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Parameter-free effective field theory calculation for the solar proton-fusion and hep processes
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Spurred by the recent complete determination of the weak currents in two-nucleon systems up toO(Q3) in
heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the thresholdS factors for
the solarpp ~proton-fusion! and hep processes in an effective field theory~EFT! that combinesthe merits of
the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is
that one can correlate in a unified formalism the weak-current matrix elements of two-, three-, and four-nucleon
systems. Using the tritiumb-decay rate as an input to fix the only unknown parameter in the theory, we can
evaluate the thresholdS factors with drastically improved precision; the results areSpp(0)53.943(1
60.004)310225 MeV b andShep(0)5(8.661.3)310220 keV b. The dependence of the calculatedS factors
on the momentum cutoff parameterL has been examined for a physically reasonable range ofL. This
dependence is found to be extremely small for thepp process, and to be within acceptable levels for the hep
process, substantiating the consistency of our calculational scheme.

DOI: 10.1103/PhysRevC.67.055206 PACS number~s!: 12.39.Fe, 24.85.1p, 26.20.1f, 26.65.1t
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I. INTRODUCTION

The standard approach to nuclear physics@1# anchored on
wave functions obtained from the Schro¨dinger~or Lippman-
Schwinger! equation with ‘‘realistic’’ phenomenological po
tentials has scored impressive quantitative successes in
scribing systems with two or more nucleons, achieving
some cases accuracy that defies the existing experim
precision. We refer to this approach as SNPA~standard
nuclear physics approach!. The advent of quantum chromo
dynamics~QCD! asthe theory of strong interactions raises
logical question: What is the status of SNPA in the contex
the fundamental theory QCD? Put more bluntly, is SN
~despite its undeniable success! just a model-dependent ap
proach unrelated to the fundamental theory? In our view
is one of the most important issues in nuclear physics tod
In this paper we investigate a possible way to identify SN
as alegitimatecomponent in the general edifice of QCD. W
describe an attempt to find a scheme which includes SNP
an approximation, and which allows us to control and eva
ate correction terms. Such a systematic treatment equip
with error estimation, which is not feasible with SNPA alon
can be profitably studied with the effective field theo
~EFT! of QCD. We study here a formalism which exploi
simultaneously the merit of EFT in classifying interactio
vertices unambiguously, and the high accuracy of nuc
wave functions available in SNPA. We demonstrate that
formalism enables us to make parameter-freepredictions
with accompanying error estimates for electroweak tran
0556-2813/2003/67~5!/055206~21!/$20.00 67 0552
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tions in light nuclei. For a variant approach towards the E
description of nuclear matter and heavy nuclei, we refer
Refs.@2–5#.

To be concrete, we shall consider the following two so
nuclear fusion processes

pp: p1p→d1e11ne , ~1!

hep: p1 3He→ 4He1e11ne . ~2!

We stress that in our EFT approach these processes
volving different numbers of nucleons can be treated on
same footing. A concise account of the present study w
previously given in Ref.@6# for the pp process and in Ref
@7# for the hep process.

The reactions~1! and~2! figure importantly in astrophys
ics and particle physics; they have much bearing upon iss
of great current interest such as, for example, the solar n
trino problem and nonstandard physics in the neutrino sec
Since the thermal energy of the interior of the Sun is of
order of keV, and since no experimental data is available
such low-energy regimes, one must rely on theory for de
mining the astrophysicalS factors of the solar nuclear pro
cesses. Here we concentrate on the thresholdS factor S(0)
for the reactions~1! and~2!. The necessity of a very accura
estimate of the thresholdS factor for thepp processSpp(0)
comes from the fact thatpp fusion essentially governs th
solar burning rate and the vast majority of the solar neutri
come from this reaction. Meanwhile, the hep process is
©2003 The American Physical Society06-1
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portant in a different context. The hep reaction can prod
the highest-energy solar neutrinos with their spectrum
tending beyond the maximum energy of the8B neutrinos.
Therefore, even though the flux of the hep neutrinos is sm
there can be, at some level, a significant distortion of
higher end of the8B neutrino spectrum due to the hep ne
trinos. This change can influence the interpretation of
results of a recent Super-Kamiokande experiment that h
generated many controversies related to neutrino oscillat
@8,9#. To address these issues quantitatively, a reliable e
mate ofShep(0) is indispensable.

The primary amplitudes for both thepp and hep pro-
cesses are of the Gamow-Teller~GT! type (DJ51, no parity
change!. Since the single-particle GT operator is well know
at low energy, a major theoretical task is the accurate e
mation of the meson-exchange current~MEC! contributions.
The nature of a specific challenge involved here can be
cidated in terms of thechiral filter picture. If the MEC in a
given transition receives an unsuppressed contribution f
a one-soft-pion exchange diagram, then we can take ad
tage of the fact that the soft-pion-exchange MEC is uniqu
dictated by chiral symmetry@10,11# and that there is a
mechanism~called the chiral filter mechanism! that sup-
presses higher chiral-order terms@12,13#. We refer to a tran-
sition amplitude to which the chiral filter mechanism is a
plicable ~not applicable! as a chiral-protected~chiral-
unprotected! case. It is known that the space component
the vector current and the time component of the axial c
rent are chiral protected, whereas the time component of
vector current and the space component of the axial cur
are chiral unprotected~see below!. This implies among othe
things that the isovectorM1 and axial-charge transitions a
chiral protected@14,15#, but that the GT transition is chira
unprotected. This feature renders the estimation of the
amplitude a more subtle problem; the physics behind i
that MEC here receives significant short-ranged contri
tions the strength of which cannot be determined by ch
symmetry alone.

The difficulty becomes particularly pronounced for t
hep process for the following reasons. First, the one-b
~1B! GT matrix element for the hep process is strongly s
pressed due to the symmetries of the initial and final s
wave functions. Secondly, as pointed out in Refs.@16# ~re-
ferred to as ‘‘CRSW91’’! and @17# ~referred to as
‘‘SWPC92’’!, the main two-body~2B! corrections to the
‘‘leading’’ 1B GT term tend to come with the opposite sig
causing a large cancellation. A recent detailed SNPA ca
lation by Marcucciet al. @18#, hereafter referred to as MS
VKRB, has reconfirmed this substantial cancellation betw
the 1B and 2B contributions. The 2B terms therefore nee
be calculated with great precision, which is a highly no
trivial task. Indeed, an accurate evaluation of the hep rate
been a long-standing challenge in nuclear physics@19#. The
degree of this difficulty may be appreciated by noting th
theoretical estimates of the hepS factor have varied by or-
ders of magnitude in the literature.

As mentioned, for accurate estimation of the GT transit
amplitude, it is imperative to have good theoretical contro
short-distance physics. A first-principle approach based
05520
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EFT should provide a valuable insight in this regard. He
we build on a formalism of this kind developed in Ref
@13,20#. In this formalism,@21#, electroweak transition op
erators are systematically constructed using heavy-bar
chiral perturbation theory (HBxPT), and the correspondin
nuclear matrix elements are evaluated with the use of w
functions generated by a state-of-the-art SNPA calculat
This is a hybrid approach in that, formally speaking, there
a mismatch between the treatments of transition opera
and wave functions. However, we implement in our form
ism a feature that allows us to reduce the practical con
quences of this mismatch down to sufficiently low levels.
emphasize this feature, we refer to our present approac
EFT*.

The starting point of EFT* is the observation that, to hig
accuracy, the leading-order 1B operators in SNPA and E
(HBxPT) are identical, and that their matrix elements can
reliably estimated with the use of realistic SNPA wave fun
tions for the initial and final nuclear states. Next we note@20#
that 2B transition operators in HBxPT are uniquely given by
irreducible diagrams in Weinberg’s counting scheme@22,23#.
The long-range 2B contributions are in fact identical for bo
SNPA and EFT, as they are strongly constrained by ch
symmetry. It is short-range contributions that introdu
model dependence in SNPA. EFT allows us to write dow
for a given chiral order, the most general set of operators
govern short-distance physics as

Oshort5(
i 51

N

ciOi , ~3!

where Oi is a zero-range operator~which may involve a
derivative operator! and ci is the corresponding low-energ
constant~LEC!; N is a finite number that depends on th
chiral order under consideration. Theci ’s, which should in
principle be derivable from QCD, are in practice determin
by fitting empirical data. Now, a nuclear matrix element
EFT* is obtained by sandwiching the EFT-controlled tran
tion operator between the relevant SNPA wave functio
This means that, if two~or more! observables belonging to
the same nucleus or to neighboring nuclei are sensitive
Oshort, they can be related via EFT*. If the experiment
value of one of those observables is known, the other~s! can
be predicted. Correlating two~or more! observables in this
manner is expected to significantly reduce the practical c
sequences of the afore-mentioned ‘‘mismatch problem.’’ T
basic soundness of this approach has been proven for tn
1p→d1g process@14,24# and several other processes@25#.
We emphasize that EFT*, which takes into account sho
distance physics consistently, should be distinguished fr
naive hybrid models, which lack this feature. Having d
scribed EFT* in rather general terms, we give in the next t
paragraphs more specific aspects pertaining to thepp and
hep processes.

