le is introduced,

Le
2π c
GFne

(2.91)

The crucial result of the MSW effect is that there exists a critical electron number density,

the resonance density ne, given by

ne
Δm2 c4cos2θV
2 2GFE

(2.92)

whereby mixing between νe and νµ is maximized due to a large matter mixing angle, θM

π 4. Note that, even for small vacuum mixing angles, θV , the resonance condition can occur.

Specifically, the resonance density does occur in the Sun.
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2.2.3 8B Neutrinos from the Solar Core

The presence of the MSW effect, and of the resonance electron density in the Sun, allows for

νe neutrinos to oscillate to νµ and νtau neutrinos as they propagate from the Solar core to detectors

on Earth. This section will briefly consider the effect of neutrino oscillations on neutrinos from
8B.

I have written code which numerically propagates neutrinos from various coordinates in the

Sun, where they are emitted from 8B β-decay. An understanding of the νe component of 8B

neutrinos after they have traversed the Sun to detectors on Earth depends on where in the Sun the

neutrinos were emitted. Fig. 2.1 shows the production rate of 8B by nuclear fusion as a function

of distance from the solar center. This information was obtained from a recent publication of the

Standard Solar Model [6].

Integrating over the 8B production rate as a function of location, and propagating the neu-

trinos isotropically, I arrive at the probability that a νe emitted in the Sun behaves as a νe as it

reaches the Earth. This result has been obtained countless time before, with greater accuracy.

My approach is incomplete in that it ignores for example, the day-night effect resulting from the

MSW effect as the neutrinos propagate through the Earth. The survival probability of νe from 8B

β decay is shown in Fig. 2.2.

2.3 Weak Interactions in Nuclei

The early development of the theory of weak interactions was instigated and perpetuated

almost entirely by investigations of nuclear β-decay and other low energy processes. Lee and

Yang proposed in 1956 that weak processes may not conserve parity [37], providing a solution to

the θ τ puzzle. Soon after, in 1957 Wu et al. discovered that parity was in fact almost maximally

violated in the β-decay of 60Co [38]. Early measurements of the β-ν angular correlation in β-

decay [39, 40, 41], carried out between 1959 and 1963, indicated a V A Lorentz structure of
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Figure 2.2. The survival probability of νe neutrinos emitted from 8B β-decay in the Sun as a
function of neutrino energy. The solid line indicates the survival probability using the best values
[25] of θV and Δ2m available from both solar neutrino and terrestrial reactor experiments. The
dotted lines indicate the 1σ uncertainties due to uncertainties in θV and Δ2m. Note that the energy
range is consistent with the threshold of typical water-Cerenkov detectors.

weak currents. The 1964 discovery by Cronin and Fitch of CP violation in neutral kaons [42] was

another important discovery.

This section presents a development of nuclear β-decay sufficient to motivate the calculation

of the 8B neutrino spectrum, the main result of this thesis. As much as possible, the discussion

will derive from the results of Section 2.1.

2.3.1 General Considerations

In the discussion of the Standard Model in Section 2.1, the part of the Lagrangian concerning

the interactions of matter fields with the four gauge fields, Eqs. 2.62-2.65, was derived. Nuclear

β-decay changes the charge of the nucleus and hence is described through interactions with the
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charged W and W gauge fields, described in Eqs. 2.62 and 2.63. The neutral weak current,

induced by interactions with the Z0 gauge field as in Eq. 2.64, represents an important aspect of

the Standard Model but plays no role in β-decay.

In the quantized theory the matrix element M for the process u d e νe, describing

β-decay at the quark level, is given by the usual application of the Feynman rules:

M g2Vud udγλ 1 γ5 vu
gλρ qλqρ

m2W
q2 m2W

uνeγρ 1 γ5 ve (2.93)

Here u and v are the positive and negative frequency Dirac fields describing the matter particles,

and q is the momentum transfer. The term in parentheses is the W-boson propagator.

In β-decay the momentum transfer, of order 1 10 MeV, is far less than mW 80 4 GeV, al-

lowing a simplification of the propagator. The quark fields may be replaced by fields representing

a nucleus, with α representing the initial state and β the final state. Eq. 2.93 then becomes

M
GF

2
VudJhadron λJλlepton (2.94)

where the hadronic and leptonic charged weak currents, Jλhadron and J
λ
lepton are given by

Jλhadron β γλ 1 γ5 vp α (2.95)

and

Jλlepton uνeγ
λ 1 γ5 ve (2.96)

and the newly introduced Fermi coupling constant GF is given by

GF

2
g2

m2W
(2.97)

Note that the propagator present in Eq. 2.93 is absorbed into the Fermi coupling constant in

the low energy approximation of Eq. 2.94, which takes the form of a current-current interaction.

The low energy approximation is expressed graphically in Fig. 2.3.

The electromagnetic interaction induces vertex corrections altering the β-decay process, sim-

ilar to corrections on a QED vertex. It is a textbook problem to calculate the corrections to a
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Figure 2.3. The Feynman diagrams generating nuclear β-decay. On the left is the diagram as-
sociated with the full interaction Lagrangian of the Standard Model, containing two interaction
vertices and a W-boson propagator. On the right is the simplified diagram associated with the one
vertex Fermi interaction.

leptonic vertex produced by brehmstrahlung and QED vertex corrections; to first order in the fine

structure constant, α, the calculation is quite accessible. Such processes give rise to, for example,

the electron magnetic moment which is the result of an induced tensor term. Radiative corrections

to a nuclear vertex in β-decay are more complicated but, as will be discussed in Chapter 7, the

first non-vanishing term in an expansion in α is calculable and independent of nuclear structure.

Corrections induced by the strong interaction, however, are not so tractable. These correc-

tions are not calculable due to the non-perturbative nature of the strong interaction at low energies.

Instead they are treated in a phenomenological fashion by expressing the nuclear weak current in

the most general form allowed by Lorentz invariance. Note that in the simple V A form of the

nuclear weak current, Eq. 2.95, the effects of the strong interaction were implicit in the nuclear

wave functions, α and β . From this point on, the nuclei are treated as structureless elementary

particles and the effects of the strong interaction are described by form factors.

The most general form for transitions between nuclei of arbitrary spin has been outlined

by Holstein [43], who has made simplifying approximations and related the results to observable

quantities. These results will be discussed in Chapter 6 in the context of the 8B neutrino spectrum.
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Presently, the discussion will be simplified by considering only the most general form of the weak

current for transitions between two nucleons, given by

Jλhadron Vuduβ f1γλ i f2σλρgρ f3qλ g1γλγ5 ig2σλρqργ5 g3γ5qλ uα (2.98)

The vector form factors fi and and axial form factors gi are functions of q2, but in the case of

β-decay the dependence may be ignored and the form factors evaluated at q2 0. In the next

sections, symmetry arguments will be applied to characterize these form factors.

2.3.2 Symmetries

As discussed in Section 2.1, a global symmetry implies the existence of a conserved current.

In the case of an SU(2) symmetry, the conserved current is the isotopic current of Eq. 2.30. The

Standard Model contains an SU(2)L1 symmetry which, while broken for gauge transformations,

remains unbroken globally. The resulting conserved isotopic current plays an important role in

β-decay.

The electromagnetic current, JµEM, of Eq. 2.65 may be expressed generally for a field ψ with

charge Q as

JµEM ψγµQψ ψγµ T3 Y ψ (2.99)

where Eq. 2.59 has been used to relate electric charge to the SU(2)L and U(1) gauge couplings T3

and Y . The SU(2)L component of JµEM, denoted by J
µ
3 , acts only left-handed fields. Considering

ψ now as an SU(2)L spinor, Jµ3 takes the form

Jµ3 ψγµ 1 γ5 σ3ψ (2.100)

where the 1 γ5 is explicitly included to indicate the left-handed nature of the current. Express-

ing the charged weak interaction current, Eqs. 2.62 and 2.63, in similar form gives

JµW Jµ ψγµ 1 γ5 σ ψ (2.101)
1From this point on, the SU(2) gauge symmetry of the Standard Model will be referred to as SU(2)L, so labeled

because it acts on left-handed fi elds. This distinction will be made because of the frequent appearance in nuclear
physics of isospinors representing nucleons and nuclei. For example, the neutron and proton may be described by an
SU(2) isospinor, and 8Li, 8Be, and 8B by an SU(3) isospinor.

53



It is clear from Eqs. 2.100 and 2.101 that J3 and J form two isotriplet currents: a vector

isotriplet current, JVi ψγµσiψ, and an axial isotriplet current, JAi ψγµγ5σiψ. The vector current

will be considered first.

The Conserved Vector Current

The vector isotriplet current, JVi ψγµσiψ, is termed the Conserved Vector Current (CVC).

When applied to left-handed fields behaving as spinors under SU(2)L, such as the up-down quark

spinor, the current is exactly conserved in the Standard Model; this follows immediately from

global SU(2)L symmetry.

The SU(2)L quark spinors are inconvenient in practice since free quarks do not exist in na-

ture. In nuclear physics, it is convenient to arrange nucleons and nuclei into isospin multiplets

reflecting approximate symmetries. For example, the neutron and proton have quark contents udd

and uud, respectively. Both represent the ground state of these quark configurations. Assuming

the strong interaction treats u and d quarks identically, the neutron and proton must have nearly

equivalent quark wave functions. This idea is supported by the near equality of their masses,

mn 939 6 MeV and mp 938 3 MeV, with the difference arising predominantly from electro-

magnetic effects. In analogy to the fundamental SU(2)L u d isodoublet, the neutron and proton

are likewise arranged into a SU(2) isodoublet. The vector current JVi ψγµσiψ is then assumed to

operate on the n p isodoublet. In this formulation, the vector current is not exactly conserved; it

is violated due to imperfect isospin symmetry. Nonetheless, it remains an effective tool of nuclear

physics.

The original formulation [44] of the CVC hypothesis in 1957, well before the conception of

the Standard Model, was proposed to account for the near equality of the weak coupling constants

responsible for vector decays such as muon decay and superallowed Fermi decays (Jπ 0 0 )

decays between members of a nuclear isomultiplet. The motivation for CVC was an analogy to

electric charge; electric charge is conserved due to a conserved electromagnetic current, so a

weak charge associated with a conserved weak vector current was postulated. The existence of

a conserved weak charge is sometimes referred to as the weak CVC hypothesis. Due to the
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Figure 2.4. At left is the diagram corresponding to the β-decay of a bare nucleon. In addition,
the pion contribution to vector (Fermi) β-decay must be considered. The lowest order diagram
containing a pion contribution is shown at right.

similar appearance of the vector parts of the charged weak currents and the isovector portion of

the electromagnetic current, these three currents were postulated to form an isotriplet, sometimes

known as the strong CVC hypothesis.

The weak CVC hypothesis explains the equality of ft-values for all superallowed β-decays,

after isospin breaking effects have been considered. It is historically fortunate that Vud is so close

to unity, as this causes the coupling constant for superallowed β-decays to be very close to that of

muon decay. At the time CVC was proposed, the difference in these coupling constants induced

by Vud were smaller than experimental uncertainties.

The weak CVC hypothesis may be understood conceptually at the nuclear level through a

simple example. In superallowed β-decay, only the vector portion of the weak current contributes.

In the impulse approximation of β-decay, a single nucleon in the nucleus is responsible for the

decay. Corrections to this arise from the mesonic contributions, such as pion exchange which

mediates the strong interaction between nucleons. Fig. 2.4 shows the Feynman diagram for the

β-decay of a bare nucleon, as well as the first order correction given by the β-decay of a nuclear

pion. Weak CVC then not only predicts the existence of pion β-decay, but can be used to estimate

its frequency [44].

The strong CVC hypothesis indicates that the vector form factors, f i, of Eq. 2.98, of the

hadronic weak current are identical to the vector form factors of the isovector part of the hadronic
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electromagnetic current. Considering the neutron-proton isospin doublet as an example, the elec-

tromagnetic matrix element, M , linking nucleon states with momenta p and p and spins s and s

are written

M p s JµEM ps up s Cnγµ iMnσµνqν Snqµ ups (2.102)

for the neutron, and similarly for the proton with Cn Mn Sn Cp Mp Sp.

The scalar form factors can be shown to vanish by the requirement that JµEM is conserved. The

tensor form factors, labeled M because they produce the anomalous magnetic nucleon moments,

are given byMp 1 79 2m and Mn 1 91 2m where m is the nucleon mass. The vector form

factors are labeled C because they produce the interaction field of a normal Dirac particle with a

given charge, are Cp 1 and Cn 0.

Consider a SU(2) isospinor, u, containing neutron and proton wave functions, where the

proton part is given by up 1 σ3 2 u and the neutron part by un 1 σ3 2 u. Defining

the isovector, C1 M1, and isoscalar, C0 M0, form factors by

C0 Cp Cn 1 M0 Mp Mn
0 12
2m

(2.103)

C1 Cp Cn 1 M1 Mp Mn
3 70
2m

(2.104)

the electromagnetic matrix element becomes

M u
1
2
C0γµ iM0σµνqν C1γµ iM1σµνqν σ3 u (2.105)

Strong CVC then requires the form factors fi of the hadronic weak current operating on the

proton-neutron isodoublet to be given by f1 C1 1, f2 M1 3 70 2m, and f3 0.

The CVC hypothesis, incorporated in the Standard Model by its global SU(2)L symmetry and

extended to practical nuclear applications by exploiting isospin symmetries, is a powerful tool in

nuclear physics. The existence of a weak vector charge not renormalized by the strong interac-

tion allows important tests of the Standard Model. Measurements of superallowed β-decay rates

provide an important experimental test, and the equality of superallowed rates in varying nuclei

confirm the weak CVC hypothesis and are used to determine Vud . The strong CVC hypothesis is
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Figure 2.5. At left is the diagram corresponding to the β-decay of a bare nucleon. At right is the
lowest order diagram containing a pion contribution to axial (Gamow-Teller) β-decay.

more difficult to test, since weak form factors in β-decay are not easily accessible experimentally.

However, strong CVC allows the relatively easy measurements of electromagnetic form factors to

be used to infer the analogous weak form factors; this approach is used later in the determination

of the 8B neutrino spectrum.

Partially Conserved Axial Current

The axial isotriplet current, JAi ψγµγ5σiψ, does not play as large a role in nuclear physics

as does its vector counterpart, in large part because it is not conserved. This follows immediately

from the Dirac equation; for massless Dirac particles a conserved axial current does exist in the

classical theory, but the Standard Model contains massive fermions.

There is a more interesting reason why the axial current is not conserved. It is a property of

gauge theories that axial currents, which may be conserved in the classical field theory, acquire

a divergence when the theory is quantized and radiative corrections are considered. A general

discussion is found in Ref. [29]. Here, only a simple approximation of nuclear physics is con-

sidered, where the divergence of the axial current is related to properties of the pionic nuclear

current which mediates the strong interaction. In this context, the axial current is not conserved

because it connects the pion states to the vacuum, as shown schematically in Fig. 2.5. The diver-

gence of the axial current may thus be approximated in terms of the pion decay constant. This

approximation is given, in the context of 8B β-decay, in Chapter 6.
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Chapter 3

The 8Be Final State: An R-matrix

Description

The mass 8 nuclear system offers ample opportunity for experimental tests of nuclear and

electroweak physics. A diagram showing mass 8 nuclear energy levels is shown in Fig. 3.1. The

instability of mass 8 nuclei is an important characteristic of the system. The 8Be nucleus decays

rapidly into α particles, and the short lifetime provides a broad region of excitation energies

in 8Be through which nuclear processes, such as β-decays, radiative decays, or α-α scattering

may proceed. The likelihood that a given excitation energy in 8Be is populated by a nuclear

process is sometimes described phenomenologically by the R-matrix formulation, where a region

of excitation energies in 8Be is described in terms of interfering nuclear states. The R-matrix

formulation is used in this thesis as a tool to parametrize and describe various experimental data,

including the alpha spectrum.

The mass 8 system includes a T=1 isotriplet, containing 8B, so that recoil order effects (de-

scribed by the Conserved Vector Current and possibly Second Class Currents – as discussed in

Chapter 6) may be studied by measuring reaction rates and angular correlations associated with

the β-decays and radiative decays of the isotriplet, and the subsequent 8Be breakup into α par-

ticles. The instability of the 8Be daughter state increases the potency of experimental tests by
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Figure 3.1. Nuclear levels in mass 8 relevant to the β-decays of the 8B and 8Li ground states.
Spins, parities, and excitation energies relative to the 8Be ground state are indicated.

allowing, for example, recoil order matrix elements to be characterized as a function of energy

release.