An early HBxPT study of thepp process was made in
Ref. @26# ~hereafter referred to as PKMR98! by four of the
authors. The calculation in PKMR98 was carried out up
next-to-next-to-next-to-leading order~N3LO! in chiral count-
ing ~see below!. At N3LO, two-body MEC begin to contrib-
6-2
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PARAMETER-FREE EFFECTIVE FIELD THEORY . . . PHYSICAL REVIEW C67, 055206 ~2003!
ute, and there appears one unknown parameter in the c
Lagrangian contributing to the MEC. This unknown co

stant, calledd̂R in Ref. @26#, represents the strength of
four-nucleon-axial-current contact interaction. In Ref.@26#,

since no method was known to fix the value ofd̂R, the d̂R

term was simply ignored by invoking a qualitative argume
that the short-range repulsive core would strongly supp
its contribution. Due to uncertainties associated with this
gument, Ref.@26# was unable to corroborate or exclude t
result of the latest SNPA calculation@27#, d2B50.5– 0.8 %,
where d2B is the ratio of the contribution of the two-bod
MEC to that of the one-body current~see below!.

The situation can be greatly improved by using EFT*.
first discussed in Refs.@6,7# and as will be expounded here
the crucial point is that exactly the same combination

counterterms that defines the constantd̂R enters into the
Gamow-Teller~GT! matrix elements that feature inpp fu-
sion, tritium b decay, the hep process,m capture on a deu
teron, andn –d scattering and that the short-range interact

involving the constantd̂R is expected to be ‘‘universal,’’ tha
is, A independent. Therefore, assuming that three- and f
body currents can be ignored~which we will justify a poste-

riori !, if the value ofd̂R can be fixed using one of the abov
processes, we can make a totally parameter-free predic
for the GT matrix elements of the other processes. Inde
the existence of accurate experimental data for the trit
b-decay rateGb

t and the availability of extremely well teste
realistic wave functions for theA53 nuclear systems allow
us to carry out this program. In the present work we de

mine the value ofd̂R from Gb
t and perform parameter-fre

EFT-based calculations ofSpp(0) andShep(0).
As described below, our scheme has a cutoff param

L, which defines the energy/momentum cutoff scale of E
below which reside the chosen explicit degrees of freed
@28#. Obviously, in order for our result to be physically a
ceptable, its cutoff dependence must be under control. In
scheme, for a given value ofL in a physically reasonable

range~to be discussed later!, d̂R is determined to reproduc

Gb
t ; thusd̂R is a function ofL. According to the premise o

EFT, even ifd̂R itself is L dependent, physical observabl
~in our case theS factors! should be independent ofL as
required by renormalization-group invariance. We shall sh
that our results meet this requirement to a satisfactory
gree. The robustness of our calculational results aga
changes inL allows us to make predictions onSpp(0) and
Shep(0) with much higher precision than hitherto achieve
Thus we predictSpp(0)53.943(160.004)310225 MeV b
andShep(0)5(8.661.3)310220 keV b.

The remainder of this article is organized as follows.
Sec. II we briefly explain our formalism; in particular, w
describe the relevant transition operators derived in HBxPT.
The determination ofd̂R is described in Sec. III. Section IV
presents the calculation ofSpp(0), while Sec. V is concerned
with the estimation ofShep(0). Section VI is devoted to dis
cussion and conclusions. We have made the explanatio
05520
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the formalism in the text as brief and focused as possi
relegating most technical details to the Appendixes.

II. FORMALISM

We sketch here the basic elements of our formalism. T
explicit degrees of freedom taken into account in our sche
are the nucleon and the pion, with all other degrees of fr
dom @r and v mesons,D(1232), etc.# integrated out. The
HBxPT Lagrangian can be written as

L5(
l

Ll5L01L11•••, ~4!

with the chiral orderl defined as

l[d1e1
n

2
22, ~5!

whered, e, andn are, respectively, the numbers of deriv
tives ~the pion mass counted as one derivative!, external
fields and nucleon lines belonging to a vertex. Chiral sy
metry requiresl>0. The leading-order Lagrangian is give
by

L05B̄@ iv zD12igASzD#B2
1

2 (
A

CA~B̄GAB!2

1 f p
2 Tr~ iDmiDm!1

f p
2

4
Tr~x1!, ~6!

where B is the nucleon field in HBxPT; gA51.2670
60.0035 is the axial-vector coupling constant@29#, and f p

592.4 MeV is the pion decay constant. Furthermore

DmB5~]m1Gm!B,

Gm5
1

2
@j†, ]mj#2

i

2
j†Rmj2

i

2
jLmj†,

Dm5
1

2
@j†, ]mj#1

i

2
j†Rmj2

i

2
jLmj†,

x15j†xj†1jx†j, ~7!

with

j5AS5expS i
tW•pW

2 f p
D . ~8!

Rm[(ta/2)(V m
a 1A n

a) andLm5(ta/2)(V m
a 2A n

a) denote ex-
ternal gauge fields, andx is proportional to the quark mas
matrix. If we neglect the small isospin-symmetry breakin
then x5mp

2 ~in the absence of external scalar and pseu
scalar fields!. For convenience, we work in the referen
frame in which the four velocityvm and the spin operatorSm

are
6-3
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vm5~1, 0! and Sm5S 0,
s

2 D . ~9!

The NLO Lagrangian~the so-called ‘‘1/m’’ term! in the one-
nucleon sector is given in Ref.@30#, while that in the two-
nucleon sector is given in Refs.@31,32#. With four-fermion
contact terms included, the Lagrangian takes the form

L15B̄H vmvn2gmn

2mN
DmDn14c3iD i zD

1S 2c41
1

2mN
D @Sm, Sn#@ iDm , iDn#

2 i
11c6

mN
@Sm, Sn# f mn

1 J B24id1B̄SDB B̄B

12id2eabcemnldvmDn,aB̄SltbB B̄SdtcB1•••,

~10!

wheremN.939 MeV is the nucleon mass, and

f mn
1 5j~]mLn2]nLm2 i @Lm , Ln#!j†

1j†~]mRn2]nRm2 i @Rm , Rn#!j, ~11!

e012351, and Dm5(ta/2)Dm
a . We have shown here onl

those terms which are directly relevant to our present stu
The dimensionless LECs,ĉ’s and d̂’s, are defined as

c3,45
1

mN
ĉ3,4, d1,25

gA

mNf p
2
d̂1,2. ~12!

We now consider the chiral counting of the electrowe
currents ~see the Appendixes for details!. In the present
scheme it is sufficient to focus on ‘‘irreducible graphs’’
Weinberg’s classification@22#. Irreducible graphs are orga
nized according the chiral indexn given by

n52~A2C!12L1(
i

n i , ~13!

whereA is the number of nucleons involved in the processC
the number of disconnected parts, andL the number of loops;
n i is the chiral indexl, Eq. ~5!, of the i th vertex. One can
show that a diagram characterized by Eq.~13! involves an
nB-body transition operator, wherenB[A2C11. The
physical amplitude is expanded with respect ton. As ex-
plained at length in the Appendix, the leading-order on
body GT operator belongs ton50. Compared with this op-
erator, a Feynman diagram with a chiral indexn is
suppressed by a factor of (Q/Lx)n, where Q is a typical
three-momentum scale or the pion mass, andLx; 1 GeV is
the chiral scale@33#. In our case it is important to take int
account the kinematic suppression of the time componen
the nucleon four-momentum. We note@34#

v zpl;v zpl8;v zkl;
Q2

mN
, ~14!
05520
y.
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wherepl
m (pl8

m) denotes the initial~final! momentum of the
l th nucleon, andkl

m[(pl82pl)
m. Therefore, each appearanc

of v zpl , v zpl8 , or v zkl carries two powers ofQ instead of
one, which implies thatn increases by two units rather tha
one. It is also to be noted that, if we denote byqm5(q0 ,q)
the momentum transferred to the leptonic pair in Eqs.~1!,
~2!, thenq0;uqu;Q2/Lx;O(Q2) rather thanO(Q) as na-
ive counting would suggest. These features turn out to s
plify our calculation considerably.

In this paper, as far as the main calculation is concern
we shall limit ourselves to N3LO; for certain discussions
however, we shall consider operators belonging to N4LO
as well.

We now describe the derivation of one-body~1B! and
two-body ~2B! current operators with due consideration
chiral counting. The current in momentum space is written

Jm~q!5Vm~q!1Am~q!5E dx e2 iq•xJm~x!. ~15!

When necessity arises to distinguish the space and time c
ponents of the currents, we use the notations

Vm5~V0,V! Am5~A0,A!. ~16!

For the clarity of presentation, we first give a summa
chart of the basic chiral counting characteristics of the r
evant currents, and then provide more detailed explanat
in the remainder of this section and in the Appendixes. T
chiral counting of the electroweak currents is summarized
Table I, where the nonvanishing contributions atq50 are
indicated@35#.

We now discuss the entries of this table order by orde
n50. One-bodyA and V0: A gives the Gamow-Teller

~GT! operator, while V0 is responsible for the charg
operator.

n51. One-bodyA0 andV: A0 gives the axial-charge op
erator whileV gives theM1 operator.

n52. Two-body tree current withn i50 vertices, namely,
the soft-pion-exchange current. This is a leading correct
to the one-bodyM1 and axial-charge operators carrying
odd orbital angular momentum.

TABLE I. Contributions from each type of current atq50. The
entry of ‘‘2 ’’ indicates the absence of contribution. ‘‘1B-RC
stands for relativistic corrections to the one-body operators,
‘‘2B-1L’’ for one-loop two-body contributions including counter
term contributions.