This chapter summarizes nuclear transitions in mass 8, concentrating on processes relevant to
8B β-decay. Most importantly, the probability that a given excitation energy in 8Be is populated

by 8B β-decay (determined experimentally by measurements of the α spectrum following the
8Be disintegration) is characterized using the R-matrix formulation. Secondarily, the recoil order

matrix elements which contribute to the β-decay, and affect the neutrino spectrum, are character-

ized. A discussion of past experimental data, analyzed using results from this chapter, is given in

Chapter 4. Details and results of the experimental work of this thesis are given in Chapter 5.
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3.1 Energy Levels and Transitions in Mass 8

Measurements of s-wave α-α scattering using a helium gas-jet target [45] indicate the ground

state of 8Be (Jπ=0 ) has mass 92.04 0.05 keV above the mass of two α particles, and width

Γ=5.57 0.25 eV. All excitation energies (Ex) in mass 8 are given relative to the 8Be ground state.

The 8B ground state has Jπ=2 , so that the β-transition from 8B to the 8Be ground state (and

isospin analog transitions) is second forbidden and should be highly suppressed. The presence of

the 8Be ground state is thus ignored in this work.

The broad 8Be state (Jπ=2 ) near Ex=3.0 MeV excitation energy with approximate width

Γ=1.5 MeV is discernible from d-wave α-α scattering [46], and is responsible for the peak of the
8B and 8Li β-delayed alpha spectra [47, 48, 49, 50].

A 8Be state (Jπ=4 ) near Ex=11.4 MeV excitation energy with approximate width Γ=4.0MeV

[51] has been identified and is included in Fig. 3.1 for completeness. Its existence is ignored in

this work, again because transitions from 8B to this state are second forbidden.

Two Jπ=1 states with excitation energies Ex=17640 1 keV and Ex=18150 4 keV and

widths Γ=10.7 0.5 keV and Γ=138 6 keV [51], respectively, are shown in Fig. 3.1. These

states are included because the 8B and8Li allowed β-decays could conceivably proceed partially

through these levels; this possibility has been considered [46] using the R-matrix approach, where

it was found inclusion of these 1 states was not necessary to describe experimental data.

The 8B (Jπ=2 ,Tz=+1) and 8Li (Jπ=2 ,Tz=-1) ground states constitute two states of a T=1

isotriplet, lying at energies 17.9798 MeV and 16.0052 MeV, respectively [51]. The analogous
8Be isospin state (Tz=0) is mixed between a doublet of energy eigenstates with excitation ener-

gies 16.626 3 keV and 16922 3 keV and widths Γ=108.1 0.5 keV and Γ=74.0 0.4 keV, re-

spectively [51]. This doublet provides a method to study interference effects between two isospin

mixed levels, using for example the 12C(γ,α)8Be(2α) [52] and 10Be(d,α)8Be(2α) [53] reactions.

The amount of isospin mixing between the levels may be approximated simply by a comparison
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of the widths of the states, since α decay is by far the dominant channel and ΔT=1 α decays are

forbidden.

The most crucial observable in the determination of the 8B neutrino spectrum, the subject of

this thesis, is the α energy spectrum of the 8B(β )8Be(2α) decay chain. The α energy spectrum

can be used to determine the probability that a given excitation energy in 8Be is populated by the
8B β-decay. Then, assuming the 8B β-decay is completely allowed, the 8B neutrino spectrum is

inferred by simply convoluting an allowed (statistical) spectrum over the allowed energy releases.

Complications to this arise from recoil order contributions to the β-decay, causing the neutrino

energy spectrum to deviate from the allowed approximation.

Recoil order matrix elements relevant to 8B β-decay may be deduced by measurements [54,

55, 56, 48] of radiative transitions from the T=1 analog state in 8Be, split between the energy

doublet near 16 MeV, to the broad state at 3 MeV. The CVC hypothesis is used to equate radiative

decay matrix elements, parametrized using the R-matrix formulation, to the weak magnetism (and

possibly weak electricity) matrix elements contributing to 8B β-decay. Measurements [57, 58, 59]

of the β-α angular correlation as a function of β-particle energy provide an independent method of

determining these matrix elements. An R-matrix parametrization of the weak magnetism matrix

element is given in this chapter. A full discussion of past recoil order experiments, and their

implications for the 8B neutrino spectrum, is given in Chapter 6.

3.2 R-matrix Description of Mass 8 Nuclear Transitions

The many-level R-matrix formalism has previously been used to parametrize data in-

volving the broad 8Be state, including the alpha decay spectrum following 8B β decay

[60, 46, 61, 49, 62]. The application of the R-matrix to β decay is an approximation, and the

physical significance of R-matrix fit parameters is not clear. In principle, it is possible to deduce

the 8B β decay strength function directly from the measured α spectrum without resorting to R-

matrix formalism. The R-matrix approach, however, gives a good fit to the observed α spectrum
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and provides a convenient method for propagating systematic uncertainties in the α spectrum to

the neutrino spectrum. Furthermore, systematic uncertainties in the α spectrum dominate the

statistical uncertainties, justifying the representation of the data by a smooth function.

The R-matrix formalism is adopted then as a convenient way to characterize experimental

data. Before an R-matrix description of 8B β-decay can be given, the Coulomb functions must be

developed.

3.2.1 Coulomb Functions

The R-matrix formulation of 8B β-decay makes use of factors arising from the electromag-

netic interaction of two α particles. The interaction is quantified by the Coulomb equation

u ρ l l 1 ρ 2 2ηρ 1 1 u ρ 0 (3.1)

where the primes indicate differentiation with respect to the scaled distance variable ρ. The

notation here follows Ref. [63], where ρ is defined as

ρ kr (3.2)

where k is the classical wave number,

k
2M2αE

2
1 2 (3.3)

r is the radial separation of the particles, E is the energy of relative motion of the α particles, and

M2α is the reduced mass of two α particles. The variable η is given by

η
Z1Z2e2M2α

2k
(3.4)

where Z1 and Z2, generally, are the charges of the interacting particles.

The functions F(ρ) and G(ρ) are defined as the solutions of Eq. 3.1 for l 2 α particles

which are regular and irregular at r 0, respectively. The solutions were calculated by numerical

integration of Eq. 3.1, and applying the asymptotic forms

F ρ sin ρ ηlog2ρ
1
2
lπ σl (3.5)
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Figure 3.2. The regular and irregular solutions of the Coulomb equation, F and G, for l=2 α
particles with a relative energy of motion of 3.0 MeV. The horizontal axis is given in terms of
radial distance of separation, r. The functions are evaluated at the chosen matching radii of
rc=4.5 0.5 fm, indicated by horizontal lines.

G ρ cos ρ ηlog2ρ
1
2
lπ σl (3.6)

where σl is the phase of the gamma function,

σl argΓ 1 l iη (3.7)

which also must be solved numerically.

The solutions were calculated using Mathematica. Sample solutions are shown in Fig. 3.2.

As in previous works [46, 49, 62], the Coulomb functions are evaluated at matching radius

rc=4.5 fm, with an uncertainty of 0.5 fm. The penetrability and shift factors, P(Ex) and S(Ex), are

defined as [63]

P Ex
2M2αEx

2
rc

F rc 2 G rc 2
(3.8)
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and

S EX
2M2αEx

2
rc F rc F rc G rc G rc

F rc 2 G rc 2
(3.9)

The shift and penetrability factors appear directly in R-matrix description of decay processes

involving 8Be, and are shown as a function of the α particles energy in Fig. 3.3.

3.2.2 R-Matrix Description of Beta Decay

In 8B β-decay, the 8B ground state undergoes an allowed β transition to a broad range of

excitation energies in the α unstable 8Be daughter. I define the 8B β decay strengthfunction as

the probability that a given differential range of excitation energies in 8Be will be populated. As

stated previously, the strength function is determined by measurements of the α particle energy
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spectrum following the breakup of the daughter 8Be nucleus, and is necessary to construct the

neutrino spectrum.

In the R-matrix approximation, the β decay of 8B proceeds with varying strength through a

region of interfering nuclear states in 8Be which immediately decay into α particles. Each state is

characterized by an excitation energy, E j, a reduced width, γ j, and a β decay strength quantified

by Fermi and Gamow-Teller matrix elements, MF j and MGT j.

As discussed previously, only 2 states in 8Be are considered. A numerically accurate R-

matrix fit to the observed α spectrum requires the three 2 states in 8Be shown in Fig. 3.1, as

well as one phenomenological background state approximating the combined effect of all higher-

lying 2 states. It has been shown [46, 62] that R-matrix fits using only these four states were

sufficient to describe previous experimental data.

The broad state with excitation energy near 3 MeV and width of about 1.5 MeV, responsible

for the peak of the observed α spectrum, is labeled (j=1). The excitation energy, E1, and reduced

width, γ1, are considered free fit parameters. Shell-model considerations [64] indicate no signif-

icant Fermi decay strength to this level, as discussed in Ref. [59] which reports measurements

of the β-ν-α correlations in 8B and 8Li consistent with a pure Gamow-Teller decay. We take the

Fermi decay strength to vanish, MF1=0, while the Gamow-Teller matrix element, MGT1, is a free

parameter.

The nearly degenerate doublet with excitation energies 16.626 and 16.922 MeV [51], which

are almost maximally mixed in isospin, are labeled (j=2,3). We describe the isospin mixing of

the doublet using the standard formulation [60] and consider the energy eigenstates ψ2 and ψ3 in

terms of the isospin eigenstates φA (T=0) and φB (T=1),

ψ2 αφA βφB ψ3 βφA αφB (3.10)

where α and β are mixing parameters with α2 β2 1. Since α decays from a T=1 state are

forbidden, the parameters α and β may be approximated from the level widths,

α2 Γ2 Γ2 Γ3 β2 Γ3 Γ2 Γ3 (3.11)
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An accurate R-matrix description of the alpha spectrum requires α,β 0. The energies, E2

and E3, and reduced widths, γ2 and γ3, of the doublet are well constrained by α-α scattering

experiments [65] and are held constant.

The decomposition of the doublet into its component isospin eigenstates allows a simplified

description of the Fermi and Gamow-Teller strengths. The T=0 state, φA, has a Gamow-Teller

strength treated as a free parameter, MGTA. The T=1 state, φB, is the isospin analog of the 8B

and 8Li ground states and is populated by Fermi decay with a strength given by the superallowed

Fermi matrix element, MFB= 2. The Gamow-Teller decay to the T=1 component, or Fermi

decay to the T=0 component, may be nonzero due to isospin breaking but has been estimated to

be negligible [66] in this context, as discussed in Ref. [46]. Hence we take MGTB=0 and MFA=0.

The matrix elements of the isospin eigenstates are then related to the matrix elements of the

energy eigenstates by Eq. 3.10,

MF2 βMFB MF3 αMFB (3.12)

and

MGT2 αMGTA MGT3 βMGTA (3.13)

The background state labeled (j=4) has an excitation energy held fixed to a value near that

used in recent works [49, 62, 46], E4=37.0. The parameter E4 could be allowed to float, but the

quality of the fit is very weakly dependent on its value. The reduced width, γ4, and the Gamow-

Teller matrix element, MGT4, are free parameters. The Fermi strength is taken to be negligible,

MF4=0.

The P(Ex) and S(Ex) are the penetrability and shift factor arising from the regular and irregular

solutions of the Coulomb equation of L=2 α particles, defined in Ref. [63]. As in previous works

[46, 49, 62], we evaluate the Coulomb functions at matching radius rc=4.5 fm, and choose the

boundary condition, B, to be S(E1).

The R-matrix approach gives a parametrization of the 8B β decay strength function, indi-
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cating the probability that 8Be is populated at a given excitation energy, Ex. The function takes

the form [60]

dN
dEx

Nt1 2
6166

fβ Ex a2 Ex c2 Ex (3.14)

Here N is the total number of observed decays,

N
dN
dEx

dEx (3.15)

The lifetime of 8B, t1 2, is 770 3 msec [51]. The unitless integrated phase space available to

the β decay leptons, fβ(Ex), including the Fermi function and outer radiative corrections, has been

evaluated according to the parametrization given by Wilkinson and Macefield [67]. The Fermi

and Gamow-Teller matrix elements, a(Ex) and c(Ex), are parametrized by

a2 Ex
P Ex
π

∑4j 1
MF jγ j
E j Ex

2

1 S Ex B iP Ex ∑4j 1
γ2j

E j Ex

2 (3.16)

and

c2 Ex
P Ex
π

∑4j 1
MGT jγ j
E j Ex

2

1 S Ex B iP Ex ∑4j 1
γ2j

E j Ex

2 (3.17)

3.2.3 R-Matrix Description of Weak Magnetism

The radiative decay of the 8B isospin analog doublet in 8Be provides useful information

on the magnitude of recoil order matrix elements, which may be quantified using the R-matrix

formalism. In previous experiments [54, 55, 56, 48], a 4He beam was directed at a 4He gas cell

to excite the doublet in 8Be. The 4He(4He,γ)8Be cross section was measured as a function of

beam energy and angle of emission of the γ ray. These measurements determine the widths of the

isovector M1 and E2 transitions, ΓT 1
M1 and δ1=ΓT 1

E2 /ΓT 1
M1 , as well as the widths of the isoscalar
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transitions, ε=ΓT 0
M1 /ΓT 1

M1 and δ0=ΓT 0
E2 /ΓT 1

M1 . The radiative widths are considered as functions

of Ex.

The matrix elements responsible for the β-decay of 8B, c(Ex), and the radiative decay ana-

log in 8Be, defined as b(Ex), have drastically different functional dependences on Ex. This was

first observed [54, 56] through a comparison of the shapes of the final state distributions in 8Be

following the α and γ decays. The form of b(Ex) was later described [48] using the R-matrix

approach, which parametrized b(Ex) as an interfering sum of three different matrix elements, Mi,

to the three 2 levels in 8B shown in Fig. 3.1,

b2 Ex
P Ex
π

∑3j 1
M jγ j

E j Ex

2

1 S Ex B iP Ex ∑3j 1
γ2j

E j Ex

2 (3.18)

This parametrization of the weak magnetism term, b, is similar in form to that of the β-

decay Gamow-Teller element, c. Both of these parameterizations will be applied to discussions

of experimental data in the mass 8 decay chain.
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Chapter 4

Previous Measurements of the 8B

β-delayed Alpha Spectrum

The 8B β decay strength function, defined as the probability that a given excitation energy in

the broad 8Be resonance is populated by 8B β-decay, is most easily determined by measuring the

alpha particle energy spectrum following 8B β decay. The purpose of this work is to evaluate the

strength function from my new measurement of the alpha spectrum, and then to deduce the 8B

neutrino spectrum. This chapter deals with previous measurements of the alpha spectrum.

The 8B β-delayed alpha spectrum first attracted interest in the 1930’s and 40’s because the

observed 8Be resonance was not described [68] by a Breit-Wigner shape. An R-matrix approach

involving several overlapping levels of 8Be, discussed in Chapter 3, was developed [60] in the

1960’s and adequately described the shape of the 8Be resonance. Experimental interest in the

alpha spectrum remained high, however, due to the importance of recoil order matrix elements

in transitions between states in A=8 nuclei. Recoil order effects were mentioned in Chapter 3

and are discussed in detail in Chapter 6. Prior to 1995, at least five measurements detecting the

energy spectrum of single alpha particles emitted following the decay of 8B have been performed

[47, 69, 70, 71].
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More recently, the importance of the 8B neutrino spectrum as an input in analysis of solar

neutrino data has renewed interest [72] in measurements of the single alpha energy spectrum. In

the year 2000 a measurement [49] was reported which detected both alpha particles and claimed

a significantly improved precision over previous measurements. The experiment on which this

thesis is based again measured both alpha particles, and was initially reported in 2003 [50]. A

subsequent measurement was reported in 2006 [73].

This chapter gives a discussion of all previous alpha spectrum measurements, the corrections

applied to them, and the level of agreement or disagreement between the measurements. The

possible existence of systematic effects not identified by the original experimenters is addressed.

4.1 Kinetic Considerations

As mentioned previously, the strength function gives the probability that a given excitation

energy in 8Be is populated by 8B β decay. The strength function is described phenomenologically

by the R-matrix method given in Chapter 3, and is determined experimentally by measurements

of the alpha energy spectrum following the 8Be breakup. This section deals with the relationship

between the strength function and the measured alpha spectrum.

When both alpha particles are detected, the alpha spectrum differs from the strength function

in two well-defined ways: (1) The strength function is a function of 8Be excitation energy, while

the alpha energy spectrum is a function of observed alpha energy. The zero of excitation energy

is defined by the 8Be ground state, which is unbound by 92 keV as shown in Fig 3.1. Hence, the

alpha spectrum trivially lies 92 keV higher in energy than the strength function. (2) With respect

to the strength function, the alpha spectrum is slightly broadened and shifted higher in energy due

to the nuclear recoil from the 8B β decay. The leptons emitted in the β decay impart momentum

and energy to the 8Be daughter, which is carried away by the breakup alpha particles. This effect

is calculable and will be described later in this section.

When only single alpha particles are detected, the alpha energy spectrum differs even further
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from the strength function due to two additional effects: (3) Only one alpha particle is detected.

Trivially then, the observed single alpha energies will be roughly half of the total alpha energy

release. (4) The single alpha spectrum is broadened significantly by a kinematic effect stemming

from lepton recoil. The 8Be daughter nucleus, as mentioned in the previous paragraph, is gener-

ally in motion with respect to the detectors. The 8Be motion broadens the single alpha spectrum.

Previous work has been performed to calculate the magnitude of this effect [46, 62], and it will

be discussed in this section.

4.1.1 Nuclear Recoil from the 8B β decay

In nuclear β decay the nucleus is many thousands of times more massive than the emitted

β particle, and at least millions times more massive than the neutrino. The mass discrepancy

between the nucleus and leptons allows an important simplifying approximation in the treatment

of nuclear β decay. In the limit of an infinitely massive nucleus, the nucleus is able to have

arbitrarily large amounts of momentum without having any kinetic energy since

E
p2

2m
(4.1)

at low velocities. Thus, the emitted β particle and neutrino are free to travel in any direction

without being constrained by conservation of momentum. The recoil nucleus is able to absorb

all the momentum from the leptons without possessing any kinetic energy itself. In this heavy

nucleus approximation, the β particle and neutrino receive all the energy released in the decay.

The complicated kinematics of a three body decay is then reduced to a much simpler two body

case.

The approximation of an infinitely heavy nucleus of course is not exact. Considering that

energy releases in β decays are of order 1-10 MeV and nuclear masses are of order 10 GeV, Eq.

4.1 indicates the recoil nucleus should possess kinetic energies of a few keV. Detailed studies of

the recoil energy spectrum of daughter nuclei, including radiative and relativistic effects, were

first carried out [74, 75] in the case of neutron decay. These calculations aided measurements

[76] of the recoil proton spectrum designed to extract the β-neutrino angular correlation.
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Figure 4.1. Nuclear recoil energy spectrum of 8Be for β decays proceeding to excitation energy
3.0 MeV. The recoil energy spectrum for the 8B Gamow-Teller β decay is shown in bold and
labeled GT. For comparison, recoil energy spectra are also shown for Fermi decays (F) and
decays with no angular correlation (NC).

The nuclear recoil spectrum of the 8Be daughter, following 8B β decay, depends on the energy

released in the β decay. The primary effect of the nuclear recoil is to shift the alpha energy

spectrum higher in energy, with respect to the strength function. Nuclear recoil in principle also

broadens the observed α particle energy spectrum, but this effect is small due to the large natural

width of the alpha spectrum. Decays populating high excitation energies in 8Be have low energy

release and hence low nuclear recoil; decays populating low excitation energies will have larger

nuclear recoils. The effect of nuclear recoil on the observed α particle energy spectrum is thus

more significant at lower alpha energies.

Naturally, β-neutrino angular correlations have a significant effect on the shape of the recoil

nucleus energy spectrum. The correlation constant, a, is defined such that the probability P that

the β particle and neutrino will be emitted from the nucleus at a relative angle θ is given by

P v θ ∝ 1 a
v
c
cosθ (4.2)

where v is the β particle velocity.
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A plot of the nuclear recoil energy spectrum is shown in Fig. 4.1 for a 8B β decay proceeding

to an excitation energy of 3.0 MeV in 8Be, close to the most likely value. For comparison, spectra

are shown for angular correlations a 1 3 (Gamow-Teller decay, largely corresponding to the

case of 8B), a 1 (Fermi decay), and a 0 (no angular correlation).

Considerations of nuclear recoil in this work will always make the assumption that a 1 3

for 8B β decay. While, as indicated in Chapter 3, decays proceeding to the highest excitation

energies in 8Be may be Fermi decays, the nuclear recoil effect there is of order 0.1 keV, so small

as to be negligible in the context of the experimental uncertainties discussed in Chapter 5.

4.1.2 Recoil Broadening of the Single Alpha Spectrum

The nuclear recoil has a further effect on the energy spectrum of single α particles. In the
8Be center of mass frame, conservation of momentum requires the emitted α particles to have

identical energies. The recoil 8Be daughter nucleus is generally in motion in the lab frame,

however, and the two emitted α particles will generally have different energies. If only one α

particle is detected, the energy spectrum will then be broadened. In this section, the effect of

recoil broadening on the single α particle spectrum will be shown to be significant.

Recoil broadening is pronounced in the β decay of 8B due to the relatively small nuclear

mass (leading to larger nuclear recoil), and a strong correlation between the α, β, and neutrino

particles. The correlation is quantified by introducing the β-ν-α triple correlation A. The triple

correlation is defined so that the probability P that the β particle and α particle are emitted with

a relative angle θβ α, the neutrino and α particle with relative angle θν α, for a β particle with

velocity v is given by

P v θβ α θν α ∝ 1 A
v
c
cosθβ αcosθν α (4.3)

For the 8B Gamow-Teller β decay the expected triple correlation is A 1, as can be seen

from angular momentum considerations [62]. An early experiment [77] measuring this quantity

found A 1 05 12 for 8B and A 1 01 7 for 8Li, consistent with Gamow-Teller transitions.
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The strong triple correlation indicates that the β particle and neutrino tend to be emitted in the

direction of α particle motion, leading to an increased recoil broadening effect.

The effect of recoil broadening has been quantified for the case of 8B [62], applying a kine-

matic technique used in the analysis of prompt protons emitted following the β decays of 32Ar

and 33Ar [78]. The quantity δE is introduced, so that for two α particles with total energy 2E ,

the individual α particles have energy E δE and E δE . The recoil broadening effect is the

characterized by the probability density

dN
dE

x
15

16Tmax
1 2x2 x4 (4.4)

where

x
δE
Tmax

(4.5)

Here Tmax is the maximum value of δE allowed by kinematics, given by

Tmax Ex W 2
0 1

me

M
2Qmc2

M m Q
M Q

(4.6)

where Ex is the 8Be excitation energy, me is the electron mass, m the alpha mass,M the 8Be mass,

W0 Ex the β decay endpoint in units of mec2, and Q Ex 92 keV .

For this distribution, the full width at half maximum (FWHM) is given by

FWHM 2Tmax 1
1
2
1 2 (4.7)

Note that these equations are all results of previous work on recoil broadening [62] and are re-

produced here for completeness.

The recoil broadening distribution, dN dE , of Eq. 4.4 is shown in Fig. 4.2. It should be

noted that an incorrect expression for dN dE exists in the literature, and was first produced

in an experiment measuring the single α particle energy spectrum following 8Li β decay [79].

This expression was reproduced in a comprehensive R-matrix analysis of mass 8 data [46]. As

pointed out in Ref. [62], the expression of Ref. [79] incorrectly assumes the triple correlation to

be A 1 3. The incorrect expression for dN dE is also shown in Fig. 4.2, for comparison.
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Figure 4.2. The effect of recoil broadening on the single α particle spectrum for β decays pro-
ceeding to excitation energy Ex=3.0 MeV in 8Be. The solid line is the result of the most recent
work [62], the dashed line is the previous (incorrect) result [79].

The FWHM of the distribution is shown in Fig. 4.3 as a function of excitation energy in 8Be.

This figure indicates the magnitude of the broadening effect over the α particle spectrum. Again,

the incorrect expression [79] is included for comparison. It should be pointed out that a similar

plot of FWHM in Ref. [46] is incorrect; while the shape of the function appears correct in Ref.

[46], it is off by a multiplicative factor. This was first pointed out in Ref. [62], which includes

figures similar to Figs. 4.2 and 4.3, and was verified by the author of this work.

4.2 Single Alpha Particle Measurements

The previous section dealt with the kinematic considerations necessary to relate the abstract

strength function, characterized by the R-matrix formulation, to the observed single α particle

energy spectrum. This section will describe previous measurements of the single α particle spec-

trum, discuss possible experimental uncertainties associated with these measurements, and con-

sider the implications of the measurements and their uncertainties.
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Figure 4.3. The full width at half maximum (FWHM) of the recoil broadening distribution as a
function of 8Be excitation energy. The solid line is the result of the most recent work [62], the
dashed line is the previous (incorrect) result [79].

4.2.1 The Experiments

At least five measurements of the single α particle energy spectrum have been performed.

Here the motivation and experimental technique of each experiment is briefly described.

F. C. Gilbert (1953) This early experiment [80] bombarded 375MeV α particles on Be to produce

both 8B and 8Li which was stopped in a nuclear track emulsion. The energy of the decay α

particles by measuring their ranges in a nuclear track emulsion. Clearly this method of production

is not optimal; the data used for this α spectrum measurement was a byproduct of an experiment

[81] with different scientific goals.

At the time of this experiment, the α spectrum of 8Li had been measured several times [82,

83, 84]. The 8B α spectrum was extracted from the data “for the purposes of (a) checking the

similarity of the two mirror nuclei, (8Li and 8B), and (b) searching for a possible new level in

the excited (8Be) nucleus” which potentially would appear only in the 8B data due to its higher

energy release.
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The 8B and 8Li tracks in the emulsion were identified by their characteristic “hammer” or “T”

shape resulting from the tracks of two alpha particles emitted at the end of the 8B or 8Li nuclear

tracks. The 8B and 8Li were distinguished by the grain density as a function of curvature in the

magnetic field. The number of observed events totaled 100 for 8B and 257 for 8Li, and the α

particle ranges were translated into energies. There was no observed difference in the 8B and 8Li

α spectra due to the limited statistics, and the data is not of sufficient quality to be of more than

historical interest at this point in time. The data is sufficient, however, to indicate that the early

theoretical model [68] of mass 8 β decay does not properly account for the roughly 15% highest

energy α particles in the spectrum.

This experiment is considered here as a single α particle experiment since, although both

α particles were detected, the analysis ignored recoil broadening and implicitly assumed both

α particles to have the same energy. The difference in track lengths of the α particles in the

emulsion was then used as an estimator of systematic uncertainty.

B. J. Farmer and C. M. Class (1959) The second experiment [47] to measure the 8B α spectrum

used the 6Li(3He,n)8B reaction. The authors point out that the 8Li had been measured several

times previous to their experiment, but the 8B spectrum had been measured only once [80], “no

doubt owing to the inability to make B8 conveniently. This situation was remedied when He3

(beams) became readily available.” The experimental data were obtained using a CsI crystal

scintillation detector mounted on a photomultiplier tube, read out through a 256-channel pulse

height analyzer. The CsI detector was thin (5 mil) to decrease background from β and γ particles

emitted during the mass 8 decay chain. The primary 3He beam bombarded the 6Li target on a

beam-on/beam-off cycle created using a pair of beam deflection plates at 6 kV. Data was taken

only during the beam-off cycle to avoid background from unrelated events. Calibration of the CsI

crystal, the response of which was shown to be highly nonlinear, was performed using external

sources at 7 α particle energies between 1 and 9 MeV.

The motivation for this experiment [47] was to test the early theoretical descriptions [68] of

the 8B β decay chain. Farmer and class found poor agreement [47] with these early models, but
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better agreement with a newer theoretical model [85] which was published back-to-back with

the experimental paper [47]. The new model [85] relied on d-wave α-α scattering data as an

empirical input to describe the intermediate Jπ=2 8Be state, and hence is not as complete as the

R-matrix descriptions of Chapter 3. However, the model was successful in showing that the 4

state in 8Be at excitation energy 11.4 MeV (see Fig. 3.1), used in the first theoretical treatment

[68], was not necessary to describe the β decay. This is satisfactory, as Farmer and Class indicated

[47], because the β decay to the 4 state is second forbidden.

The Farmer and Class data [47] was published only graphically. The data was graphically

extracted for use in a later work [72]. I have obtained this data courtesy of Eligio Lisi, an author

of Ref. [72].

G. J. Clark and P. B. Treacy and S. N. Tucker (1969) This experiment [69] used 8B again

produced by the 6Li(3He,n)8B reaction, using a 3.5 MeV 3He beam from a Van de Graff acceler-

ator at the Australian National University. The target was enriched (99.6% 6Li) lithium oxide of

thickness 20 µg cm 2 on a nickel foil backing of thickness 50 µin. All of the 8B products stopped

within the Ni backing and a silicon surface barrier detector, mounted behind the Ni backing, was

used to observe the α particles. Again, a beam-on/beam-off cycle of period 0.34 sec was created

using a rotating shutter which blocked the primary 3He about 3 m upstream from the target. Data

was taken using a multichannel pulse height analyzer during the beam-off cycles.

This experiment [69], the first to use a silicon detector, is of some historical interest since

it made the first attempts to correct the observed 8B α spectrum for systematic energy loss of α

particles in the target backing (dependent on the distribution of the 8B in the Ni) and in the gold

surface layer of the silicon detector. This was accomplished using existing straggling data [86]

along with measurements of the thicknesses of the nickel backing and gold surface layer using α

particles from a 228Th source. The 228Th source was also used to calibrate the detector.

The motivation for this experiment [69] was to collect data of sufficient quality to test the

early R-matrix model [60] of Barker introduced the previous year. The experimenters found [69]

good agreement with the R-matrix model and extracted a number of level parameters, although
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no χ2 value for the numerical fit is given. The data are presented only in graphical format deemed

unusable in a later 8B analysis by Bahcall et al. [72], who found the “data cannot be extracted

from (the Clark et al.) Fig. 2 with sufficient precision to be useful for our purposes.” I also adopt

this viewpoint and lists this experiment only for its historical interest.

D. H. Wilkinson and D. E. Alburger (1971) This experiment [70] used the 6Li(3He,n)8B re-

action to produce 8B. The products were implanted into two distinct “catcher foils” (100 and

200 µg cm 2 gold evaporated onto 20 µg carbon foils), producing two distinct data sets. After

bombardment of an unspecified time the catcher foils were swung in front of a thin Si detector

“of thickness just sufficient to stop the most energetic α particles.” The detector gain was contin-

uously monitored by a pulser producing pulses which correspond to energy 9 MeV. The gain was

shifted by small amounts during the run according to shifts in the pulser peak position. Frequent

calibrations using 241Am were also performed.

The motivation for this experiment [70] was to test for second-class currents, explained in

this thesis in Chapter 6, by examining the ft-values of the mirror 8B and 8Li β decays. The 8Li

α spectrum was hence also measured, using the 7Li(d,p)8Li reaction and bombarding the same

catcher foils. It is of interest that this experiment did not require a precise absolute energy cal-

ibration; instead the relative energy of α particles from the 8B and 8Li decays was the crucial

quantity. The data sets were corrected for energy loss in the catcher foils (based on approxima-

tions of the implantation depth distributions of 8B and 8Li) and in the detector dead layer. Note

that this experiment produced two data sets for the 8B α spectrum, one for each catcher foil. The

numerical data arising from the thick foil has been reported in Ref [46], that from the thin foil in

Ref [61].

L. De Braeckeleer and D. Wright (1995) This experiment, unreported in direct form in the

literature, is briefly discussed in Ref [72]. It followed a procedure similar to the Clark et al. and

Wilkinson and Alburger experiments, depositing 8B in a thin foil and observing single α particles

in a thin Si detector. The motivation for this α spectrum measurement was to provide input

for a detailed experimental analysis [48] of radiative decays in the mass 8 iso-multiplet. Data
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Figure 4.4. Four of the single α particle spectrum data sets from the experiments described in
the previous section. The two Wilkinson and Alburger data sets have been offset vertically for
purposes of presentation. This figure was motivated by and is very similar to Fig. 2 of Ref. [72].

on radiative decays provides information on weak magnetism and second class currents, topics

which are discussed in Chapter 6.
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Figure 4.5. The peak of the 8B strength function, as determined by various R-matrix analyses of
the four single alpha spectrum data sets. A description of how these values and their uncertainties
were obtained is given in the text.

4.2.2 Results and Implications

The 8B α spectrum data from some of the experiments listed above are shown in Fig. 4.4.

The Wilkinson and Alburger data sets consist of roughly 2 1 106 recorded 8B α particle events

(thick catcher) and 2 5 106 events (thin catcher). The Farmer and Class data consists of roughly

0 5 106 events, and the DeBraeckeleer and Wright data set consists of roughly 1 6 106 events.