Jm LO NLO N2LO N3LO N4LO

A 1B 2 1B-RC 2B 1B-RC, 2B-1L, and 3B
A0 2 1B 2B 1B-RC 1B-RC, 2B-1L
V 2 1B 2B 1B-RC 1B-RC, 2B-1L
V0 1B 2 2 2B 1B-RC, 2B-1L and 3B
6-4
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n53. Two-body tree currents with( in i51, which corre-
spond to the hard-pion current, considered in CRSW91@16#
and SWPC92@17#. These are leading corrections to th
GT and V0 operators carrying an even orbital angu
momentum.

n54. All the components of the electroweak current
ceive contributions of this order. They consist of two-bo
one-loop corrections as well as leading-order~tree! three-
body corrections. Among the three-body currents, howe
there are no six-fermion contact terms proportional
(N̄N)3, because there is no derivative at the vertex a
hence no external field.

It is noteworthy that the counting rule forV is the same as
for A0, and the counting rules forV0 and A are the same
The behavior ofV andA0 summarized in Table I represen
the chiral filter mechanism@12#, andV andA0 are referred to
as chiral-filter-protected currents. By contrast,V0 andA be-
long to chiral-filter-unprotected currents.

We now discuss the explicit expressions for the relev
currents. For the 1B currents, for both the vector and a
cases, one can simply carry over the expressions obtaine
MSVKRB. Up to N3LO, the 1B currents in coordinate rep
resentation are given as

Vl
05t l

2e2 iq•rlF11 iq•sl3pl

2mV21

4mN
2 G ,

Vl5t l
2e2 iq•rlF p̄l

mN
S 12

p̄l
2

2mN
2 D

1 i
mV

2mN
q3sl1 i sl3p̄lq0

2mV21

4mN
2 G ,

Al
052gAt l

2e2 iq•rlFsl•p̄l

mN
S 12

p̄l
2

2mN
2 D G ,

Al52gAt l
2e2 iq•rlFsl1

2~ p̄lsl•p̄l2sl p̄l
2!1 iq3p̄l

4mN
2 G ,

~17!

where mV.4.70 is the isovector anomalous magnetic m

ment of the nucleon andpl52 i¹l and p̄l52( i /2)(¹W l2¹Q l)
act on the wave functions. Equation~17! gives the isospin-
lowering currents

Jm[Jm
a512 iJm

a52 ~18!

andt l
2[ 1

2 (t l
x2 i t l

y).
We next discuss the 2B currents. The expressions for

V2B and A2B
0 operators can be found in Refs.@20,36#. The

V2B
0 operator does not appear up to the order under con

eration. The derivation of the 2B axial currentA2B in HBxPT
is described in Appendix A. In momentum space,A2B reads
05520
-

r,

d

t
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A2B5 (
l ,m

A

Alm ,

A125
gA

2mNf p
2

1

mp
2 1k2 F2

i

2
t3

2p~s12s2!•k

14ĉ3kk•~t1
2s11t2

2s2!1S ĉ41
1

4D t3
2k3@s33k#G

1
gA

mNf p
2 @2d̂1~t1

2s11t2
2s2!1d̂2t3

a s3#, ~19!

with k[(k22k1)/2, kl[pl82pl , p[(p̄12p̄2)/2, p̄l[(pl

1pl
8)/2, t l

2[ 1
2 (t l

x2 i t l
y), t3

a [(t13t2)x2 i (t13t2)y, and

similarly for s3 ; ĉ’s and d̂’s are the LECs explained in
PKMR98. The values ofĉ’s in Eq. ~19! have been deter
mined fromp-N data@37#: ĉ3523.6660.08 andĉ452.11
60.08. The two constantsd̂1 and d̂2 remain to be fixed but
it turns out~see Appendix C 2! that, thanks to Fermi-Dirac
statistics, only one combination of them

d̂R[d̂112d̂21
1

3
ĉ31

2

3
ĉ41

1

6
~20!

is relevant in the present context@38#.
It should be noted that the two-body currents given in E

~19! are valid only up to a certain cutoffL. This implies that,
when we go to coordinate space, the currents must be r
lated. This is a key point in our approach. Specifically,
performing Fourier transformation to derive ther-space rep-
resentation of a transition operator, we use the Gaus
regularization~see Appendix C!. This is, to good accuracy
equivalent to replacing the delta and Yukawa functions w
the corresponding regulated functions

dL
(3)~r ![E d3k

~2p!3
SL

2 ~k2!eik•r,

y0L
p ~r ![E d3k

~2p!3
SL

2 ~k2!eik•r
1

k21mp
2

,

y1L
p ~r ![2r

]

]r
y0L

p ~r !,

y2L
p ~r ![

1

mp
2

r
]

]r

1

r

]

]r
y0L

p ~r !, ~21!

where the cutoff functionSL(k2) is defined as

SL~k2!5expS 2
k2

2L2D . ~22!

The resulting r-space expressions of the currents in t
center-of-mass~c.m.! frame that are of N3LO are
6-5
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V12~r!52
gA

2mp
2

12f p
2

t3
2r@s1•s2y0L

p ~r !1S12y2L
p ~r !#

2 i
gA

2

8 f p
2
q3FO3y0L

p ~r !1ST32
2

3
O3D y1L

p ~r !G ,
A12

0 ~r!52
gA

4 f p
2

t3
2Fs1• r̂

r
1

i

2
q• r̂s2• r̂Gy1L

p ~r !,

A12~r!52
gAmp

2

2mNf p
2 F Fc3̂

3
~O11O2!1

2

3 S ĉ41
1

4D
3O3Gy0L

p ~r !1F ĉ3~T11T2!2S ĉ41
1

4D
3T3Gy2L

p ~r !G1
gA

2mNf p
2 F1

2
t3

2~ p̄1s2• r̂

1p̄2s1• r̂!
y1L

p ~r !

r
1dL~r !d̂RO3G , ~23!

where r5r12r2 , S1253s1• r̂s2• r̂2s1•s2, and O(
k

[t(
2s(

k , O( [ t(
2s( , T( [ r̂ r̂•O(2 1

3O( , (5

6, 3,t(
2 [ (t1(t2)2 [ (t1(t2)x 2 i (t1(t2)y, and s(

[(s1(s2). We emphasize again thatA12 in Eq. ~23! con-
tains only one unknown LECd̂R that needs to be fixed usin
an empirical input. As mentioned in Sec. I, we choose her
determined̂R using the experimental value ofGb

t .

III. DETERMINATION OF d̂R

The cutoff parameterL characterizes the energy
momentum scale of our EFT. A reasonable range ofL may
be inferred as follows. According to the generaltenet of
xPT, L larger thanLx.4p f p.mN has no physical mean
ing. Meanwhile, since the pion is an explicit degree of fre
dom in our scheme,L should be much larger than the pio
mass to ascertain that genuine low-energy contributions
properly included. These considerations lead us to adopL
5500–800 MeV as a natural range.

In the present work we use as representative valueL
5500, 600, and 800 MeV, and for each of these values oL

we adjustd̂R to reproduce the experimental value ofGb
t .

With the use of the value ofd̂R so determined, we evaluat
the pp and the hep amplitudes@39#.

To determined̂R from Gb
t , we calculateGb

t from the ma-
trix elements of the current operators evaluated for accu
A53 nuclear wave functions. We employ here the wa
functions obtained in Refs.@18,40# using the correlated
hyperspherical-harmonics~CHH! method@41,42#. It is obvi-
ously important to maintain consistency between the tre
ments of theA52, 3, and 4 systems. We shall use here
same Argonnev18 ~AV18! potential@43# for all these nuclei.
For the A>3 systems we add the Urbana-IX~AV18/UIX !
05520
to

-

re

te
e
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e

three-nucleon potential@44#. Furthermore, we apply the sam
regularization method to all the systems in order to con
short-range physics in a consistent manner.

The values ofd̂R determined in this manner are

d̂R51.0060.07 for L5500 MeV,

d̂R51.7860.08 for L5600 MeV, ~24!

d̂R53.1060.10 for L5800 MeV,

where the errors correspond to the experimental uncerta
in Gb

t . Onced̂R has been determined, we are in a position
make a parameter-free calculation of the transition am
tudes forpp and hep, which will be described in the ne
two sections.

IV. THE pp PROCESS

It is convenient to decompose the matrix element of
GT operator into one-body and two-body parts

M5M1B1M2B . ~25!

We discuss them separately. In PKMR98, an extens
analysis was made of the leading-order~LO! one-body ma-
trix elementM1B

C1N , with a focus on the connection betwee
EFT and the effective range expansion. The results obta
with the AV18 potential@43# were

M1B
C1N5~170.02%70.07%70.02%!34.859 fm,

~26!

where the errors are due to uncertainties in the scatte
length and effective ranges. The ‘‘full’’ one-body contribu
tion in PKMR98 includes the vacuum-polarization~VP! and
two-photon-exchange~C2! contributions. In PKMR98, how-
ever, the one-body current due to the 1/mN

2 term in Eq.~A3!
was ignored. Although this term is required for formal co
sistency, its numerical value turns out to be quite sm

M
1B
1/mN

2

520.006 fm. In terms of theLpp defined in Refs.
@45,46# we have

Lpp
2 [

uaCu2g3

2
AS

2M1B
2 56.91 ~27!

for the central value, whereaC is the pp 1S0 scattering
length, andg andAS are the wave number andS-wave nor-
malization constant pertinent to the deuteron, respectiv
This should be compared with 6.93 obtained in Ref.@26#.

The properly regularized two-body GT matrix elemen
for the pp process read
6-6
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M2B5
2

mNf p
2 E0

`

dr

3H mp
2

3 S ĉ312ĉ41
1

2D y0L
p ~r !ud~r !upp~r !

2A2
mp

2

3 S ĉ32 ĉ42
1

4D y2L
p ~r !wd~r !upp~r !

1
y1L

p ~r !

12r F @ud~r !2A2wd~r !#upp8 ~r !