It is convenient to compare the four data sets shown in Fig. 4.4 by fitting the data using

the R-matrix description given in Chapter 3. This technique allows the data to be represented

by a smooth function characterized by a few (6-8) fit parameters. The description of the data

by a fit function is a legitimate approach for these data sets because uncertainties in the energy

scale calibration are far larger than statistical uncertainties. A proper R-matrix description of
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the 8B strength function depends on a proper treatment of the kinetic recoil effects discussed in

Section 4.1, this was demonstrated conclusively in Ref. [62]. In some analyses of these data sets

the kinetic recoil effects have been either treated incorrectly [46] or ignored altogether [61, 72].

Naturally, systematic effects such as α particle energy straggling in the thin films and detector

dead layers, and detector lineshape also must be considered in the fitting process. An account

of these effects were given by the original experimenters [47, 70] and further discussion and

improvement on the treatment of these systematic effects have been made [61, 72, 62].

The two Wilkinson and Alburger data sets, (WA thick) and (WA thin), have been analyzed

multiple times [70, 46, 61, 62, 73]. The first R-matrix fit was performed on the (WA thick) data

set by Warburton [46] in 1985 using an incorrect treatment of recoil broadening. The value for

the peak of the 8B strength function is shown in Fig. 4.5 and labeled “WA thick”. The (WA thin)

data set was analyzed by Barker [61] in 1989, who attempted to improve on the original treatment

of systematic effects [70], resulting in a different energy assignment to each channel of the data.

Barker ignored kinetic recoil effects altogether, dismissing them as insignificant [61]. The peak

value of the resulting fit is labeled in Fig. 4.5 as “WA thin (Barker)”. The (WA thick) and (WA

thin) data sets were analyzed simultaneously by Bhattacharya and Adelberger in 2002 using new

measurements of α particle straggling and improved lineshapes [62]. They found good agreement

between the two sets and their result is shown in Fig. 4.5 as “WA (B&A)”.

The (FC) and (DBW) data sets, and the (WA thin) with the original [70] energy calibration

have never been subject to an R-matrix analysis in the literature. However, Bahcall et al. [72]

produced a comparison of all the existing single α spectrum data in 1996. They found that, in

the context of producing a 8B ν spectrum from the α spectrum data, the existing α spectra were

indistinguishable when shifted by some offset in the energy scale [72]. They identified the values

of these offsets [72] which allow these data sets, labeled as “FC”, “DBW”, and “WA thin”, to be

included in Fig. 4.5 by offsetting them from the “WA thick” fit result.

The uncertainties for the values given in Fig. 4.5 were obtained as follows. For “FC” the

uncertainty is taken as 200 keV, primarily due to the difficulty in extracting data from the graphical
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Figure 4.6. A schematic overview of the experimental setup used by Ortiz et al. [49]. This figure
is taken directly from Ref. [49].

format of the original work [47], as discussed in Ref. [72]. For “WA thick”, “WA thin”, and “WA

thin (Barker)” the uncertainties are 100 keV, based on the uncertainty in the original work [70] and

on later analysis [61, 72]. For “DBW” the uncertainty is explicitly given as 80 keV [72]. Finally,

for “WA (B&A)” the uncertainty is 60 keV [62] due to an improved treatment of systematic

effects.

4.3 The Coincidence Alpha Particle Measurement

In 2000 Ortiz et al. [49] reported the first measurement of the coincidence 8B α spectrum,

where the coincidence α particles were detected in two separate detectors. The Ortiz et al. ex-

periment was the first 8B α spectrum measurement performed specifically to determine the 8B

neutrino spectrum and was performed with specific attention to calibration of the energy scale.
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Figure 4.7. The detection efficiency of α particles as a function of excitation energy in 8Be,
induced by the magnetic field. This figure is taken directly from Ref. [49].

The energy calibration was roughly 10 times more precise than the single α particle experiments

described in the previous section.

Ortiz et al. [49] identified several systematic uncertainties that affected the previous 8B α

spectrum measurements. Specifically, Ortiz et al. mention “energy summing of the α’s with the

preceding β ’s, resulting in a distortion of the spectrum,” “low energy β backgrounds and pos-

sible events originating from 8B’s implanted in the frame of the catcher foil, correcting for shifts

in the α energy due to the recoiling nucleus and α-energy losses at different depths in the catcher

foil,” and “finally, all previous measurements had to be interrupted to perform detector energy

calibrations.” These uncertainties had been identified and treated by the original experimenters

[47, 70, 48] and others [46, 61, 72], and had led to energy scale uncertainties on the order of

100 keV, as shown in Fig. 4.5 and discussed in the previous section. In addition to the large

uncertainty induced by these systematic uncertainties, Ortiz et al. point out that a systematic shift
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Figure 4.8. The peak of the 8B strength function, as determined by various R-matrix analyses of
the four single alpha spectrum data sets as well as the Ortiz et al. coincidence alpha spectrum data
set.

in the spectrum could occur if the uncertainties are not properly dealt with. In order to produce

higher quality 8B α spectrum data and construct a neutrino spectrum more precise than the one

obtained [72] based on a analysis of the older single α spectrum data, Ortiz et al. designed an

experiment which, they claim, “overcame all the (systematic) difficulties discussed above.”

The experimental setup of the Ortiz et al. [49] is shown schematically in Fig. 4.6. As with

the previous α spectrum measurements, the experiment used catcher foils (20 µg cm 2 of 12C

mounted on Al frames) to trap 8B. The foil was moved to a counting chamber where both α

particles from the decay were detected in coincidence using two PIN Si detectors. The counting

chamber was located inside a superconducting solenoid that produced a 3.5 Tesla magnetic field.

The purpose of the magnetic field was to channel the positrons from the 8B β decay away from
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the detectors, thus eliminating a systematic uncertainty shared by the previous single α particle

measurements. The presence of the magnetic field, however, also altered the trajectories of the

heavier α particles. A simulation was employed to determine the detection efficiency as a function

of α energy, the results of which are shown in Fig. 4.7. Note that the detection efficiency at

the peak of the α spectrum (excitation energy in 8Be, Ex, near 3 MeV) is only 90%, and the

efficiency drops sharply for lower α particle energies. The inclusion of the magnetic field, then,

does eliminate one systematic uncertainty (positron energy summing), but only at the cost of

introducing a new uncertainty (detection efficiency).

After passing out of the counting chamber, the catcher foil thicknesses were inferred by

measuring the energy loss of α particles from a 148Ga source passing through the foils. At times

when no catcher foils were present in the counting area, a mixed source of 148Ga and 241Am was

used to calibrate the detectors. Finally, a catcher foil frame, with no carbon foil, was periodically

placed in the 8B bombardment area and then moved to the counting chamber to determine whether

any α particles from 8B implanted in the frame were being detected.

Ortiz et al. [49] performed an R-matrix analysis of the data, and constructed a neutrino spec-

trum. The results of the α spectrum measurement are compared with earlier measurements in

Fig. 4.8.
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Chapter 5

The Alpha Spectrum Measurement

A new measurement [50, 87] of the α-particle energy spectrum following the β-decay of 8B

has been performed for this thesis. The technique used in this new alpha spectrum measurement is

fundamentally different from the techniques of the previous measurements, described in Chapter

4, and was designed to avoid some systematic effects present in those measurements. This chapter

motivates the experimental technique and then describes in detail the experimental procedures,

results, and uncertainties of the new alpha spectrum measurement.

5.1 Motivation and Experimental Overview

The experiment was performed at the Argonne Tandem-Linear Accelerator System (ATLAS)

at Argonne National Laboratory. A primary 6Li beam was incident on a 3He gas cell in the

ATLAS beam line. The reaction products included 8B, produced by the 3He(6Li,8B)n reaction,

which exited the gas cell and proceeded down the beam line. The 8B ions were sent through an

Enge split-pole magnetic spectrograph, spatially separating ions of different energies. Some ions

were incident on a 91 1 µm thick planar Si detector, located in the spectrograph focal plane. The

spectrograph was tuned to select 8B ions of the proper energy to be implanted near the midplane
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Figure 5.1. This figure identifies the systematic effects present in the various alpha spectrum mea-
surements. The figure is similar to a slide, used during presentations, motivating the experimental
technique of implanting 8B and 20Na (for calibration) in a Si detector.

of the detector. The primary 6Li beam was set to a beam-on/beam-off cycle, and the alpha energy

release following the 8B beta-decay was measured.

This is the only alpha spectrum measurement to use a 8B source implanted into a detector.

The implanted source eliminates the possibility that the alpha particles lose energy outside the

sensitive region of the detector, a systematic effect present in the previous measurements.

The implanted source also allows the full energy of both α particles to be detected in a single

detector. Previous experiments [47, 69, 70, 71] using a single detector observed only single α

particles and were subject to the kinetic broadening effects discussed in Section 4.1. The Ortiz

experiment [49] used two detectors and observed both α particles, one in each detector. In this

experiment, the observation of both α particles in the same detector increases the energy signal

by about a factor of two, causing the peak of the energy spectrum to be nearer the energies of the

calibration sources and eliminating the need to consider any kinematic broadening effects.
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Figure 5.2. The relevant energy levels [88] in the 20Na beta-delayed alpha decay. The nuclear
energies (in MeV), relative to the ground state of 20Ne, are given for each level along with the Jπ
designation. The beta-decay branching ratios are given for the levels in 20Ne.

The systematic effect of positrons depositing energy in the detector cannot be avoided with

an implanted source. The effect was reduced by using a thin detector; the detector thickness

was just sufficient to stop α particles emitted with the highest possible energy (about 8.5 MeV).

The positrons, nearly minimum-ionizing for most of the β-spectrum, deposited a small amount

of energy (roughly 20 keV) in the thin detector. The effect of positron energy deposit was fur-

ther reduced with a coincidence plastic scintillator β-particle detector placed adjacent to the Si

detector. The β-detector selected events where the positrons had trajectories close to normal to

the Si detector surface, identifying a subset of events with smaller positron energy deposits. The

systematic effects present in the various alpha spectrum measurements are summarized in Fig.

5.1.

The system was calibrated with 20Na from the 3He(19F,2n)20Na reaction, produced using a
19F primary beam from ATLAS incident on the same 3He gas cell. The 20Na was also selected by

energy using the Enge spectrometer and implanted near the detector midplane. The β-decay of
20Na proceeds with 20% probability to α unstable levels in 20Ne as shown in Fig. 5.2, providing
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calibration lines of well-known energy [51]. An external 228Th α source was used to provide

additional calibration lines.

5.2 Experimental Technique

The preceeding section gave an overview of the experiment while motivating the use of a

source implanted in a detector. This section gives a more detailed description of the experimental

technique, from the primary beams produced by ATLAS to the data aqcuisition system. All

considerations of systematic uncertainties inherent in the experimental technique are deferred to

Section 5.3.

5.2.1 Primary Beams: The ATLAS Accelerator

The ATLAS accelerator at Argonne National Laboratory is the only nuclear accelerator using

superconducting components for ion acceleration and focusing. ATLAS was chosen for this

experiment because it produces beams of greater intensity and energy (up to roughly 17 MeV per

nucleon) than traditional (non-superconducting) accelerators which are limited by heating effects.

High beam energies are essential for this experiment because the 8B and 20Na products must have

sufficient energy for implantation in the Si detector. A floorplan of the ATLAS accelerator is

shown in Fig. 5.3.

The 6Li beam, used to produce 8B, was produced accelerating 6Li ions from an electron

cyclotron resonance (ECR) source with a 12 MV linac. This beam was then sent into the 20 MV

booster linac, and then into the 20 MV ATLAS linac. The resulting 6Li beam had an energy of

36.4 MeV and an average intensity of 120 pnA over six continuous days of running. The 19F

beam, used to produce 20Na for calibration, was produced in a similar fashion and had an energy

of 199 MeV and an average intensity of 0.5 pnA over a one day run taking place immediately

prior to the 8B run.
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Figure 5.3. The floorplan of the ATLAS accelerator at ANL. This figure was taken from the ANL
website [89].

5.2.2 Production Reactions: The 3He Gas Cell

The primary beams were directed onto a 3He gas cell located in the ATLAS beam line. The

gas cell was 3.5 cm long and filled with 700 mbar 3He, cooled to 82 K. The gas cell was separated

from the beam-line vacuum by 1.3 mg/cm2 titanium windows. The pressure and temperature in

the cell were held constant to 1%. Several identical gas cells were mounted vertically in the

beam vacuum so that, if one failed during bombardment, another could be moved into the beam.

The experiment could then continue without breaking the vacuum of the ATLAS beam line. As

it happened, the additional gas cells were not needed because the first cell did not fail.

The 8B (t1 2=770 3 ms) beam was produced using the 3He(6Li,8B)n reaction. The use of

the heavier nuclear reactant (6Li) as the primary beam allowed the 8B products to have sufficient

energy to exit the gas cell and continue down the beam line as a secondary beam, a procedure

referred to as the In-Flight Technique [93]. The maximum total cross section [91] for this re-

action is roughly 22 2 mb for a 6Li energy of roughly 12 MeV. This experiment operated at a

much higher 6Li bombarding energy (36.4 MeV) to produce a 8B beam of sufficient energy for

implantation. The total cross section at the 6Li energy used in this experiment is roughly 4 1 mb
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Figure 5.4. Production cross section for the 6Li(3He,n)8B reaction. This plot is taken from the
National Nuclear Data Center website [90], which compiled the data of Refs. [91] and [92]. Note
that the incident energy listed here is that of a 3He projectile on a stationary 6Li target. The
experiment described in this section used the inverse reaction.

[92]. A plot of the total cross section as a function of energy is given in Fig. 5.4. Detailed data on

the angular differential cross sections are not available for the high bombarding energy, though

experiments at lower energies [94] indicate a pronounced forward peak.

The 20Na (t1 2=448 3 ms) beam was produced by using the 19F(3He,2n)20Na reaction. Cross

section data for this reaction is not available; in fact, observation of this reaction does not appear

to have ever been reported in the literature. However, other (3He,2n) reactions have total cross

sections on the order of 100 mb [51]. The 20Na production rates observed in this experiment are

consistent with this value.

5.2.3 Separation of 8B and 20Na

The 8B products, fully stripped due to the high energies at which they traversed the gas cell,

proceeded down the beam line and through a 22 bending magnet. The bending magnet separated
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Figure 5.5. A schematic of the Enge split-pole magnetic spectrograph. This figure was taken
from the Argonne National Lab website [89].

the 8B beam from the (higher energy) 6Li primary beam, and directed the 8B beam to an Enge

Split Pole spectrograph.

A gas-filled detector located in the focal plane of the spectrograph [95], sensitive to mass,

nuclear charge, and energy, allowed identification of the ions traversing the spectrograph. Using

the gas-filled focal plane detector, the 8B component of the beam was measured to be about one

part in 103. A portion of the low-energy tail of the primary 6Li beam, as well as α particles,

deuterons, and protons with the proper magnetic rigidity to traverse the spectrograph, accounted

for most of ions incident on the detector. A 6Li beam incident on 3He cannot produce any β

delayed particle emitters other than 8B, which could create a background during the beam-off data

acquisition cycles. No products resulting from possible interactions between 6Li and the titanium

windows of the gas-cell were observed with the proper rigidity to pass through the spectrograph.
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5.2.4 Implantation into the Si Detector

The spectrograph was then adjusted so that 8B ions with energies of 27.3 0.2 MeV were in-

cident on the planar Si detector with a 150 mm2 active area (13.8 mm diameter), located adjacent

to the gas-filled focal plane detector. The quoted 0.2 MeV uncertainty in the ion energy is more

precisely the width of the ion energy distribution. The width results primarily from the size of the

Si detector, as different points on the Si detector surface correspond to different radii of curvature

in the spectrograph field. An 11 mm diameter Ta collimator masked the edges of the Si detector

to ensure that all implanted 8B ions would be located in the active region of the detector.

Ion implantation depth was calculated using the SRIM (the Stopping and Range of Ions in

Matter) software package [96]. The package includes several programs capable of modeling

the transport and stopping of ions, with energies from 10 eV/amu to 2 GeV/amu, in matter. A

description of the physics input and source code is available [97], and a comparison of SRIM

stopping predictions to experimental results is actively maintained online [96].

The distribution of 8B ions in the Si detector was modeled using the TRIM (Transport of Ions

in Matter) program. The TRIM program is the most comprehensive program in the SRIM pack-

age, and gives the path and stopping point of ions on an event-by-event basis. The distribution,

as predicted by TRIM, of implantation depths of 2 104 8B ions of energy 27.3 MeV is shown

in Fig. 5.6. The distribution is sharply peaked at 42.3 µm, with a full-width at half-maximum of

0.3 µm. There is no significant tail corresponding to shallowly-implanted ions; less than 0.2% of

the ions were implanted at a depth less than 40.0 µm.

The sharpness of the implantation depth distribution may easily be understood in a qualitative

manner. The stopping of ions is due to two processes: interaction with target electrons and

interaction with target nuclei (all arguments in this paragraph are taken from Ref. [97]). For ion

energies much higher than 100 keV/amu the target electrons dominate the stopping. In this range,

the ions slow due to a very large number of interactions with electrons where the ion loses only a

small fraction of its total energy. Statistically, then, ranges of ions undergoing electron stopping

will not show a large variance. As the ions slow to less than 100 keV/amu, interactions of ions
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Figure 5.6. The results of a TRIM [96] simulation, showing the distribution of implantation
depths of 20,000 8B ions of energy 27.3 MeV in silicon.

with target nuclei becomes significant. Nuclear collisions, which may involve the ion transferring

a large fraction of its energy, may lead to a significant variance in ion range. In this experiment,

the implantation energies are significantly high that electronic stopping dominates for most of the

ion path, leading to the sharp distribution of Fig. 5.6.

The distribution of 8B implantation depths is affected by the range of ion energies, 27.3 0.2

MeV. The 0.2 MeV uncertainty corresponds to a 0.3 µm uncertainty in implantation depth, ac-

cording to further TRIM simulations. In this experiment, then, the distribution of ions is broader

than that shown for the (monoenergetic) ions of Fig. 5.6. A further uncertainty, corresponding to

the accuracy of TRIM, must be assigned. A global comparison of SRIM predictions to experi-

mental stopping power data shows an average deviation of 4.6% [96]. A recent measurement of

the slowing of 11B ions, with energies from 3 MeV to 11 MeV, in 780 nm foils of crystal silicon

[98] showed agreement with SRIM within 4.6%, hence this value is adopted as the uncertainty

inherent in the simulations. It should be noted that the crystal composing the Si detector was cut

off-axis from the parent crystal, such that particles normally incident on the detector would not

95



Collimator
Scintillator

Si Detector

Split-Pole
Magnetic

Spectrograph

Li6

Li6

B8

     He
Gas Cell

3

Bending
Magnet

     He(  Li,  B)n3 6 8

Figure 5.7. The experimental setup used to produce the 8B (20Na) beam, separate it from the
primary 6Li (19F) beam, and select ions with energy 27.3 MeV (170 MeV) for implantation into
the Si detector (not to scale).

be subject to channeling along symmetry axes [99]. Channeling may increase the implantation

depth.

Given the above considerations, the distribution of 8B implantation depths was taken to have

a full-width at half-maximum of 0.7 µm, about an average value of 42.3 2.0 µm. Note that the

uncertainty in the average value is due totally to the uncertainty in the SRIM stopping simulation.

The implantation depth distribution of the 20Na ions used for calibration was determined in

a similar fashion. The 20Na ions first passed through a mylar degrading foil of thickness 85 4

µm, located roughly 5 cm up-beam of the detector. The spectrograph was tuned so that ions of

energy 170.0 1.5 MeV were incident on the degrading foil/detector. The distributions of 20Na

implantation depths was found to have a full-width at half-maximum of 1.3 µm, about an average
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Figure 5.8. A photograph of light guides and scintillator similar to those used in this experiment.
The light guide was beveled such that the scintillator would be physically constrained by light
guide prior to being cemented. A Si detector, similar to the one used in this experiment, is also
shown. The actual detectors used in the experiment were unavailable.

value of 48 6 µm. The increased width and uncertainty associated with the 20Na implantation is

primarily due to the presence of the mylar degrading foil.

5.2.5 The Detectors

The Si detector, manufactured by Ortec, is classified as a D-series planar totally depleted

silicon surface barrier detector, transmission mounted (model TD-025-150-100, serial number

36-093F). The thickness of the detector was given by the manufacturer as 91 µm, with a maximum

thickness variation of 1 µm. The active area was given as 150 mm2, corresponding to a circular

region of diameter 13.8 mm. The detector was biased to 30.0 V.

The β particle detector, located 12 mm behind the Si detector, was a 25 mm diameter

2 mm thick plastic scintillator coupled by a light guide to a Hamamatsu R647 photomultiplier

tube (PMT). The detector identified a subset of events where the positron from the 8B decay

exited the Si detector with a trajectory within 30 to normal. Roughly 16% of the observed
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Figure 5.9. A schematic of the data acquisition equipment. Pulses from the detectors are shaped
and amplified in the pre-amplifiers and amplifiers, and the pulse sizes recorded in analog-to-
digital converters. Any pulse above threshold in either detector produces an electronic gate which
causes a trigger for data to be recorded. The relative time between events in the two detectors is
also recorded.

events occurred in coincidence with a count in the β detector, consistent with expectations from

detector geometry. The Si/scintillator detector system was cooled to -5 C.

A schematic of relative locations of the gas cell, spectrograph, and detectors is shown in Fig.

5.7. A photograph of a Si detector and components of a β detector is shown in Fig. 5.8.

5.2.6 Data Acquisition

The signal from the Si detector was brought out of the spectrograph vacuum and fed into an

Ortec 142 pre-amplifier. The signal was further amplified using an Ortec 672 amplifier with a 1.0

µsec shaping time. One output of the amplifier was sent into a Lecroy 623B discriminator used

to create an event trigger. Another output of the amplifier was sent into an Ortec 811 analog-to-

digital converter (ADC) Camac module which assigned the pulse height from the amplifier to one

of 4096 bins.

The signal from the Hamamatsu R647 PMT was amplified using a Lecroy 612 PMT (10 )

amplifier. One output of the amplifier was sent into a Lecroy 623B discriminator used to create

an event trigger. Another output of the amplifier was fed into an Ortec 811 ADC. An event
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Figure 5.10. Raw data from the 8B (top) and 20Na alpha (bottom) measurements. The dark gray
lines indicate alpha particle events which are coincident with an event in the beta detector; light
gray lines indicate alpha particle events without regard to the beta detector. The arrow in the
top panel points to a contamination peak from protons in the 8B data set. This phenomenon is
discussed in Section 5.3.

was defined as a pulse (above discriminator threshold) in either the Si detector or the PMT. A

schematic of the data acquisition equipment is shown in Fig. 5.9.

During the 8B run, the primary 6Li beam was cycled (1.5 sec on/1.5 sec off) and data taken

only during the beam-off cycles. The average implantation rate was 3 8B ions/sec, and 4.5 105

decays were observed over six days.

The calibration using implanted 20Na was performed immediately before the 8B run. As in

99



the 8B run, the beam was cycled (1.0 sec on/1.0 sec off). An average implantation rate of 7 20Na

ions/min was achieved, and over one day 1.0 104 decays were observed. The raw pulse height

spectra from the 8B and 20Na runs are displayed in Fig. 5.10.

5.3 Experimental Uncertainties

The previous section described the experimental technique used to measure the alpha spec-

trum of 8B. This section deals with the interpreting the experimental data, with an emphasis on

the experimental uncertainties. This experiment was performed to measure the α particles energy

spectrum, as such it is convenient to consider all systematic uncertainties as uncertainties in the

energy scale. Naturally, then, an emphasis will be placed on the energy calibration using the 20Na

source and the external 228Th source.

This section may be summarized by itemizing the three largest sources of experimental un-

certainties in the α spectrum measurement: (1) The uncertainty in the energy scale calibration.

(2) The uncertainty in correcting the energy deposited by positrons. The uncertainty in implanta-

tion depth of the 8B and 20Na ions may be included in this category. (3) A temporal gain variation

observed over the seven days of data collection.

The number of 8B events observed in this experiment (4 5 105) is relatively low compared

to some past measurements ( 1 6 106 for the deBraeckeleer et al. measurement [48], and

2 1 106 and 2 5 106 for the two Wilkinson and Alburger measurements [70]). However,

the statistical uncertainties associated with this measurement are very small compared to the

systematic ones, as will be discussed in Section 5.4. The present section will deal only with

systematic uncertainties in the determination of the energy scale.

5.3.1 Data Cuts

The raw experimental data, shown in Fig. 5.10, was subject to data cuts to remove various

backgrounds. The cuts were made using two pieces of information information which were stored
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(stop signal) detectors, coming from the Time-to-Digital converter shown in Fig. 5.9. The peaks
associated with 8B events, proton background events, and events with no β-detector pulse above
threshold are indicated. The unlabeled events scattered across the time spectrum are accidental
coincidences.

on an event-by-event basis. The first was the relative time between pulses in the Si and β-particle

detectors, registered by a TDC (the β-detector provided the start signal and the Si detector the

stop signal). The time spectrum is shown in Fig. 5.11. The second was the size of the pulse

in the PMT connected to the β-particle detector, registered by an ADC. The readout electronics,

including the TDC and ADC, are shown in Fig. 5.9 and have been discussed in Section 5.2.

One type of background resulted because the electrostatic sweeper used to stop the beam was

not perfectly efficient, allowing a weak beam during the counting cycles. Naturally, it is impos-

sible to determine these background events from the Si detector pulse height information alone.

Any ions in the beam, heavier than protons, with the proper rigidity to traverse the spectrograph

and reach the Si detector were stopped [96] in the detector and rejected by the coincidence re-

quirement with the β-particle detector. However, protons with energies near 8.7 MeV, produced

in reactions from the primary beams, had the proper rigidity to traverse the spectrograph and hit

the Si detector. These 8.7 MeV protons passed through the Si detector [96] and into the β detector,

producing a peak near 800 keV in the coincidence data set. This peak is indicated in Fig. 5.10.

These proton events were unambiguously rejected from the data set based on timing information,
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Figure 5.12. The centroid of the 8B alpha spectrum as a function of run. The error bars are from
statistics alone. The 45 runs are sequential in time and contain approximately equal amounts of
data. The dotted line shows the average value of the centroids. The fluctuations about this value
are about twice as large as expected from statistics alone, indicating a systematic variation of the
energy scale over time.

as shown in Fig. 5.11, as well as on the large pulses observed in the β-particle detector (which

were much larger than the pulses from the fast positrons.)

Random coincidences were removed with cuts on the time spectrum. Additional cuts on the

time spectrum eliminated a small amount of background from external β decay activity.

5.3.2 Gain Variation

Possible damage to the Si detector, due to its constant bombardment by ions passing through

the spectrograph, was a concern. The flux of ions incident on the detector was monitored by the

spectrograph focal plane detector [95]. At the end of the 8B run, the integrated incident flux on the

Si detector was an order of magnitude below threshold for detector damage [99], and an increase

in the Si detector leakage current characteristic of damage [99] was not observed. Hence, no gain

variation resulting from damage was expected.

The gain was monitored with the centroid of the 8B α spectrum and was found to fluctuate
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within 0.25%, corresponding to 7 keV at the spectrum peak. The fluctuations are about two

times larger than expected from counting statistics. External α particle sources were not reliable

for monitoring gain shifts because of the accretion of residual gas onto the cooled Si detector,

degrading the α particle energies by 10-20 keV over the course of the seven day run. (The accreted

gas was not sufficient to appreciably degrade the 8B and 20Na beams incident on the detector, and

had a negligible effect on implantation depth.) A plot of the 8B α spectrum centroid as a function

of 8B run (the 8B data was divided into 45 runs, sequential in time and with approximately equal

numbers of events) is shown in Fig. 5.12.

A one parameter fit to the centroids gives χ2=178.7 for 44 degrees of freedom. A two param-

eter linear fit function gives only a slightly better fit, χ2=176.9, with the coefficient of the linear

term being consistent with zero. Due to the large scatter of the data and the absence of any obvi-

ous trend in the gain over time, the gain variation is treated as a random systematic phenomenon.

The magnitude of the systematic shift on the energy scale is approximated by increasing the error

bars on the centroids by including a systematic uncertainty added in quadrature with the statis-

tical uncertainty. The magnitude of the systematic uncertainty is approximated by requiring a

χ2=44 for 44 degrees of freedom. This procedure leads to the value quoted above, a nonstatistical

gain variation of magnitude 0.25%. No correction for this was applied to the data, instead a

0.25% uncertainty is included in the energy scale. This is the dominant source of uncertainty

in the measurement.

A possible broadening of the alpha spectrum due to this shift will be small, given the relative

values of the alpha spectrum width (on order of 1000 keV), and the value of the gain shift (7 keV

at the spectrum peak). This effect is included in the analysis of Section 5.4.

5.3.3 Positron Energy Deposition

The positron energy loss in the Si detector was estimated using the EGSnrc simulation [100].

Simulations account for the geometry of the detectors and surrounding materials, positron energy

spectra, and the ranges of ion implantation depths discussed previously. Probability distributions
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Figure 5.13. (Top panel) Results of EGSnrc [100] simulations giving the probability of a given
energy being deposited in the Si detector by beta particles. The results for beta particles of
various kinetic energies are indicated. These results are for events where the beta particle also
triggers a count in the Si detector. Beta particles with kinetic energies above about 1 MeV have
energy deposition curves which are nearly indistinguishable. (Bottom panel) The approximate
beta particle energy spectra for 20Na decays to the most probable alpha-emitting state in 20Ne
(beta particle endpoint roughly 5.9 MeV), and for the most likely 8B beta decay (endpoint roughly
13MeV). The spectra are are normalized to integrate to one. The shaded areas indicate the portion
of the spectrum lying below 1 MeV kinetic energy, where beta particle energy deposition in the
scintillator is increased.
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Nucleus Half life Decay Description Alpha Particle Energies in keV (Probability)
228
90 Th 1.91 yrs α-decay to 22488 Ra 5423 (72.2%), 5340 (27.2%)
224
88 Ra 3.66 days α-decay to 22086 Rn 5685(94.9%), 5449 (5.1%)
220
86 Th 55.6 sec α-decay to 21684 Po 6288 (99.9%), 5747 (0.1%)
216
84 Po 0.14 sec α-decay to 21282 Pb 6778 (100%)
212
82 Pb 10.6 hrs β -decay to 21283 Bi none
212
83 Bi 60.6 min 64.1% β -decay to 21284 Po none

35.9% α-decay to 20882 Pb 6090 (27.1%), 6051(69.9%)
208
82 Pb stable none

Table 5.1. The half-lives and decay modes of the nuclear isotopes involved in the decay chain
from 228Th to 208Pb. The energies of the prominent emitted α-particles are given, along with
the probability of emission. Uncertainties in the energies are on the order of 0.01 keV (much
smaller than the precision in the values quoted here). All data in this table comes from a recent
compilation of the Table of Radioactive Isotopes [101].

20Ne Energy Level Branch Ratio α Energy (keV) 16O Energy (keV) Pulse Height Defect
1633.67 (2) 79.44%
7421.9 (1.2) 15.96% 2153.1 (1.0) 538.8 (0.2) 40 keV
7833.4 (1.5) 0.58% 2482.4 (1.2) 621.2 (0.3) 42 keV
9483 (3) 0.24% 3803 (3) 953 (1) 46 keV
10274 (3) 2.88% 4434 (3) 1110 (1) 49 keV
10840 (4) 0.17% 4887 (4) 1223 (1) 51 keV

Table 5.2. Information on the beta-decay of 20Na to the allowed states in 20Ne, and the subsequent
alpha disintegrations. All data in this table comes from a recent compilation of the Table of
Radioactive Isotopes [101].

for energy loss by positrons were obtained for the subset of data associated with a coincidence

count in the β detector, and for the total data set. The results of EGSnrc simulations for β particles

producing a coincidence count are shown in Fig. 5.13. As seen in the figure, β particles with low

energies deposit a dramatically greater amount of energy than particles which are near minimum

ionizing (several MeV). Thus the effect of β particles on the alpha data is significantly greater for

the 20Na decays, which have a lower endpoint than the most probably 8B decays, as seen in the

Fig. 5.13.

The uncertainty associated with the EGSnrc simulations was estimated by comparing the

total 8B data set to the coincidence data set. The effect of the positron correction lowered the
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Figure 5.14. A fit to the 6778 keV 228Th alpha line used in the external calibration. The error
bars shown are purely statistical.

α-spectrum peak of the total data set by 55 keV, and the peak of the coincidence data set by 24

keV. After the correction, the peaks of the two data sets agreed to within 2 keV. The uncertainty

associated with the simulation is thus assigned as 2 keV. The use of the total data set to estimate

uncertainty in positron energy loss was not compromised by the beam leakage background, since

beam particles with the proper rigidity to hit the detector had energies far from the 8B spectrum

peak.