2@ud8~r !2A2wd8~r !#upp~r !1
3A2

r
wd~r !upp~r !G

2d̂RdL
(3)~r !ud~r !upp~r !J , ~28!

whereud(r ) andwd(r ) are theS- andD-wave components
of the deuteron wave function, andupp(r ) is the 1S0 pp
scattering wave~at zero relative energy!. The results are
given for the three representative values ofL in Table II; for
convenience, the values ofd̂R given in Eq. ~24! are also
listed. The table indicates that, although the value ofd̂R is
sensitive toL, M2B is amazingly stable against the variatio
of L within the stated range. In view of this high stabilit
we believe that we are on the conservative side in adop
the estimateM2B5(0.039–0.044) fm. Since the leadin
single-particle term is independent ofL, the total amplitude
M5M1B1M2B is L independent to the same degree
M2B . The L independence of the physical quantityM,
which is in conformity with the tenet of EFT, is a crucia
feature of the result in our present study. The relat
strength of the two-body contribution as compared with
one-body contribution is

d2B[
M2B

M1B
5~0.8660.05!%. ~29!

We remark that the central value ofd2B here is considerably
smaller than the corresponding valued2B54% in PKMR98.
Furthermore, the uncertainty of60.05% in Eq.~29! is dras-
tically smaller than the corresponding figure64% in
PKMR98.

We now turn to the thresholdS factor Spp(0). Adopting
the valueGV5(1.1493960.00065)31025GeV22 @47#, we
obtain

TABLE II. The strengthd̂R of the contact term and the two
body GT matrix elementM2B for the pp process calculated fo
representative values ofL.

L ~MeV! d̂R M2B ~fm!

500 1.0060.07 0.07620.035d̂R.0.04160.002
600 1.7860.08 0.09720.031d̂R.0.04260.002
800 3.9060.10 0.12920.022d̂R.0.04260.002
05520
g

s

e
e

Spp~0!53.943S 11d2B

1.01 D 2S gA

1.2670D
2S Lpp

2

6.91D
2

53.943~160.001560.00106«! ~30!

in units of 10225 MeV b. Here the first error is due to unce
tainties in the input parameters in the one-body part, wh
the second error represents the uncertainties in the two-b
part;«('0.001) denotes possible uncertainties due to hig
chiral order contributions~see below!. To make a formally
rigorous assessment of«, we must evaluate loop correction
and higher-order counter terms. Although an N4LO calcula-
tion would not involve any new unknown parameters, it is
nontrivial task. Furthermore, loop corrections necessitat
more elaborate regularization scheme since the naive cu
regularization used here violates chiral symmetry at loop
ders.~This difficulty, however, is not insurmountable.! These
formal problems set aside, it seems reasonable to assess« as
follows. We first recall that both tritiumb decay and solar
pp fusion are dominated by the one-body GT matrix e
ments, the evaluation of which is extremely well controll
from the SNPA as well as EFT points of view. Therefore, t
precision of our calculation is governed by the reliability
estimation of small corrections to the dominant one-body
contribution. Now, we have seen that the results of
present N3LO calculation nicely fit into the picture expecte
from the general premise of EFT:~i! the N3LO contributions
are indeed much smaller than the leading order term.~ii ! The
physical transition amplitudeM does not depend on the cu
off parameter. Although these features do not constitut
formal proof of the convergence of the chiral expansion u
here, it isextremely unlikelythat higher order contributions
be so large as to completely upset the physically reason
behavior observed in the N3LO calculation. It should there-
fore be safe to assign to« an uncertainty comparable to th
error estimate for the two-body part in Eq.~30!; viz., «
'0.1 %. In this connection we remark that an axial thre
body MEC contribution to the3H GT matrix element was
calculated explicitly in SNPA@18# and found to be negligible
relative to the leading two-body mechanisms. This featur
consistent with the above argument since, in the contex
EFT, the three-body MEC represents a higher-order ef
subsumed in ‘‘« ’’ in Eq. ~30!.

Apart from the noticeable numerical differences betwe
the present work and PKMR98, it is worth noting that sho
range physics is much better controlled in EFT*. In the co
ventional treatment of MEC, one derives the coordin
space representation of a MEC operator by applying ordin
Fourier transformation~with no restriction on the range o
the momentum variable! to the amplitude obtained in mo
mentum space; this corresponds to settingL5` in Eq. ~22!.
In PKMR98, where this familiar method is adopted, thed̂R

term appears in the zero-range formd̂Rd(r ). PKMR98 chose
to introduce short-range repulsive correlation with hard-c
radius r C and eliminate thed̂Rd(r ) term by hand. The re-
maining finite-range terms were evaluated as functions
r C . M2B calculated this way exhibited substantialr C depen-
dence, indicating that short-range physics was not well c
6-7
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trolled. Inclusion of thed̂R term, with its strength renormal
ized as described here, properly takes into account the s
range physics inherited from the integrated out degree
freedom above the cutoff, thereby drastically reducing
undesirable ~or unphysical! sensitivity to short-distance
physics.

V. THE hep PROCESS

In the notation of MSVKRB, the GT amplitude for th
hep process is given in terms of the reduced matrix elem
L̄1(q;A) and Ē1(q;A). Since these matrix elements are r
lated to each other asĒ1(q;A).A2 L̄1(q;A), with the exact
equality holding atq50, we consider here only one of the
L̄1(q;A). For the three exemplary values ofL, Table III
gives the corresponding values ofL̄1(q;A) at q[uqu519.2
MeV and zero c.m. energy; for convenience, the values od̂R

in Eq. ~24! are also listed. We see from the table that t
variation of the two-body GT amplitude~row labeled ‘‘2B
total’’ ! is ;10 % for the range ofL under study. It is also
noteworthy that the variation of the 2B amplitude as a fu
tion of L is reduced by a factor of;7 by introducing thed̂R

term contributions; compare the fifth and seventh rows@la-
beled ‘‘2B ~without d̂R)’’ and ‘‘2B total,’’ respectively# in
Table III. Although theL dependence in the total GT ampl
tude (L̄1 in the third row! is more pronounced due to th
drastic cancellation between the 1B and 2B terms, this
plified L dependence still lies within acceptable levels
the purpose of analyzing the Super-Kamiokande data@48#.

Table IV shows the contribution to theS factor, at zero
c.m. energy, from each initial channel. For comparison
also give the results of MSVKRB for the AV18/UIX interac
tion. It is noteworthy that for all the channels other than3S1,
theL dependence is very small (&2%!. The 3S1 channel is
the most sensitive to short-distance physics because the
traordinary suppression of the one-body GT contribut
makes more pronounced the chiral-non-protected natur
the GT transition. In fact, the sensitivity of the3S1 channel
to short-distance physics would be larger if the contribut
of the A0 term, which is rather sizable here despite its g
neric 1/m suppression, were omitted. It is therefore reass
ing that the chiral-filter mechanism allows reliable estimat

TABLE III. Values of d̂R and L̄1(q;A) ~in fm3/2) for the hep
process calculated as functions of the cutoffL. The individual con-
tributions from the one-body~1B! and two-body~2B! operators are
also listed.

L ~MeV! 500 600 800

d̂R 1.0060.07 1.7860.08 3.9060.10

L̄1(q;A) 20.032 20.029 20.022

1B 20.081 20.081 20.081

2B ~without d̂R) 0.093 0.122 0.166

2B (}d̂R) 20.044 20.070 20.107

2B total 0.049 0.052 0.059
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of the A0 term in this channel as well~in addition to the
P-wave channels!, see Ref.@18#.

Summarizing the results given in Table IV, we arrive a
prediction for the hepS factor @49#:

Shep~0!5~8.661.3!310220 keV b, ~31!

where the ‘‘error’’ spans the range of theL depen-
dence for L5500–800 MeV. This result should b
compared to that obtained by MSVKRB@18#, Shep(0)
59.64310-20 keV b @50#.

The latest analysis of the Super-Kamiokande data@48#
gives an upper limit of the solar hep neutrino flu
F(hep)SK,403103 cm22 s21. The standard solar mode
@51# using the hepS factor of MSVKRB @18# predicts
F(hep)SSM59.43103 cm22s21. The use of the centra
value of our estimate Eq.~31! of the hepS factor would
slightly lower F(hep)SSM but with the upper limit compat-
ible with F(hep)SSM in Ref. @51#. A significantly improved
estimate ofShep(0) in Eq. ~31! is expected to be useful fo
further discussion of the solar hep problem.

To reduce the uncertainty in Eq.~31!, we need to reduce
the L dependence in the two-body GT term. According to
general tenet of EFT, the cutoff dependence should dimin
as higher order terms get included. In fact, the somew
rapid variation seen ind̂R ~Table III! and in the3S1 contri-
bution toShep(0) ~Table IV! asL approaches 800 MeV ma
be an indication that there is need for the explicit presenc
the vector mesons (r and v) with massmV&L. This pos-
sible insufficiency could be remedied to a certain extent
going to higher orders. A preliminary study@52# indicates
that it is indeed possible to reduce theL dependence signifi-
cantly by including N4LO corrections. We expect that th
higher order correction would make the result forL5800
MeV closer to those forL5500,600 MeV, bringing the
EFT* results closer to what was obtained in MSVKRB. Th
possibility is taken into account in the error estimate given
Eq. ~31!.

VI. DISCUSSION

It is worth emphasizing that the above EFT* predictio
for d2B for the pp process is in line with the latest SNP
results obtained in Ref.@27# ~and mentioned earlier!. There
too, the short range behavior of the axial MEC was co

TABLE IV. Contributions to Shep(0) ~in 10220 keV b! from
individual initial channels calculated as functions ofL. The last
column gives the results obtained in MSVKRB.