Note that uncertainties in ion implantation depth affect the alpha measurement only inasmuch

as they affect the energy deposited by positrons. This affect is easily approximated since, on

average, minimum ionizing positrons deposit 0.6 keV/µm in Si, so that in the case of 8B (20Na)

the uncertainty in implantation depth corresponds to an energy uncertainty of 1.2 keV ( 3.6

keV).
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Figure 5.15. (Top panel) Fits to the 20Na calibration lines. The open circles indicate the coinci-
dence data set, while the solid circles indicate the total data set, i.e. no coincidence requirement.
The curves show the best fit function, described in the text. (Middle panel) Residuals to the fit of
the calibration lines for the total data set. (Bottom panel) Residuals to the fit of the calibration
lines for the coincidence data set.

5.3.4 Energy Scale Calibration (using 228Th and 20Na)

Pulser tests were performed before and during the data collection period to investigate the

behavior of the ADC. These tests indicated a negligible quadratic component in the relationship

between pulse height and ADC bin, so that a linear fit to the calibration lines is sufficient to

determine the energy scale. The pulser tests were also used to precisely determine the ADC bin

associated with zero pulse size. The zero energy bin was used in the energy calibration.

The external 228Th source emitted α particles at six distinct energies [51] and was used to

perform an energy calibration. Details on the decay chain of 228Th are shown in Table 5.1. Data
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Figure 5.16. Residuals from the calibration process. The solid circles show the residuals for the
three 20Na calibration α lines to the best linear fit (energy vs. ADC channel). The open circles
correspond to the six external 228Th source α lines, which were not used in the calibration fit. The
thin solid curves are the 1σ error bands associated with the 20Na calibrations. The dashed curves
are the 1σ error bands of a separate calibration from the 228Th source. The thick solid curves
show the total 1σ uncertainty in the energy scale, which is significantly larger than the calibration
uncertainty alone due to temporal gain variation.

used for the 228Th calibration was taken shortly after the detector was placed in vacuum and

cooled, before an appreciable amount of residual gas condensed on the detector surface. The

α particle energies were corrected for energy loss in the source and detector dead layer. The

thickness of the dead layer was measured prior to the experiment by exposing the detector to

alpha particles from 228Th incident from various angles, giving a thickness of 27 4 µg/cm2. The

magnitude of the corrections for the various lines was 31-38 keV, with a characteristic uncertainty

of 4-5 keV. A fit the 6778 keV line is shown in Fig. 5.14.

The energy spectrum from the 20Na decay was used to perform a separate calibration of the

energy scale. These data were subject to a correction based on the pulse height defect associated

with the recoiling 16O nuclei, which carry one fifth of the energy of the α disintegrations following
20Na decay. The average pulse height defect of the recoil 16O nuclei has been directly measured

for 16O nuclei in the energy range of interest [102]. The correction is 40-50 keV for the various
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Figure 5.17. A summary of the systematic uncertainties present in the final determination of the
alpha spectrum energy scale. The values given apply to the uncertainties at the most probable 8B
alpha energy, near 3 MeV.

20Na alpha lines, with an uncertainty of 5 keV. The TRIM Monte Carlo simulation [96] was

used to model the ionization energy loss of 16O in silicon, and agreed within 2 keV with the

average values of ionization loss observed in [102]. We have applied the TRIM results, scaled

by 2 keV to agree with the experimental results, to approximate the pulse height spectrum of 16O

nuclei in a silicon detector. Further, TRIM was used to approximate the pulse height spectrum of

the recoiling 16O nuclei (in contrast to the data of Ref. [102], which provided only the average

value of the pulse height).

The three most intense 20Na calibration lines were fit to the pulse height spectrum predicted

by TRIM, convoluted with the positron energy loss distributions and a Gaussian component to

approximate detector noise. The position and amplitude of the lines were free parameters, as well

as the Gaussian width. Results of the fit to two of the lines, resulting from 20Na β decays which

led to α energy releases of 2691.9 1.2 and 3099.0 2.2 keV, are shown in Fig. 5.15 for both the

total and coincidence data sets. The fit to the coincidence data set yielded χ2/dof=79.3/71, and

the total data set χ2/dof=75.1/71. The log-likelihood minimization function [103] was used in the

fits.
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Figure 5.18. The measured 8B β delayed two α energy spectrum shown with the 20Na β
delayed α lines used for calibration. The data shown here correspond to events coincident with
the beta detector. The three most intense 20Na α lines were used in the calibration. Some α lines
of lower intensity are also visible.

A comparison of the 20Na and 228Th calibrations, including residuals to calibration fits, are

shown in Fig. 5.16. The two calibrations are completely consistent, as can be seen. However, the
228Th data was not used in the final energy scale determination to prevent uncertainties associated

with external alpha sources, a potential source of error in previous alpha measurements discussed

in Chapter 4, from affecting this measurement. Fig. 5.16 also shows the total uncertainty in the

energy scale, dominated by the temporal gain variation.

5.3.5 Summary of Energy Scale Determination

A summary of the magnitudes of the various uncertainties in the energy scale determination

is shown in Fig. 5.17. Plots of both the 8B and 20Na data sets are shown in Fig. 5.18. The data
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shown are in coincidence with an event in the β particle detector, have been subject to the data

cuts discussed, and are shown with the energy scale determined from the 20Na calibration. Fig.

5.18 thus represents the ultimate result of the alpha spectrum measurement.

5.4 Application of the R-matrix Approach

The previous section led to a 8B alpha spectrum data set with a well-defined energy scale

and uncertainties. This section aims to use the R-matrix approach to fit the data with a smooth

function and extract the 8B β-decay strength function, as discussed in Chapter 3.

In principle, it is possible to deduce the 8B β decay strength function directly from the

measured α spectrum without resorting to R-matrix formalism. The R-matrix approach, however,

gives a good fit to the observed α spectrum and provides a convenient method for propagating

systematic uncertainties in the α spectrum to the neutrino spectrum. Systematic uncertainties in

the α spectrum dominate the statistical uncertainties, justifying the representation of the data by

a smooth function.

In cases where the 8B decays at rest, as in this experiment, the recoil of the daughter 8Be

nucleus will cause the total energy spectrum of the emitted α particles to deviate from the β

decay strength function given in Eq. 3.14. For a given excitation energy of 8Be, the recoil en-

ergy distribution is exactly calculable and takes an average value of 7 keV at the most probable

excitation energy near 3.0 MeV.

In addition to accounting for the 8Be recoil, the strength function (Eq. 3.14) must be convo-

luted with the probability distribution of energies deposited by the positron, discussed in Section

5.3. The detector line shape, approximated as a Gaussian with width 25 keV, determined by fits

to the 20Na data sets, was also included but had a negligible impact on the fit due to the large

width of the α spectrum.

The α spectrum data was fit using the log-likelihood minimization function [103]. The best

fit gave χ2/dof=3249.7/3376, indicating a satisfactory fit. The best fit parameters are given in
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Figure 5.19. (Top panel) R-matrix fit to the observed decay spectrum. (Bottom panel) Residuals
to the fit, scaled by the square root of the fit value.

Table 5.3, and the best fit is compared to the data in Fig. 5.19. The strength function is presented

in numerical form in Appendix A.

The R-matrix approach was used to propagate the systematic uncertainties in the α spectrum

measurement to the neutrino spectrum. As discussed in Sec. 5.3, the 1σ uncertainty in the

energy scale is characterized by a multiplicative factor of 1 (0.275%), corresponding to about

8 keV at the spectrum peak, added in quadrature with a constant offset of 3 keV. R-matrix fits

were performed to the α spectrum using the 1σ energy scales, and the resulting 1σ strength

functions were used to produce 1σ neutrino spectra.

An additional uncertainty was imposed to account for the rapid drop off of the α spectrum at

low energies, where statistics are not sufficient to determine the spectrum shape. The penetrability

factor, P(Ex), is responsible for the drop off. The best R-matrix fit used P(Ex) calculated for a
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Parameter Value Parameter Value
E1 3.043 MeV γ24 5.619 MeV
E2 16.626 MeV1 MGT1 -0.1462
E3 16.922 MeV1 MGTA 2.423
E4 37.0 MeV1 MGT4 -0.1320
γ21 1.087 MeV MFB 21
γ22 10.96 keV1 MGTB, MF1, MFA, MF4 01
γ23 7.42 keV1

Table 5.3. Values of R-matrix parameters determined by a fit to the coincidence α spectrum data,
using a matching radius of rc=4.5 fm.

matching radius of 4.5 fm. We approximate the uncertainty at low energies by calculating P(Ex)

at 4.0 and 5.0 fm, the 1σmatching radii recommended in Ref. [46], and perform fits under these

conditions. There is a strong dependence [46] between the energy of the background state, E4

and matching radius, rc, so the parameter E4 was allowed to float for these fits. We note that the

variation of matching radius is a significant source of uncertainty only for neutrinos at very high

(Eν 15 MeV) and low (Eν 0.5 MeV) energies.

5.5 Comparison to Previous Measurements

The strength function determined in this work disagrees with the result of the previous pre-

cision measurement of Ortiz et al. [49]. For both measurements, the uncertainty in the inferred

neutrino spectrum is dominated by systematic effects. Smooth R-matrix fits to the alpha spectra

thus provide a convenient way to compare the two results. Fig. 5.20 shows a comparison of the

present results and a fit to the data of Ortiz et al. [49]. Uncertainties in the Ortiz et al. curve are

taken directly from Ref. [49].

The strength function of this work has been used to derive a positron spectrum for the β-decay

of 8B using techniques described in Chapter 6. The positron spectrum is presented numerically,

with uncertainties, in Table A.3. The deduced positron spectrum was compared to the experi-

mental spectrum [104], and a one parameter fit to determine the amplitude gave an agreement

of χ2/dof=33.1/31, where only statistical uncertainties were included in the minimization func-
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Figure 5.20. The 8B β decay strength function, determined by R-matrix fits to the 8B α spectrum
presented in this work (black) and in Ortiz et al. [49] (gray). The spectra are scaled to share the
same peak height. The insert shows the locations of the spectrum peaks, on which the neutrino
spectrum is highly dependent. The width of the lines in the insert indicate the magnitude of the
1σ experimental uncertainties. The thin feature in the black curve arises because the dominant

uncertainty is a multiplicative factor in the energy scale.

tion. The agreement is shown in Fig. 5.21. The deduced positron spectrum was then allowed to

float by an energy offset and marginal improvement (χ2/dof=32.6/31) was found for an offset of

-14 20 keV. In contrast, the positron spectrum deduced by Ortiz et al. [49] must be shifted by an

energy offset of 70 20 keV to give agreement (χ2/dof=31.8/31) with the data [49]. The cali-

bration uncertainty of the positron measurement is reported as 25 keV [72], and is not included

in the fits.

After the work described here had been completed, a further measurement of the α spectrum

was performed [73]. This new experiment used a technique similar to the Ortiz et al. measure-

ment [49], observing the two α particles in separate detectors. The results [73] are in excellent

agreement with the results of this work, as shown in Fig. 5.22.
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Figure 5.21. (Top panel) Comparison of the direct positron spectrum measurement [104] with
the predicted spectrum based on the measured alpha spectrum. The amplitude of the predicted
spectrum was floated. (Bottom panel) Same comparison, showing only the momentum range
measured in the direct positron spectrum measurement [104].

115



3.1

3.0

2.9

2.8

2.7

2.6

2.5

Pe
ak

 o
f S

tre
ng

th
 F

un
ct

io
n,

 E
  x

 (M
eV

)

WA thick

WA thin

WA thin (Barker)

FC

DBW

WA(B&A) Ortiz

B&AWinter
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Chapter 6

Recoil Order Corrections to the

Neutrino Spectrum

A proper description of 8B β decay includes recoil order effects which cause, for exam-

ple, the energy spectra and angular correlations of decay particles to deviate from the allowed

approximation. Deviations are of order E0/mn, where E0 is the positron endpoint energy and mn

is the nucleon mass. The 8B β decay has a particularly large endpoint energy (most probable

E0 13 MeV) and a small Gamow-Teller strength (log ft = 5.6) for an allowed decay. Recoil

order effects in 8B are thus large compared to other nuclear systems.

Measurements of the radiative decay of the 8B isospin analog state in 8Be [54, 55, 56, 48],

and of the angular correlation between β and α particles emitted in the decays of 8B and 8Li

[57, 58, 59], determine the recoil order matrix elements. These results were first explicitly applied

to the neutrino spectrum in [105, 104], where they were found to contribute at the 5% level. A

more recent determination of the neutrino spectrum by Bahcall et al. [72] employed the same

recoil order treatment as in Ref. [105]. Bahcall et al. provided a conservative estimate of the

uncertainty associated with the recoil order correction on the neutrino spectrum by setting the

3σ uncertainty equal to size of the correction itself. A more recent determination of the neutrino

spectrum by Ortiz et al. [49], applied recoil order corrections very similar to those in Ref. [105].
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The two most recent α spectrum measurements, by Ortiz et al. [49] and the one reported here,

involved determinations of the energy scale significantly more precise than the measurements

used by Bahcall et al. [72]. Also, a recent precision measurement of radiative decay in 8Be [48]

provides additional information on recoil order effects, but has not yet been applied to the 8B

neutrino spectrum. In light of these recent experiments, recoil order effects are considered here

with careful attention to the assignment of realistic uncertainties.

The Fermi matrix element plays a small role in the β decay of 8B, contributing only to

decays proceeding through the highest excitation energies in 8Be, as explicitly discussed in Ref.

[46]. These low energy β decays have suppressed recoil order corrections, and produce neu-

trinos which have no impact on solar neutrino experiments. Consideration of the Fermi matrix

element is thus omitted.

A model independent treatment of recoil order effects is given by Holstein [43], whose nota-

tion we adopt here. Matrix elements contributing to the β decays of 8B and 8Li are denoted by

c (Gamow-Teller), b (weak magnetism), d (induced tensor), f , g (vector second-forbidden), j2,

j3 (axial second-forbidden), and h (induced pseudoscalar). Since the decays proceed to the broad

continuum in 8Be, the matrix elements should be considered as functions of the 8Be excitation

energy, Ex. Previous determinations of the 8B neutrino spectrum [105, 104, 72, 49] neglected this

energy dependence.

6.1 Beta and Neutrino Energy Spectra

The positron energy spectrum from an allowed decay proceeding between two energetically

sharp nuclear states is given by

dN
dEβ

pβEβ E0 Eβ 2F Z Eβ R Eβ E0 C Eβ E0 (6.1)

Here pβ and Eβ are the momentum and total energy of the positron, and E0 is the positron endpoint

energy. F(-Z,Eβ) is the Fermi function, which depends on the charge, Z, of the daughter nucleus

and is negative for positron decays. The radiative corrections are contained in R(Eβ,E0), which
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was discussed in Chapter 2. The recoil order effects are contained in C(Eβ,E0), which has the

form

C Eβ E0 1
2E0
3Amn

1
d
c

b
c

2Eβ
3Amn

5 2
b
c

(6.2)

m2e
3AmnEβ

2
d
c

2
b
c

h
c
E0 Eβ
2Amn

where A=8 is the mass number. In the case of 8B the recoil order matrix elements are dependent

on the 8Be excitation energy Ex (Ex=Δ-E0), where Δ=17.468 MeV is the total energy released in

the 8B β-α decay chain. (This discussion of positron and neutrino energy spectra ignores, for the

sake of simplicity, the kinetic recoil of the daughter nucleus. This effect is included in the numer-

ical calculations.) The positron spectrum is calculated by integrating Eq. 6.1 over all excitation

energies in 8Be, weighted by the strength function determined in Chapter 5. The neutrino spec-

trum is obtained by the simple substitution Eν=E0-Eβ, and the application of different radiative

corrections, discussed in Chapter 2.

6.2 Radiative Decay Measurements in 8Be

The weak magnetism matrix element, b, exerts the greatest influence on the neutrino energy

spectrum. Its value is best determined under the strong conserved vector current (CVC) hypoth-

esis by measurements of the radiative decays of the 8B isospin analog state in 8Be which, as

discussed in Chapter 3, is mixed between the two states of an energy doublet. The radiative

decay is shown schematically in Fig. 3.1.