L ~MeV! 500 600 800 MSVKRB

1S0 0.02 0.02 0.02 0.02
3S1 7.00 6.37 4.30 6.38
3P0 0.67 0.66 0.66 0.82
1P1 0.85 0.88 0.91 1.00
3P1 0.34 0.34 0.34 0.30
3P2 1.06 1.06 1.06 0.97
Total 9.95 9.37 7.32 9.64
6-8
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strained by reproducingGb
t . The inherent model dependenc

of such a procedure within the SNPA context was shown
be very weak simply because at small inter-particle sep
tions, where MEC contributions are largest, the pair wa
functions in different nuclei are similar in shape and diff
only by a scale factor@53#. As a consequence, the ratios
GT and pp-capture matrix elements of different two-bod
current terms are nearly the same, and therefore a knowle
of their sum in the GT matrix element is sufficient to pred
their sum in thepp-capture matrix element@27#.

It seems informative to compare the hep reaction w

radiativenp capture. The polarization observables innW 1pW

→d1g are known to be sensitive to the isoscalarM1 matrix
elementM1S, and this amplitude has been extensively stu
ied in EFT @24,54#. The similar features of the hep GT am
plitude andM1S are~i! the leading one-body contribution i
suppressed by the symmetries of the wave functions;~ii !
there is no soft-pion exchange contribution;~iii ! nonetheless,
short-range physics can be reliably subsumed into a si
contact term. In thenW pW case the strength of this term can
determined from the deuteron magnetic moment~for a given
value ofL). The calculation in Ref.@24# demonstrates tha
theL dependence in the contact term and that of the rem
ing terms compensate each other so that the totalM1S is
stable against changes inL. This suggests that, if we go t
higher orders, the coefficient of the contact term in quest
will be modified, with part of its strength shifted to highe
order terms; however, the total physical amplitude will r
main essentially unchanged. These features are quite sim
to what we have found here for the hep GT amplitude.

We have derived here all the weak currents up to N4LO
~even though we have calculated the relevant nuclear ma
elements only up to N3LO!. As Table I indicates, loop con
tributions start at N4LO. Loop corrections in the vector cur
rents~bothV andV0) can be safely ignored, since even the
leading single-particle terms are suppressed relative to
axial current. It turns out that the loop diagrams inA are all
finite and hence need no regularization although there
finite counterterms that should be taken into account. On
other hand, the loop diagrams inA0 do have divergences an
need to be regularized. To derive the momentum space
pressions for the currents given above, we have emplo
the dimensional regularization. This is not quite congruo
with the cutoff regularization adopted in going from mome
tum to coordinate space. Meanwhile, using a cutoff regu
ization in evaluating loop graphs is a delicate matter, si
that might endanger chiral symmetry; with the use of a cu
regularization one might need chiral-symmetry-break
counterterms in order to satisfy the Ward identities. We h
not yet investigated whether the dimensional regulariza
as used here preserves chiral symmetry, and hence we ca
say at this point whether our coordinate space operator
N4LO are fully consistent. However, this problem does n
arise if we limit ourselves to N3LO, for up to this order there
are no loop contributions.

Evaluating the matrix element of the leading-order on
body operator in EFT with the use of realistic nuclear wa
functions is analogous to fixing parameters in an EFT
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grangian~at a given order! using empirical inputs@55#; the
realistic wave functions in SNPA can be regarded as a th
retical input that fits certain sets of observables. In
present EFT* scheme, we take the view that the same r
istic wave functions also provide a framework for reliab
calculating ~finite-range! many-body corrections to the
leading-order one-body matrix element. The short-rang
part inherited from the integrated out degrees of freedom

renormalized by thed̂R term. This way of handling ‘‘short-
range correlation’’ is analogous to the derivation of Bogn
et al. @4# of ‘‘ Vlow-k’’ based on renormalization-group theor
~see also the work of Epelbaumet al. @56#!. While our ap-
proach here is, in certain cases, not in strict accordance
the systematic power-counting scheme of EFT proper,
should expect that the severity of this potential shortcom
may very well vary from one case to another~see discussion
in Ref. @57#!. For thepp and hep amplitudes under consi
eration, the degree ofL dependence exhibited by the nu
merical results does suggest that deviations from rigor
power counting cannot be too significative. Indeed, this ty
of ‘‘resilience’’ may also explain why the SNPA calculatio
in Ref. @18# gives a result very similar to the present one.
is true that the two-body terms in MSVKRB are not entire
in conformity with the chiral counting scheme we are usi
here; some terms corresponding to chiral orders higher t
N3LO are included, while some other terms which are N3LO
in EFT are missing~see Appendix A 3!. Most importantly the
d̂R term — which plays a crucial role here — is omitted
MSVKRB although heavy-meson exchange graphs may
count for some part of it. This formal problem, howeve
seems to be largely overcome by the fact that also in M
VKRB a parameter~the axialND coupling strength! is ad-
justed to reproduceGb

t .
Not unrelated to the above issue of power counting is

question of consistency of embedding ‘‘realistic’’ wave fun
tions obtained from ‘‘realistic’’ potentials that are fitte
accuratelyto experiments into an EFT framework with th
currents obtained to a given order of chiral perturbat
theory. It is a well-known fact that potentials that fit expe
ments are not necessarily unique. The nonuniqueness res
however, in the short-range part of the potential, with t
long-range part primarily governed by the pion exchan
Let us suppose that one can calculate potentials to a
high order in a consistent expansion~that is, consistent with
symmetries, etc.!. The structure of the potential would de
pend on various aspects of the calculation. For instance
though they all may fit equally well various experiment
data such as, e.g., nucleon-nucleon scattering, different r
larizations would lead to different potentials, the differen
residing mainly in the short-range part. One might worry th
this nonuniqueness would upset the basic premise of an E
rendering the predictions untrustworthy@58#.

Another intricate issue, which is also connected to sho
range physics, is the off-shell ambiguity. This proble
should be absent in a formally consistent EFT. In EFT
however, we insert the current operators derived from ir
ducible diagrams up to a given chiral order between phen
enological ~albeit realistic! wave functions. Since the in
6-9
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serted current involves off-shell particles, there can
principle be terms other than those that have been inclu
in our approach. While those additional terms that may
required to eliminate the off-shell dependence are expe
to be of higher order than N3LO, this issue warrants a furthe
examination.

To answer the above question with full rigor, much mo
work is needed. However, partial and yet reasonably sa
factory answers can be obtained from this work. For chir
filter protected processes, we have presented a clear a
ment that the above-mentioned ambiguity does not matte
the level of accuracy in question. The results listed in Ta
IV for the P-wave capture~to which the chiral-protected time
component of the axial current contributes! demonstrate this
point. The question of short-distance ambiguity arises o
for chiral-unprotected processes such as the GT transi
As already explained, however, thed̂R renormalization es-
sentially removes this ambiguity. The point is that the ph
ics of the degrees of freedom above the cutoff scaleL gets
lodged in the short-ranged̂R term. In fixing this term as a
function of L via the experimental value ofGb

t , one is es-
sentially incorporating the short-range correlations that r
der low-energy physics insensitive to short-distance phys

As for the off-shell problem, we note that for process
involving a long-wavelength external current — such as
solarpp and hep reactions — the off-shell ambiguity shou
be small in our scheme where the short-range contribu
has been correctly renormalized, so long as one uses h
quality phenomenological wave functions that accurately
scribe processes without the external current. The wave fu
tions used here describe with high accuracy a rich ensem
of data available for the systems in question; they desc
very well the three-nucleon scattering states, and furth
more, then3He elastic scattering cross section as well as
coherent scattering length calculated with these wave fu
tions are in excellent agreement with the experiments. W
is involved here seems to be a generic feature. A sim
stabilizing mechanism is at work when Bogneret al. @4# ar-
rive at a unique effective forceVlow-k by integrating out the
high-energy/momentum components contained in vari
‘‘realistic’’ potentials. Nuclear physics calculations done wi
this effective force@59# have much in common with the
EFT* calculation described here. Furthermore, we rem
that different off-shell properties reflect different choices
the field variables and that, for each choice, the LECs nee
be readjusted. It is in principle possible to choose the fi
variables in such a manner that off-shell contributions
come highly suppressed. We are essentially adopting
particular choice by using the forms of the transition ope
tors described above and adjusting the corresponding L
d̂R to reproduceGb

t .
A possible approach that is formally consistent with s

tematic power counting is the pionless EFT based on
power divergence subtraction~PDS! scheme@60# ~for a re-
cent review, see Ref.@61#!, which has been applied to thepp
fusion @62#. Due to the fact that this scheme also involv
one unknown low-energy constant, PDS has not so far le
a definite prediction on thepp fusion rate. The problem is
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that this approach cannot be readily extended to systems
A>3, in particular to electroweak transition amplitudes
these systems. What is lacking presently is a method to
relate in a unified framework the observables in differe
nuclei ~different mass numbers!. This limitation keeps one
from exploiting the experimental data available for theA
>3 nuclei to fix unknown LEC. Apart from the basic prob
lem of organizing chiral expansion for complex nuclei fro
‘‘first-principles,’’ a plethora of parameters involved woul
present a major obstacle.~For recent efforts in this approach
see Refs.@61,63# and references given therein.! This diffi-
culty is expected to be particularly pronounced for the h
reaction.

There has been a series of intensive studies by the Ju¨lich
Group to extend EFT calculations in the Weinberg schem
systems with three or more nucleons@64#. The relationship
between this approach and the phenomenological pote
approach has been examined in great detail. This line
study, however, has been so far limited to nuclear obse
ables that donot involve the electroweak currents. An exte
sion of the formalism developed in Ref.@64# to electroweak
transitions should be extremely useful.
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APPENDIX A: GAMOW-TELLER OPERATORS

The aim of this and subsequent Appendixes is to prov
some technical details that have been left out in the m
text. The readers who are not interested in the details of
calculation can safely skip these Appendixes without miss
the essential points of our results.

We decompose the axial current intonB-body operators as

Am,a5A1B
m,a1A2B

m,a1A3B
m,a1•••

5(
l

Al
m,a1 (

l ,m
Alm

m,a1 (
l ,m,n

Almn
m,a1•••,

~A1!
6-10
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where (l , m, n) are particle indices. The one-body opera
can be read from

^N~p8!uAm,a~x50!uN~p!&52ū~p8!FGA~q2!gmg5

2
GP~q2!

2mN
qmg5G ta

2
u~p!,

~A2!

whereu(p) is a four-component Dirac spinor of momentu
p, andqm5(p2p8)m is the momentum carried by the lepto
pair. GA(q2) andGP(q2) are the axial and induced pseud
scalar form factors, respectively. Note thatqm5O(Q2/mN),
while p5O(Q) and p 85O(Q). Thus, up to N3LO, it is
sufficient to consider the form factors atq250. Furthermore
ū(p8)qmg5u(p) attached to theGP term is of O(Q4/Lx

3),
which we neglect throughout this work@65#. In getting the
nonrelativistic operators from the above relativistic form fa
tors, we should also take into account the wave funct
normalization. The resulting one-body operator up toO(Q3)
then reads

Al
a52

t l
a

2
gAe2 i rl•qFsl1

p̄lsl•p̄l2sl p̄l
2

2mN
2

1
iq3pl

4mN
2

1OS Q4

mN
4 D G . ~A3!

This expression has appeared in Eq.~17!. In the following
subsections, we derive all the two-body GT operators up
N4LO and leading three-body GT operators.

1. Two-body GT

There are no two-body GT diagrams that involve on
n i50 vertices, because theA i ,apNN vertex is kinematically
suppressed, and there is no four-fermion contact contribu
at LO (n i50). As a consequence, the two-body GT opera
starts atn53. The two-body GT operator at threshold (qm

→0) was given up to N3LO in Ref. @36#. We extend here
that analysis to include all contributions up to N4LO. To this
end, it is useful to decomposeAlm

a as

Alm
a 5Alm

a ~1p!1Alm
a ~2p!, ~A4!

whereAlm
a (1p) represents the contributions of the one-pi

pole part andAlm
a (2p) stands for the remaining short-range

part. Generic diagrams forAlm
a (1p) andAlm

a (2p) are shown
in Fig. 1.

We now list all the two-body GT operators belonging
n53 andn54.

n53. This contribution comes from tree graphs~one-
pion-exchange and contact! with a n i51 vertex. The result-
ing GT operators, given in Ref.@36#, are of the form
05520
r

-
n

to

n
r

A12
a:n3~1p!5

gA

2mNf p
2 F i

2
~tW13tW2!ap̄112ĉ3t2

ak2

1S ĉ41
1

4D ~tW13tW2!as13k2

1
11c6

4
~tW13tW2!as13qG s2•k2

k2
21mp

2
1~1↔2!,

~A5!

A12
a:n3~2p!5

gA

mNf p
2 @ d̂1~t1

as11t2
as2!

1d̂2~tW13tW2!as13s2#, ~A6!

wherekl[pl82pl . Although there are two unknown param

eters,d̂1 and d̂2, it turns out that the Fermi-Dirac statistic
effectively reduces the number of unknowns to one. We w
come back to this important point later.

n54. Tree graphs with( in i52 and one-loop graphs with
( in i50 enter at this order. Since there is nopNN vertex
with n i51, an54 tree graph should have eitherA(NN)2 or
ApNN vertex withn i52. We can, however, exclude eithe
possibility. The absence ofApNN vertex atn i52 can be
ascertained by consulting a complete list of terms that app
in the N2LO Lagrangian given in Ref.@66#. As for the n i
52 A(NN)2 vertex for the two-nucleon sector, a comple
list is not available yet. We therefore resort to parity select
rules. Our vertex must have oneDm and oneDm involving
four nucleon fields. These operators should not be contra
with the four-velocityvm, for otherwise the actual chiral in
dex would acquire an extra power ofQ. We can easily show
however, that it is impossible to construct a parity-even L
entz scalar with oneDm , oneDm and arbitrary numbers o
Sm and emnab. Introducing an operator of the]mAn2]nAm
type instead ofDm and Dm does not help either. These ob
servations lead us to conclude that no divergences occu
the relevant loops and, more importantly, that no new para
eters appear atn54.

FIG. 1. A one-pion pole diagram~a! responsible forAlm
a (1p),

and a short-range contribution diagram~b! responsible for
Alm

a (2p). The solid circles include counterterm insertions and~one-
particle irreducible! loop corrections. The wiggly line stands for th
external field~current! and the dashed line for the pion. One-loo
corrections of the relevant orders for the pion propagator and
pNN vertex need to be included.
6-11
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The one-pion-exchange contribution can be read off fr
one-loop corrections to theGAp

m,ab vertex; the relevant dia
grams are shown in Fig. 2. We note that only the first fi
diagrams ~a!–~e! contribute to A. Using the expression
given in Ref. @15#, where all the one-loop diagrams hav
been calculated, we find

A12
a:n4~1p!52

gA
3

32p f p
4 F ~tW13tW2!aS s13~k21q!D1~k1!

1
gA

2

8
s13k2 mpD 2t2

aS ~q13k2!FD1~k1!

1
1

3
k1

2D2~k1!G1
9gA

2

8
k2 mpD G3

s2•k2

mp
2 1k2

2

1~1↔2!, ~A7!

wherekl5ukl u ( l 51, 2), andDi(k)’s are defined as

D1~k!5E
0

1

dzMzk ,

D2~k!5E
0

1

dz
zz̄

Mzk
,

D3~k!5E
0

1

dz S 2
zz̄k2

Mzk
25MzkD

54E
0

1

dz S 2
3

2
Mzk1

mp
2

4Mzk
D ,

D4~k!5E
0

1

dzS 2
~zz̄!2k2

Mzk
3

17
zz̄

Mzk
2

1

Mzk
D

54E
0

1

dz F zz̄

2Mzk
1

zz̄mp
2

4Mzk
3

2S 1

4
2zz̄D 1

Mzk
G ,

D5~k!5E
0

1

dz
1

Mzk
,

FIG. 2. One loop diagrams that contribute to theA mpNN ver-
tex. Only the first five diagrams~a!–~e! contribute toA.
05520
D6~k!5E
0

1

dz S 1

4
2zz̄D 1

Mzk
. ~A8!

Herek[uku, z̄[12z, andMzk[Amp
2 1zz̄ k2.

The integrations overz can be done analytically, resultin
in

D1~k!5
mp

2
1

4mp
2 1k2

4k
Qk ,

D2~k!5
mp

2k2
2

4mp
2 2k2

4k3
Qk ,

D3~k!523mp2
8mp

2 13k2

2k
Qk ,

D4~k!5
1

2k3 F2mpk~8mp
2 13k2!

4mp
2 1k2

2~8mp
2 1k2!QkG ,

D5~k!5
2

k
Qk ,

D6~k!52
mpk

2k3
1

4mp
2 1k2

4k3
Qk , ~A9!

wherek[uku and

Qk[tan21
k

2mp
~A10!

with 2p/2,Qk,p/2.
Note that the one-pion-pole contributions can be absor

into Alm
a:n3(1p) @given in Eq.~A5!# by renormalizingĉ3 and

ĉ4,

ĉ3→ ĉ3
R[ ĉ31

mNgA
2

32p f p
2 F D̃1p1

9gA
2

8
mpG

. ĉ311.0334,

ĉ4→ ĉ4
R[ ĉ42

mNgA
2

32p f p
2 F2D1p1

gA
2

8
mpG

. ĉ420.4821, ~A11!

where

D1p[D1~k!uk252m
p
2 5

mp

4 F213tanh21
1

2G ,
D̃1p[3D1~k!1k2D2~k!uk252m

p
2

5mpF21tanh21
1

2G . ~A12!
6-12
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For the two-pion contributionAlm
a:n4(2p), the relevant

one-loop graphs are shown in Fig. 3. Among the diagram
the figure, only the first four graphs~a!–~d!, can contribute
to the GT operator;~e! is identically zero due to isospin
symmetry, and the remaining graphs,~f!–~h!, contribute only
to A0.

As mentioned, the four diagrams~a!–~d! are all ultravio-
let finite. The first three graphs give

A12
a ~2p:a!52

gA
3

64p f p
4

s1t1
a@3D1~k2!1k2

2D2~k2!#

1~1↔2!,

A12
a ~2p:b!52

gA
3

128p f p
4

t2
a@s1D1~k2!2~2k2s1•k2

2s1k2
2!D2~k2!#1~1↔2!,

A12
a ~2p:c!52

gA
5

1024p f p
4 ~t1

a12t2
a!@s1D3~k2!1~2k2s1•k2

2s1k2
2!D4~k2!1~s2k2

22k2s2•k2!D5~k2!#

1~1↔2! ~A13!

while the fourth diagram~d! gives

A12
a ~2p:d!52

gA
3mp

64p f p
2 (

A
t1

bs1
j $CAGAGA ,t1

as1%t1
bs1

j

1~1↔2!. ~A14!