In previous experiments [54, 55, 56, 48], a 4He beam was directed at a 4He gas cell to excite

the doublet in 8Be. The 4He(4He,γ)8Be cross section was measured as a function of beam energy

and angle of emission of the γ ray. These measurements determine the widths of the isovector

M1 and E2 transitions, ΓT 1
M1 and δ1=ΓT 1

E2 /ΓT 1
M1 , as well as the widths of the isoscalar transitions,

ε=ΓT 0
M1 /ΓT 1

M1 and δ0=ΓT 0
E2 /ΓT 1

M1 . The radiative widths are considered as functions of Ex.

CVC relates the isovector radiative widths in 8Be to the vector recoil matrix elements con-
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Observable Experiment Value
δ1 Ref. [54] (1975) 0.045 0.027

Ref. [56] (1978) 0.14 0.031
Ref. [48] (1995) 0.01 0.03

δ0 Ref. [56] (1978) 0.26 0.031
Ref. [48] (1995) 0.22 0.04

ε Ref. [56] (1978) 0.00 0.03 1
Ref. [48] (1995) 0.04 0.02

ΓT 1
M1 Ref. [55] (1977) 4.1 0.6 eV2

Ref. [56] (1978) 3.6 0.3 eV2
Ref. [48] (1996) 2.80 0.18 eV

Table 6.1. Experimental determinations of the isovector and isoscalar M1 and E2 transition
strengths. All quantities listed are integrated over final state excitation energies in 8Be.
1These values are based on a reanalysis of the original data, performed in Ref. [48]. The original
analysis contained an error in the kinematic treatment of the decay photon. See Ref. [48] for
details. 2The values for M1 width are based on a reanalysis of the original data, performed in
Ref. [48], using the values of δ1 and δ0 obtained experimentally in Ref. [48].

tributing to 8B β decay, b, f , and g,

b Ex Amn 6ΓT 1
M1 Ex αE3γ (6.3)

f Ex
3
10
δ1b Ex (6.4)

g Ex
2
3

2Amn

E0
f Ex (6.5)

The isoscalar radiative widths are not related to β decay form factors by CVC.

A summary of the experimental results is given in Table 6.1. The experimental results for

the isoscalar contributions to the decay, ε and δ0, agree with each other and are of the same order

as various shell model predictions compiled in Ref. [48]. The experimental values for δ1 from

two of the experiments [54, 48] are in agreement, but differ from the results in [56] by about

3σ. The present work will use the more recent value of δ1 [48] which indicates a negligible

second-forbidden contribution to the decay, in agreement with shell model predictions. The early

experimental determinations of ΓM1 [55, 56] disagree with the recent and most precise result [48]

by about 2σ. The recent result [48] is in best agreement with β-α angular correlation experiments,

as will be discussed later, and is adopted in this work.
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Figure 6.1. The top panel shows the functional dependence of the weak magnetism matrix ele-
ment, b(Ex), based on the measurement [48] of radiative decay in 8Be. The bands indicate 1σ
experimental uncertainties. The bottom panel shows the Gamow-Teller matrix element, c(Ex),
based on fits to the α spectrum discussed in Chapter 5. The uncertainties in c(Ex) are comparable
to the width of the line and are negligible in the context of recoil order corrections.

The matrix elements b(Ex) and c(Ex) have different functional dependences. This was first

observed [54, 56] through a comparison of the shapes of the final state distributions in 8Be follow-

ing the α and γ decays. The form of b(Ex) was later described [48] using the R-matrix approach,

which parametrized b(Ex) as an interfering sum of three different matrix elements, Mi, to the

three 2 levels in 8B shown in Fig. 3.1,

b2 Ex
P Ex
π

∑3j 1
M jγ j

E j Ex

2

1 S Ex B iP Ex ∑3j 1
γ2j

E j Ex

2 (6.6)

The notations used here are identical to those in Chapter 3. We use the parameters reported

in Ref. [48] to determine b(Ex). The form of c(Ex) was given in Eq. 3.17, and determined by fits
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to the α spectrum. We note that the R-matrix parameters appearing in both Eqs. 3.17 and 6.6 may

take different values in the two expressions. The forms of b(Ex) and c(Ex) are shown in Fig. 6.1.

6.3 β-α Angular Correlations

The β-α angular correlations in the mirror decays of 8Li and 8B have been measured several

times as a function of β particle energy [57, 58, 59]. Such measurements constrain the weak

magnetism matrix element, b, as well as the induced tensor, d. The angular correlations take the

form

N θ Eβ Ex 1 a Eβ Ex cosθ p Eβ Ex cos2θ (6.7)

where the -(+) subscript refers to the 8Li(8B) decay, θ is the angle between the β and α particles,

and the factor v/c for the β particle has been set equal to 1. The a coefficients are dominated

by kinematic considerations, while the p coefficients are strongly dependent on recoil order

contributions,

p Eβ Ex
Eβ

2Amnc
(6.8)

c dI dII b
3
14

f
3
28
g
Δ Ex Eβ

Amn

3
14

j2
Δ Ex 2Eβ

2Amn

3
35

j3
Eβ
Amn

where Δ is the total energy released in the 8Li(8B) β-α decay chain.

Assuming isospin symmetry, taking the sum and difference of p and p produces cancel-

lation between many of the mirror matrix elements of the 8B and 8Li decays. Corrections due

to isospin breaking will be considered later. Defining δ = p p , dropping the vector matrix

elements f and g, integrating over excitation energy Ex gives δ as a function of β particle energy,

δ Eβ
Amn

Eβ
b Ex c Ex Δ Ex Eβ 2dEx
c2 Ex Δ Ex Eβ 2dEx

(6.9)

δ Eβ
Amn
Eβ

(6.10)

c Ex d Ex 3
14 j2 Ex

Δ Ex 2Eβ
2Amn

3
35 j3 Ex

Eβ
Amn c Ex Δ Ex Eβ 2dEx

c2 Ex Δ Ex Eβ 2dEx
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Figure 6.2. The solid squares are experimental data on δ from β-α angular correlation measure-
ments from Ref. [58], the open squares are from Ref. [59]. The curves indicate the 1σ error bands
from the prediction for δ based on Eq. 6.9, using the weak magnetism, b(Ex), and Gamow-Teller,
c(Ex), matrix elements.

where the second class contribution to the induced tensor has been omitted. This is consistent

with existing data in the A=8 nuclear system [48], and with theoretical models which predict a

second class current to contribute at a level below the current experimental sensitivity.

The matrix elements b(Ex) and c(Ex), determined previously, were applied to Eq. 6.9 to pre-

dict the δ observed in β-α angular correlation measurements [57, 58, 59]. The predictions are

compared to the experimental δ data graphically in Fig. 6.2.

The level of agreement between the Eq. 6.9 prediction, based on the radiative decay and alpha

spectrum data, and the β-α data sets was quantified by allowing the magnitude of b to float by

a multiplicative constant, b κb, in Eq. 6.9. The experimental data from the β-α correlation

measurements was then used to determine the best fit value of κ. A value of κ different than unity

would indicate a disagreement between the radiative width data and the β-α angular correlation

data. This approach was previously applied [59, 56, 54, 48] with the motivation of testing CVC

and searching for second-class currents. Here, the validity of CVC and the absence of second-

class currents are assumed, and the test is performed to gage the level of agreement between the

two types of recoil order measurements.
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The best fit to the δ angular correlation data from Ref. [58] gave κ=1.06(4) with

χ2/dof=7.7/8. The best fit to the data from Ref. [59] gave κ=0.99(3) with χ2/dof=24.8/15, where

the large χ2 value may be the result of the large point-to-point scatter of the data. The uncertain-

ties in the data from Ref. [59] were expanded by χ2 do f to account for this effect, and both

data sets were fit simultaneously, yielding κ=1.014(26) with χ2/dof=24.6/24. The values of κ ob-

tained, consistent with unity, indicate agreement between the radiative width measurement [48]

and the β-α angular correlation measurements [58, 59], and provide confidence in the extracted

weak magnetism matrix element.

The experimental δ (Eβ) data is sensitive to the induced tensor matrix element, d. The effect

of d on the neutrino spectrum is much milder than that of b. The energy dependences of b(Ex) and

c(Ex) were inferred directly from γ and α spectrum measurements, respectively, but for d(Ex) there

is no such experimental signal. The determination of the induced tensor is further complicated by

the presence of the axial second-forbidden terms, j2 and j3, which appear in the expression for

δ , Eq. 6.10. Fortunately, the influence of d on the neutrino spectrum is sufficiently small that

very conservative estimates of uncertainty may be imposed on d without significantly inflating

the total uncertainty of recoil order corrections.

The β particle asymmetry from a polarized source of 8Li or 8B is also sensitive to j2 and

j3, and would complement β-α correlation measurements to allow a more precise determination

of the second-forbidden terms. One measurement of the asymmetry has been performed in 8Li

[106], but was systematically skewed by β particle scattering and required a sizable phenomeno-

logical correction. We do not include the asymmetry measurement in our analysis, but note that

future measurements of this type would be helpful in constraining the values of j2 and j3.

Several models [64, 107, 66] have been employed to estimate the magnitude of the axial

second-forbidden terms. The models predict contributions to δ from j2 and j3 which are com-

parable to the contributions from the induced tensor, dI . It has been pointed out [108] that mesonic

exchange effects may be significant in A=8 β-decays, especially at the second-forbidden level,

and that shell model calculations may break down.
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Figure 6.3. The solid squares are experimental data on δ from β-α angular correlation measure-
ments from Ref. [58], the open squares are from Ref. [59]. The curves indicate the 1σ error bands
from the prediction for δ based on Eq. 6.9, using the weak magnetism and Gamow-Teller matrix
elements determined previously. Second forbidden contributions from j2 and j3 were ignored in
this fit.

To determine of the best value of d from the δ data, second-forbidden contributions are

neglected and d will be assumed to take the same functional form as the Gamow-Teller matrix

element, c. The possibility of large second-forbidden contributions to δ , with magnitude given

by the shell model predictions, will then be considered and their effect on the extracted value

of d will be assigned as an uncertainty. The uncertainty associated with the ambiguity in the

functional form of d will be estimated by fitting the δ data with the assumption that d takes the

same form as the weak magnetism operator, b.

Utilizing the above assumptions, j2 and j3 are set equal to zero, d is considered to have the

same form as c, d ηc, and Eq. 6.10 is used to fit the δ data, with η as the only parameter.

The best fit to the δ data from Ref. [58] gives η=10.3(2.3) with χ2/dof=2.7/8. The best fit to the

data from Ref. [59] gives η=10.6(1.4) with χ2/dof=12.2/15. Fitting both data sets simultaneously

gives η=10.5(1.2) with χ2/dof=15.0/24. The results of the fits are compared to the δ data in Fig.

6.3.

The uncertainty associated with the second forbidden terms is estimated by assuming the
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Figure 6.4. The solid curves indicate the 1σ error bands in the ratio between the weak magnetism
matrix element, b(Ex), and Gamow-Teller matrix element, c(Ex), used in this work. The dashed
line represents the ratio from Ref. [105], used in previous determinations of the neutrino spectrum
[105, 104, 72, 49] which neglected the excitation energy dependence of b(Ex) and c(Ex).

values obtained using the model of Ref. [66], j2 A2c 400 and j3 A2c 750. We take

d ηc and the δ data [58, 59] are fit, yielding η=13.8(1.2) with χ2/dof=16.5/24.

The uncertainty associated with the unknown functional form of the induced tensor is esti-

mated by taking d ξb. A simultaneous fit to the δ data sets [58, 59], assuming no second

forbidden contributions, gives ξ=0.185(20) with χ2/dof=15.3/24.

6.4 Recoil Order Effects on the Neutrino Spectrum

The values and uncertainties of the weak magnetism, b, and induced tensor, d, matrix ele-

ments have been deduced from experimental data. A further uncertainty is applied to these values

due to imperfect isospin symmetry and electromagnetic effects. The effect of isospin breaking

is estimated by comparing the Gamow-Teller matrix elements of the 8B and 8Li mirror β de-

cays. Previous comparisons of experimental α spectrum following 8B and 8Li decays indicate

cLi/cB 1.07 [46, 62]. As seen from Eqs.

6.9 and 6.10, this uncertainty propagates linearly to the extracted values of b and d. We thus
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Figure 6.5. (Top panel) The normalized neutrino spectrum deduced in this work. (Bottom panel)
The magnitude of the effect of the recoil order matrix elements on the neutrino spectrum. The
gray region shows the 1σ band of the results obtained in this work. The black line was obtained
using the recommended values from Ref. [105], which have been used in previous determinations
of the neutrino spectrum.

assign to b(Ex) and d(Ex) a further 7% uncertainty, added in quadrature with previously stated

uncertainties. Further electromagnetic effects, such as the difference in decay energies of 8Li and
8B and final state electromagnetic interactions, are discussed in Ref. [59] and are proportional to

the second forbidden axial terms, j2 and j3. These effects contribute up to 4%, when the largest

shell model values for j2 and j3 are assumed. We thus add, in quadrature, a further 4% uncertainty

to b(Ex) and d(Ex).

Fig. 6.4 shows the ratio of b(Ex) to c(Ex) over the range of allowed excitation energies in
8Be. At high excitation energies, c(Ex) increases rapidly while b(Ex) decreases, as can be seen

in Fig. 6.1. In terms of the R-matrix approach, this is explained by comparing the Gamow-Teller

strength of the high-lying doublet to the strength of the first excited state at 3.0 MeV, MA/M1=-
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11.8(8). For the weak magnetism transition, the ratio is much smaller, MA/M1=1.4(1.6) [48],

and the doublet transition strength plays a smaller role. At excitation energies above 3.0 MeV,

the result is a constructive interference of the MA and the M1 terms for c(Ex). Conversely, for

excitation energies below 3 MeV, the terms interfere destructively, causing c(Ex) to drop off more

rapidly than b(Ex) and increasing the ratio b(Ex)/c(Ex).

The induced pseudoscalar matrix element may be estimated by applying the partially con-

served axial current hypothesis, which indicates

h Ex
4M2

m2π
c Ex (6.11)

The induced pseudoscalar appears only in the last term of 6.2 which is suppressed by a factor

m2e/M2. The induced pseudoscalar contribution to the β and neutrino energy spectra is thus of

order m2e/m2π, and is ignored.

The magnitude of recoil order effects on the 8B neutrino spectrum determined by the present

treatment is compared to the previous treatment [105] in Fig. 6.5.
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Chapter 7

The 8B Neutrino and Positron Spectra

The techniques of Chapter 6 were used to create 8B neutrino and positron spectra based on

the strength function inferred from the α particle measurement. In addition, radiative effects were

accounted for. Radiative corrections to nuclear β decay were first explicitly formulated in [109],

and are exact to O(α), where α is the electromagnetic fine structure constant. Further corrections,

dependent on the structure of the nucleus, occur at the O(α2lnmnE0 ) level. These model dependent

corrections are insignificant when compared to the experimental uncertainties in the neutrino

spectrum and are not included. Radiative corrections for the case where the neutrino is detected

while the positron remains unobserved were calculated explicitly in Ref. [110], and affect the 8B

neutrino spectrum at the level of 1%.

The β decay strength function determined in Chapter 5 was applied, using Eq. 6.2, to deter-

mine the positron and neutrino spectra of 8B.

The neutrino and positron spectra are presented numerically, with uncertainties, in Appendix

A. The neutrino spectrum is compared graphically to the neutrino spectrum of Ortiz et al. [49] in

Fig. 7.1. Only uncertainties resulting from the alpha spectrum measurement are indicated in the

figure. Fig. 7.1 is slightly different from the analogous figure in our previous publication [50] due

to the improved treatment of recoil order effects.
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Figure 7.1. (Top panel) The normalized neutrino energy spectrum deduced from this measure-
ment. (Bottom panel) The dashed lines represent the ratio between the neutrino spectrum rec-
ommended by Ortiz et al., and the 1σ experimental uncertainties, [49] to the spectrum deduced
in this work. The black band represents the 1σ experimental uncertainties of the spectrum
spectrum deduced here. The uncertainties shown are the result of propagating the experimental
uncertainties in the measured α spectrum to the neutrino spectrum. Uncertainties from recoil
order effects are not included. The Ortiz et al. spectrum was smoothed to account for binning
effects.
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Appendix A

Numerical Tables of Results

This appendix contains the primary results of this work in numerical form. These results
are actively maintained online [111] in computer-readable format, and originally appeared as
supplementary material to a previous publication by the author [87]. The following three tables
give the 8B β-decay strength function, the 8B neutrino spectrum, and the 8B positron spectrum
deduced in this work.

Table A.1: The 8B β decay strength function, as determined by
fitting the experimental α spectrum to Eq. 3.14. The strength
function is normalized to 1000 when integrated with respect to
MeV. Note that the energy spacing of data points varies to allow
a more detailed description of the strength function near the peak.
Here P(Ex)=dN/dEx is the probability that a given excitation en-
ergy range in 8Be is populated by 8B β decay.

Ex P(Ex) ΔP(Ex) Ex P(Ex) ΔP(Ex) Ex P(Ex) ΔP(Ex)
0.00 0.00 0.00 2.92 474.95 1.56 5.40 77.98 0.42
0.10 0.00 0.00 2.94 475.32 1.23 5.50 73.98 0.39
0.20 0.00 0.00 2.96 474.90 0.92 5.60 70.27 0.37
0.30 0.02 0.00 2.98 473.71 0.65 5.70 66.81 0.35
0.40 0.08 0.00 3.00 471.81 0.46 5.80 63.59 0.33
0.50 0.21 0.01 3.02 469.23 0.44 5.90 60.57 0.32
0.60 0.44 0.01 3.04 466.03 0.58 6.00 57.74 0.30
0.70 0.83 0.02 3.06 462.24 0.78 6.20 52.59 0.28
0.80 1.44 0.03 3.08 457.94 0.99 6.40 48.01 0.26
0.90 2.35 0.05 3.10 453.16 1.20 6.60 43.91 0.24
1.00 3.64 0.07 3.12 447.95 1.39 6.80 40.22 0.22
1.10 5.43 0.10 3.14 442.38 1.56 7.00 36.89 0.21
1.20 7.88 0.14 3.16 436.48 1.72 7.20 33.86 0.20
1.30 11.16 0.20 3.18 430.31 1.86 7.40 31.09 0.19
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Table A.1 – continued from previous page
Ex P(Ex) ΔP(Ex) Ex P(Ex) ΔP(Ex) Ex P(Ex) ΔP(Ex)
1.40 15.51 0.28 3.20 423.91 1.98 7.60 28.57 0.18
1.50 21.24 0.39 3.22 417.32 2.09 7.80 26.25 0.17
1.55 24.75 0.45 3.24 410.58 2.18 8.00 24.11 0.16
1.60 28.76 0.53 3.26 403.72 2.25 8.20 22.15 0.15
1.65 33.35 0.62 3.28 396.78 2.32 8.40 20.33 0.15
1.70 38.58 0.72 3.30 389.78 2.37 8.60 18.65 0.14
1.75 44.56 0.84 3.32 382.76 2.41 8.80 17.10 0.14
1.80 51.38 0.97 3.34 375.74 2.43 9.00 15.67 0.13
1.85 59.15 1.13 3.36 368.74 2.45 9.20 14.33 0.12
1.90 67.99 1.31 3.38 361.78 2.46 9.40 13.10 0.12
1.95 78.05 1.52 3.40 354.87 2.46 9.60 11.96 0.11
2.00 89.46 1.76 3.42 348.03 2.46 9.80 10.90 0.11
2.05 102.40 2.02 3.44 341.27 2.45 10.00 9.91 0.10
2.10 117.00 2.32 3.46 334.61 2.43 10.20 9.01 0.10
2.15 133.44 2.66 3.48 328.05 2.41 10.40 8.17 0.09
2.20 151.84 3.02 3.50 321.60 2.39 10.60 7.39 0.09
2.25 172.32 3.42 3.52 315.26 2.36 10.80 6.67 0.08
2.30 194.92 3.83 3.54 309.04 2.33 11.00 6.01 0.08
2.32 204.54 3.99 3.56 302.94 2.30 11.20 5.40 0.08
2.34 214.50 4.16 3.58 296.97 2.26 11.40 4.84 0.07
2.36 224.77 4.32 3.60 291.13 2.23 11.60 4.33 0.07
2.38 235.34 4.48 3.62 285.42 2.19 11.80 3.86 0.06
2.40 246.20 4.63 3.64 279.83 2.15 12.00 3.43 0.06
2.42 257.32 4.78 3.66 274.38 2.11 12.20 3.03 0.05
2.44 268.68 4.92 3.68 269.06 2.07 12.40 2.67 0.05
2.46 280.23 5.04 3.70 263.86 2.03 12.60 2.35 0.05
2.48 291.95 5.15 3.72 258.79 1.99 12.80 2.05 0.04
2.50 303.78 5.25 3.74 253.84 1.95 13.00 1.79 0.04
2.52 315.69 5.32 3.76 249.02 1.91 13.20 1.55 0.04
2.54 327.62 5.38 3.78 244.32 1.86 13.40 1.33 0.03
2.56 339.51 5.41 3.80 239.74 1.82 13.60 1.14 0.03
2.58 351.30 5.42 3.82 235.28 1.79 13.80 0.97 0.03
2.60 362.92 5.39 3.84 230.93 1.75 14.00 0.82 0.02
2.62 374.31 5.34 3.90 218.53 1.63 14.20 0.68 0.02
2.64 385.39 5.26 4.00 199.91 1.46 14.40 0.57 0.02
2.66 396.10 5.15 4.10 183.53 1.30 14.60 0.47 0.02
2.68 406.35 5.01 4.20 169.10 1.17 14.80 0.38 0.02
2.70 416.10 4.84 4.30 156.34 1.05 15.00 0.30 0.01
2.72 425.26 4.63 4.40 145.01 0.94 15.20 0.24 0.01
2.74 433.78 4.40 4.50 134.90 0.86 15.40 0.18 0.01
2.76 441.60 4.15 4.60 125.85 0.78 15.60 0.14 0.01
2.78 448.67 3.87 4.70 117.71 0.71 15.80 0.10 0.01
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Table A.1 – continued from previous page
Ex P(Ex) ΔP(Ex) Ex P(Ex) ΔP(Ex) Ex P(Ex) ΔP(Ex)
2.80 454.96 3.57 4.80 110.36 0.65 16.00 0.08 0.01
2.82 460.42 3.25 4.90 103.69 0.60 16.20 0.06 0.00
2.84 465.04 2.92 5.00 97.62 0.55 16.40 0.04 0.00
2.86 468.81 2.58 5.10 92.07 0.51 16.60 0.10 0.01
2.88 471.71 2.24 5.20 86.99 0.48 16.80 0.00 0.00
2.90 473.75 1.90 5.30 82.31 0.45

Table A.2: The neutrino spectrum of 8B and its uncertainties. Here
P(Eν)=dN/dEν is the probability of a neutrino being emitted in a
given energy range. The spectrum is normalized to 1000 when
integrated in terms of MeV.

Eν P(Eν) ΔP(Eν) Eν P(Eν) ΔP(Eν) Eν P(Eν) ΔP(Eν)
0.10 0.21 0.02 5.30 123.75 0.20 10.50 65.75 -0.26
0.20 0.76 0.04 5.40 124.95 0.19 10.60 63.21 -0.26
0.30 1.51 0.01 5.50 126.04 0.18 10.70 60.67 -0.26
0.40 2.51 0.02 5.60 127.03 0.17 10.80 58.13 -0.26
0.50 3.76 0.03 5.70 127.91 0.16 10.90 55.61 -0.26
0.60 5.24 0.04 5.80 128.68 0.15 11.00 53.10 -0.25
0.70 6.91 0.05 5.90 129.35 0.14 11.10 50.60 -0.25
0.80 8.77 0.06 6.00 129.91 0.12 11.20 48.13 -0.25
0.90 10.80 0.08 6.10 130.37 0.11 11.30 45.69 -0.24
1.00 12.98 0.09 6.20 130.72 0.10 11.40 43.27 -0.24
1.10 15.29 0.10 6.30 130.96 0.09 11.50 40.89 -0.23
1.20 17.74 0.12 6.40 131.10 0.07 11.60 38.54 -0.23
1.30 20.29 0.13 6.50 131.13 0.06 11.70 36.24 -0.22
1.40 22.95 0.14 6.60 131.06 0.04 11.80 33.98 -0.22
1.50 25.70 0.16 6.70 130.89 0.02 11.90 31.77 -0.21
1.60 28.53 0.17 6.80 130.61 0.01 12.00 29.62 -0.20
1.70 31.43 0.18 6.90 130.23 -0.01 12.10 27.51 -0.19
1.80 34.39 0.20 7.00 129.75 -0.03 12.20 25.47 -0.19
1.90 37.40 0.21 7.10 129.17 -0.04 12.30 23.49 -0.18
2.00 40.45 0.22 7.20 128.50 -0.05 12.40 21.58 -0.17
2.10 43.53 0.23 7.30 127.72 -0.06 12.50 19.74 -0.17
2.20 46.64 0.24 7.40 126.86 -0.08 12.60 17.96 -0.16
2.30 49.77 0.25 7.50 125.89 -0.09 12.70 16.27 -0.15
2.40 52.90 0.26 7.60 124.84 -0.10 12.80 14.65 -0.14
2.50 56.04 0.27 7.70 123.70 -0.11 12.90 13.11 -0.13
2.60 59.17 0.27 7.80 122.47 -0.12 13.00 11.65 -0.12
2.70 62.30 0.28 7.90 121.16 -0.13 13.10 10.29 -0.12
2.80 65.40 0.28 8.00 119.76 -0.14 13.20 9.01 -0.11
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Table A.2 – continued from previous page
Eν P(Eν) ΔP(Eν) Eν P(Eν) ΔP(Eν) Eν P(Eν) ΔP(Eν)
2.90 68.48 0.29 8.10 118.28 -0.15 13.30 7.81 -0.10
3.00 71.53 0.29 8.20 116.72 -0.16 13.40 6.71 -0.09
3.10 74.55 0.30 8.30 115.09 -0.17 13.50 5.70 -0.08
3.20 77.53 0.30 8.40 113.38 -0.17 13.60 4.79 -0.07
3.30 80.46 0.30 8.50 111.60 -0.19 13.70 3.96 -0.06
3.40 83.34 0.30 8.60 109.75 -0.19 13.80 3.24 -0.05
3.50 86.16 0.30 8.70 107.84 -0.20 13.90 2.60 -0.05
3.60 88.93 0.30 8.80 105.86 -0.21 14.00 2.06 -0.04
3.70 91.64 0.30 8.90 103.83 -0.22 14.10 1.60 -0.03
3.80 94.27 0.30 9.00 101.73 -0.22 14.20 1.23 -0.02
3.90 96.84 0.30 9.10 99.59 -0.23 14.30 0.93 -0.02
4.00 99.33 0.29 9.20 97.39 -0.23 14.40 0.69 -0.01
4.10 101.75 0.29 9.30 95.15 -0.24 14.50 0.51 -0.01
4.20 104.08 0.28 9.40 92.86 -0.24 14.60 0.38 -0.01
4.30 106.33 0.28 9.50 90.53 -0.25 14.70 0.27 -0.01
4.40 108.50 0.27 9.60 88.16 -0.25 14.80 0.20 -0.00
4.50 110.57 0.27 9.70 85.76 -0.25 14.90 0.14 -0.00
4.60 112.56 0.26 9.80 83.33 -0.26 15.00 0.10 -0.00
4.70 114.45 0.25 9.90 80.87 -0.26 15.10 0.07 -0.00
4.80 116.25 0.24 10.00 78.39 -0.26 15.20 0.05 -0.00
4.90 117.95 0.24 10.10 75.89 -0.26 15.30 0.03 -0.00
5.00 119.55 0.23 10.20 73.37 -0.26 15.40 0.02 -0.00
5.10 121.06 0.22 10.30 70.84 -0.26 15.50 0.01 -0.00
5.20 122.46 0.21 10.40 68.30 -0.26

Table A.3: The positron spectrum of 8B and its uncertainties. Here
P(Eβ)=dN/dEβ is the probability of a positron being emitted in a
given energy range, where Eβ represents the total energy of the
positron. The spectrum is normalized to 1000 when integrated in
terms of MeV.

Eβ P(Eβ) ΔP(Eβ) Eβ P(Eβ) ΔP(Eβ) Eβ P(Eβ) ΔP(Eβ)
0.52 0.64 0.01 5.72 131.30 0.46 10.92 50.72 0.19
0.62 3.61 0.05 5.82 131.81 0.45 11.02 48.32 0.19
0.72 5.89 0.06 5.92 132.22 0.45 11.12 45.95 0.18
0.82 8.19 0.08 6.02 132.51 0.44 11.22 43.62 0.18
0.92 10.64 0.10 6.12 132.69 0.43 11.32 41.32 0.17
1.02 13.22 0.12 6.22 132.76 0.42 11.42 39.05 0.17
1.12 15.92 0.14 6.32 132.72 0.41 11.52 36.83 0.17
1.22 18.74 0.16 6.42 132.57 0.41 11.62 34.66 0.16
1.32 21.65 0.17 6.52 132.32 0.40 11.72 32.53 0.16
1.42 24.67 0.19 6.62 131.96 0.39 11.82 30.45 0.15
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Table A.3 – continued from previous page
Eβ P(Eβ) ΔP(Eβ) Eβ P(Eβ) ΔP(Eβ) Eβ P(Eβ) ΔP(Eβ)
1.52 27.76 0.21 6.72 131.49 0.38 11.92 28.43 0.15
1.62 30.92 0.23 6.82 130.93 0.37 12.02 26.46 0.14
1.72 34.15 0.25 6.92 130.26 0.36 12.12 24.56 0.14
1.82 37.42 0.27 7.02 129.49 0.35 12.22 22.71 0.14
1.92 40.74 0.29 7.12 128.63 0.34 12.32 20.93 0.13
2.02 44.08 0.31 7.22 127.67 0.34 12.42 19.22 0.12
2.12 47.44 0.32 7.32 126.61 0.33 12.52 17.57 0.12
2.22 50.81 0.34 7.42 125.47 0.32 12.62 16.00 0.11
2.32 54.19 0.35 7.52 124.24 0.31 12.72 14.50 0.11
2.42 57.56 0.37 7.62 122.92 0.30 12.82 13.07 0.10
2.52 60.92 0.38 7.72 121.52 0.30 12.92 11.73 0.09
2.62 64.26 0.40 7.82 120.04 0.29 13.02 10.45 0.09
2.72 67.57 0.41 7.92 118.48 0.28 13.12 9.26 0.08
2.82 70.85 0.42 8.02 116.84 0.28 13.22 8.15 0.08
2.92 74.09 0.44 8.12 115.14 0.27 13.32 7.12 0.07
3.02 77.28 0.45 8.22 113.36 0.26 13.42 6.17 0.06
3.12 80.41 0.46 8.32 111.51 0.26 13.52 5.30 0.06
3.22 83.49 0.47 8.42 109.60 0.25 13.62 4.51 0.05
3.32 86.51 0.47 8.52 107.63 0.25 13.72 3.79 0.05
3.42 89.46 0.48 8.62 105.60 0.25 13.82 3.16 0.04
3.52 92.33 0.49 8.72 103.52 0.24 13.92 2.60 0.04
3.62 95.13 0.49 8.82 101.39 0.24 14.02 2.11 0.03
3.72 97.85 0.50 8.92 99.20 0.23 14.12 1.69 0.03
3.82 100.49 0.50 9.02 96.98 0.23 14.22 1.34 0.02
3.92 103.04 0.51 9.12 94.71 0.23 14.32 1.04 0.02
4.02 105.49 0.51 9.22 92.40 0.22 14.42 0.80 0.01
4.12 107.85 0.51 9.32 90.06 0.22 14.52 0.61 0.01
4.22 110.12 0.51 9.42 87.68 0.22 14.62 0.45 0.01
4.32 112.29 0.51 9.52 85.28 0.22 14.72 0.33 0.01
4.42 114.35 0.51 9.62 82.86 0.22 14.82 0.25 0.00
4.52 116.31 0.51 9.72 80.41 0.21 14.92 0.18 0.00
4.62 118.17 0.51 9.82 77.95 0.21 15.02 0.13 0.00
4.72 119.92 0.51 9.92 75.47 0.21 15.12 0.09 0.00
4.82 121.56 0.51 10.02 72.98 0.21 15.22 0.06 0.00
4.92 123.09 0.50 10.12 70.49 0.21 15.32 0.04 0.00
5.02 124.51 0.50 10.22 67.99 0.20 15.42 0.03 0.00
5.12 125.82 0.50 10.32 65.49 0.20 15.52 0.02 0.00
5.22 127.01 0.49 10.42 63.00 0.20 15.62 0.01 0.00
5.32 128.10 0.49 10.52 60.51 0.20 15.72 0.01 0.00
5.42 129.07 0.48 10.62 58.04 0.20 15.82 0.01 0.00
5.52 129.93 0.47 10.72 55.58 0.19 15.92 0.00 0.00
5.62 130.67 0.47 10.82 53.14 0.19
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