The summation here is taken over all possible combi
tions of spin-isospin operators~with no derivatives! that fig-
ure in the nucleon-nucleon interactions. Using a generic
pression

(
A

CAGAGA5X11s1•s2Xs1tW1•tW2Xt1s1•s2tW1•tW2Xst ,

~A15!

FIG. 3. One loop diagrams for theAlm
a:n4(2p): the first four

diagrams~a!–~d! contribute to the space part of the axial-vect
~GT! and the remaining diagrams~f!–~h! to the axial-charge cur-
rent. The graph~e! vanishes.
05520
in

-

x-

whereX1 , Xs , Xt , Xst are constants that characterize t
LO short-range nuclear forces, we can write

A12
a ~2p:d!52

gA
3mp

32p f p
2 @~23X119Xst!~t1

as11t2
as2!

1~22Xst!~tW13tW2!a~s13s2!

1~9Xs23Xt!~t1
as21t2

as1!#. ~A16!

We demonstrate below thatX’s can all be absorbed into th
parametersd̂’s.

2. Three-body GT

The three-body GT operators up to N4LO come from the
two diagrams given in Fig. 4. They contain onlyn i50 ver-
tices, and their contributions read

A123
a 52 (

cycle(123)

gA
3

16f p
4 ~2t1

a tW2•tW32t2
a tW3•tW12t3

a tW1•tW2!

3S s12
4

3

k1s1•k1

k1
21mp

2 D s2•k2

k2
21mp

2

s3•k3

k3
21mp

2
, ~A17!

where

(
cycle(lmn)

f lmn[ f lmn1 f mnl1 f nlm . ~A18!

3. Comparison with SNPA exchange currents

The meson-exchange currents in SNPA@67,68# are based
on one-boson exchange diagrams involving those bos
which are responsible for the phenomenological nucl
forces in the context of one-boson-exchange models. T
framework does not have direct contact with chiral countin
We give here a detailed comparison between the transi
operators used in SNPA and those dictated byxPT. Among
the most elaborate SNPA operators are the ones use
CRSW91@16#; these operators were derived by Towner@68#
based on a phenomenological Lagrangian@69# which satis-
fies CVC, PCAC and current algebra. We consider the SN
operators used in CRSW91 as a representative. It will t

FIG. 4. Diagrams for the three-body GT operator. All other d
grams are higher order than N4LO except for the crossed diagram
of ~a! — crossed with respect to the particle indices.
6-13
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out that there are substantial differences between the S
and xPT operators in both the long-range and short-ra
parts.

In CRSW91 the heavy particlesr and D are treated as
explicit degrees of freedom@70#. To examine the roles o
these heavy particles in the context of the present comp
son, we divide the two-body currents in CRSW91 into tw
families:

Aa5AI
a1AII

a ~A19!

[@Aa~Dp!1Aa~pr!1Aa~pS!#

1@Aa~Dr!1Aa~rS!#, ~A20!

where the ‘‘S’’ stands for ‘‘seagull.’’AI
a andAII

a can be asso-
ciated, respectively, withAlm

a (1p) andAlm
a (2p) in Eq. ~A4!.

The expression forAI
a is @71#

AI
a5

gA

2mNf p
2 H 2

4

25
gA

2 I 1

mN

mD2mN
R p

2 ~k2!

3@4t2
ak22~tW13tW2!as13k2#

2
I 2

4
Rr~k1!Rp~k2!

mr
2

mr
21k1

2

3~tW13tW2!a@~11k!s13k122i p̄1#

1
I 1

4
gA

2R p
2 ~k2!@~tW13tW2!as13k2

2t2
a~2q12i s13p̄1!#J s2•k2

mp
2 1k2

2
1~1↔2!

~A21!

with

Rp~k![
Lp

2 2mp
2

Lp
2 1k2

, Rr~k![
Lr

22mr
2

Lr
21k2

, ~A22!

where mD.1232MeV, k.6.6, andgr.2.50 is therNN
coupling constant;Lp (Lr) is a cutoff parameter characte
izing the pNN (rNN) coupling form factor. We have de
fined I 1 and I 2 by

I 1[
4 f p

2 f pNN
2

gA
2mp

2
5

f pNN
2

mp
2

•S gA
2

4 f p
2 D 21

, I 2[
8gr

2f p
2

mr
2

.

~A23!

We note thatI 151 if we assume the Goldberger-Treima
relation, andI 251 if the KSRF relation holds@72#. The
above equation should be compared withAlm

a:n3(1p) in Eq.
~A6!. A little exercise shows that, while the currentsA(pD)
andA(pr) can be related to certain currents inxPT, A(pS)
has noxPT counterpart to the order considered here. A p
sible explanation for the occurrence of this ‘‘extra’’ term
SNPA is thatA(pS) arises as a ‘‘recoil’’ term associated wit
05520
PA
e

ri-

-

the use of the pseudoscalar coupling. AxPT analog of
A(pS) would be a 1/mN term, but this term should be sub
stantially suppressed; hence a term such asA(pS) should be
absent in chirally invariant theory. Comparison of the co
ficients of (tW13tW2)ap̄1 , t2

ak2 , (tW13tW2)as13k2, and (tW1

3tW2)as13q leads to the following correspondence betwe
xPT ~left-hand side! and CRSW91~right-hand side!:

1↔I 2Rr~k1!Rp~k2!
mr

2

mr
21k1

2
, ~A24!

ĉ3↔2
8

25
gA

2 I 1

mN

mD2mN
R p

2 ~kj !, ~A25!

ĉ41
1

4
↔ 4

25
gA

2 I 1

mN

mD2mN
R p

2 ~kj !

1I 2Rr~k1!Rp~k2!
mr

2

mr
21k1

2

11k

4
,

~A26!

11c6↔I 2Rr~k1!Rp~k2!
mr

2

mr
21k1

2 ~11k!. ~A27!

The presence of the momentum-dependence inR’s and
the r-meson propagator prevents us from going beyond
correspondence. To proceed, however, we may conside
approximation

1'I 2Rr~k1!Rp~k2!
mr

2

mr
21k1

2
'I 1R p

2 ~kj !. ~A28!

We then find

ĉ3
CRSW52

8

25
gA

2 mN

mD2mN
.21.633, ~A29!

ĉ4
CRSW52

1

2
ĉ3

CRSW1
k

4
.2.467, ~A30!

c6
CRSW5k.6.6. ~A31!

It is informative to compare these values ofĉ’s with those
obtained in a resonance-exchange saturation analysis by
nard, Kaiser, and Meißner~BKM ! @30#. We note that the two
approaches give very different results for theD-resonance
contributions. CRSW91 used the quark model value for
ratio gAND /gpND , the accuracy of which is rather difficult to
assess. Meanwhile, the resonance-saturation calculation
fers from ambiguity related to the so-called off-shell para
eterZ. Considering these uncertainties, it is perhaps not
surprising that BKM’s estimate of theD contribution to
ĉ3 , uĉ3

Du53.59, is 2.2 times larger than the estimate
CRSW91. We also note that, while CRSW91 only includ
the D and r-meson contributions, BKM’s calculation con
6-14
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tains the contributions from scalar-meson and Roper
changes as well. According to BMK,

ĉ3
D1 ĉ3

scalar1 ĉ3
Roper523.5921.3120.06524.96,

ĉ4
D1 ĉ4

r1 ĉ4
Roper51.8011.5310.1153.44. ~A32!

Thus the contributions of the scalar-meson exchange are
stantial. What is significant for our calculation is the fact th
the coefficientsc’s can be extracted directly from thepN
scattering data@30,66#. The most recent analysis@66# gives

ĉ35~25.5860.08, 25.4960.01, 25.8260.08!,

ĉ45~3.2660.05, 3.2960.01, 3.3060.04!. ~A33!

These values are in reasonable agreement with those
tained in the resonance saturation approach. We should
however, that the results in Eq.~A33! belong to an N4LO
calculation whereinD(1232) as well as other massive d
grees of freedom have been integrated out. The explicit
clusion ofD(1232) would modify the values ofĉ’s, because
the D contribution to theĉ’s should now be excluded. W
also should pay attention to a similar modification of t
LECs as we move from N4LO to N3LO. Although the dif-
ference betweenĉ’s obtained in an N3LO calculation and
those obtained in N4LO are of order ofQ4 and hence can in
principle be neglected in an N3LO calculation, it is more
natural and safer to use in our present calculation the va
obtained in an N3LO analysis@30#,

N 3LO: ĉ3524.9660.23,

ĉ453.4060.09. ~A34!

The precise value ofc6 is unimportant in the present con
text, since it is suppressed by the kinematic factoruqu. In any
event, the results of BMK and CRSW91 are close to e
other,c6.5.83.

We now discuss the short-ranged currentsAII
a5A(rD)

1A(rS). According to CRSW91, the dominant term inAII
a is

of the form

Aa~rD!5
gA

2mNf p
2

I 2

~11k!2

50mN~mD2mN!
R r

2~k2!
mr

2

mr
21k2

2

3@4t2
a~s23k2!3k22~tW13tW2!as1

3@~s23k2!3k2##1~1↔2!. ~A35!

It should be noted, however, that this term belongs
N5LO in chiral counting, and therefore its inclusion
CRSW91 constitutes a deviation fromxPT. Although a
particular N5LO term may give an appreciable contributio
~see below!, there are many terms of the same order, incl
ing multiloop diagrams, and in general there should b
substantial cancellation among these terms to make the
N5LO contribution small, as dictated by chiral symmet
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Thus, there are important differences betweenAII
a of

CRSW91 andA(2p) derived inxPT.

APPENDIX B: AXIAL CHARGE OPERATORS

As stressed in the main text, the axial charge operators
chiral-protected. Since the axial-charge operators up
O(Q4) have already been described in detail in Ref.@15#, we
only briefly recapitulate what is directly relevant to th
present work. The leading one-bodyA0 operator is kinemati-
cally suppressed because of theg5 matrix. Correspondingly,
in xPT, theA0 operator at orderO(Q1) appears as a 1/mN
term. The leading correction to the one-body axial-cha
operator comes from the soft one-pion-exchange, which i
O(Q2). Loop contributions start atO(Q4), and hence the
ratio of the loop contribution to the tree diagram two-bo
contribution isO(Q2). Finally, there is no three-body con
tribution up toO(Q4).

The one-body axial-charge operator at threshold is gi
by

Al
0,a52

t l
a

2
gAFsl•p̄l

mN
1OS q2

mN
2 D G , ~B1!

which isO(Q1). We note that there is no relativistic corre
tion of O(q) to the one-body axial charge; this aspect is
sharp contrast to the GT operator.

The two-bodyA0 current appears atO(Q2) ~tree diagram!
and atO(Q4) ~loop diagrams!:

A12
0,a52

gA

4 f p
2 @T a(I)W (I)1T a(II) W (II) #, ~B2!

where

T a(I)5 i ~tW13tW2!ak•~s11s2!, ~B3!

T a(II) 5 i ~tW11tW2!ak•s13s2 , ~B4!

with k5k252k1. The one-pion-exchange contribution in
cluding the vertex renormalization~loop corrections to the
vertices! reads

W 1p
(I) 52

1

mp
2 2t

F1
V~ t !,

W 1p
(II) 50, ~B5!

where t[k0
22k2.2k2, and F1

V(t) is the isovector Dirac
form factor of the nucleon electromagnetic current. The p
nomenologically determinedF1

V(t) is of the dipole type

F1
V~ t !5S L2

L22t
D 2

~B6!

with L5840 MeV. The HBxPT expression forF1
V(t) up to

one-loop accuracy is given by
6-15
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F1
V~ t !511

c3
R

f p
2

t2
t

16p2f p
2 F113gA

2

2
K0~ t !

22~112gA
2 !K2~ t !G . ~B7!

The loop functions,K ’s, will be specified below. The con
stantc3

R is determined by the nucleon charge radius@73#.

c3
R
mp

2

f p
2

5
mp

2

6
^r 2&1

V.0.04784. ~B8!

We should mention here thatM1p in Eq. ~B5! contains
bothO(Q2) andO(Q4) contributions. TheO(Q2) contribu-
tions can be obtained by replacingF1

V(t) by 1, while
@F1

V(t)21# is responsible for theO(Q4) contributions. The
two-pion-exchange contributions, which are also ofO(Q4),
are given by

W 2p
(I) 5

1

16p2f p
2 F2

3gA
222

4
K0~k2!2

1

2
gA

2K1~k2!G
2

1

4 f p
2

k4
(1) ,

W 2p
(II) 5

1

16p2f p
2 @2gA

2K0~k2!#2
1

4 f p
2

k4
(2) , ~B9!

wherek4
(1) andk4

(2) are unknown parameters@74#. The total
two-body axial-charge operator is the sum of Eqs.~B5! and
~B9!:

W (I)5W 1p
(I) 1W 2p

(I) ,

W (II) 5W 1p
(II) 1W 2p

(II) . ~B10!

The loop functionsK ’s in the above are defined as

K0~ t !5E
0

1

dz lnF12z~12z!
t

mp
2 G ,

K1~ t !5E
0

1

dz
2z~12z!t

mp
2 2z~12z!t

,

K2~ t !5E
0

1

dz z~12z!lnF12z~12z!
t

mp
2 G . ~B11!

The integrations overz can be done analytically, resulting i

K0~ t !5221s lnS s11

s21D ,

K1~ t !512
s221

2s
lnS s11

s21D ,
05520
K2~ t !52
4

9
1

s2

6
1

s~32s2!

12
lnS s11

s21D , ~B12!

with

s[S 4mp
2 2t

2t D 1/2

. ~B13!

APPENDIX C: REGULARIZATION AND THE CUTOFF

1. Fourier transform

Since SNPA employs coordinate-space representation
need to Fourier transform the momentum-space express
In doing so, we must impose a cutoff to regularize the in
gral. The cutoff introduced here typically represents a sc
that divides the low-energy degrees of freedom~which we
choose to include explicitly! and the high-energy degrees
freedom~which we integrate out!. How to implement cutoff
into the theory is not unique, but physics should be indep
dent of methods used insofar as the calculation is done c
sistently. This is a statement of renormalization group inva
ance. We now describe a particular cutoff scheme to be u
here @75#. For the nB-body current in momentum spac
A12•••n

a 5A12•••n
a (k1 , k2 ,•••, kn), define its ‘‘Fourier trans-

form’’ as

Ã12•••n
a [F)

l 51

n E d3kl

~2p!3
eikl•rlSL~kl

2!G
3~2p!3d (3)~q1k11k21•••1kn!A12•••n

a ,

~C1!

whereSL(k2) is a regulator with a cutoffL, and the factor
(2p)3d (3)(q1k11k21•••1kn) comes from momentum
conservation. We employ here a regulator of the Gauss
type @76#

SL~k2!5expS 2
k2

2L2D . ~C2!

For a one-body operator, the regulator plays no role, see
~A3!. Now for the two-body current Eq.~C1! gives @77#

Ã12
a 5E d3k

~2p!3
SL

2 ~k2!e2 ik•r12

3A12
a ~k152k, k25k!. ~C3!

To simplify subsequent expressions, we will hereafter o
the tildes on the currents in the coordinate space represe
tion, and define the following functions:

dL
(3)~r![E d3k

~2p!3
SL

2 ~k2!eik•r,

y0L~m,r ![E d3k

~2p!3
SL

2 ~k2!eik•r
1

k21m2
,
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y1L~m,r ![2
1

m

]

]r
y0L~m,r !,

y2L~m,r ![
1

m2
r

]

]r

1

r

]

]r
y0L~m,r !. ~C4!

These functions become the ordinary delta and Yukawa fu
tions whenL goes to infinity. We also use the abbreviatio
y0L

p (r )[y0L(mp ,r ), and similarly fory1L
p (r ) and y2L

p (r ).
The regularized delta and Yukawa functions read

dL
(3)~r!5

L3

~4p!3/2
expS 2

L2r 2

4 D , ~C5!

y0L~m,r !5
1

4pr
em2/L2 1

2 Fe2mrerfcS 2
Lr

2
1

m

L D
2~r↔2r !G . ~C6!

We are now ready to write down then53 two-body
axial-vector current Eq.~A6! in coordinate space:

A12
a:n3~1p!5

gA

2mNf p
2

dL
(3)~r12!F1

3
ĉ3~O1

a 1O2
a !

1
2

3 S ĉ41
1

4DO3
a G2

gAmp
2

2mNf p
2 FOP

ay1L
p ~r 12!

1F ĉ3~T_1
a 1T_2

a !2S ĉ41
1

4DT 3
a Gy2L

p ~r 12!

1F1

3
ĉ3~O1

a 1O2
a !1

2

3 S ĉ41
1

4DO3
a G

3y0L
p ~r 12!G , ~C7!

A12
a:n3~2p!5

gA

2mNf p
2

dL
(3)~r12!@ d̂1~O1

a 1O2
a !12d̂2O3

a #,

~C8!
05520
c-

where the superscript (i , j ) are particle indicesr 12[ur12u and
r̂12[r12/r 12. In the above equations, we have defined
following two-body spin-isospin operators:

O(
i ,a[~tW1(tW2!a~s1(s2! i ,

T(
i ,a[S r̂ 12

i r̂ 12
j 2

d i j

3 DO(
a j , ~C9!

where(5(1,2,3) and

OP
i ,a[2

1

2mp
~tW13tW2!a~ p̄1

i s2• r̂121p̄2
i s1• r̂12!.

~C10!

Note thatOP
i ,a is completely determined by Lorentz invar

ance. In terms of these seven operators, we can writeall the
two-body currents~including n53 andn54 contributions!
as

A12
i ,a52 (

(51,2,3
@F(

C ~r 12!O(
i ,a1F(

T ~r 12!T(
i ,a#

2
gAmp

2

2mNf p
2

y1L
p ~r 12!OP

i ,a1
gA

2mNf p
2

dL
(3)~r12!

3F (
(51,2,3

d̂(O(
i ,aG . ~C11!

We have separated out here the part proportional todL
(3)(r).

The dimensionless parametersd̂( are given by d̂1,2 and
~higher order! loop contributions as

d̂1[d̂11
1

3
ĉ32

gA
2mNmp

32p
~23X119Xst19Xs23Xt!,

d̂2[d̂11
1

3
ĉ32

gA
2mNmp

32p
~23X119Xst29Xs13Xt!,

d̂3[2F d̂21
1

3 S ĉ41
1

4D1
gA

2mNmp

32p
XstG . ~C12!

The functionsF(
C,T in Eq. ~C11! are given by
F1
C ~r !5

gAmp
2

2mNf p
2

ĉ3
R

3
y0L

p ~r !1
gA

3

32p f p
4 H 1

6
~3D11k2D22D̃1p!

mp
2

mp
2 1k2

1
1

8
~3D11k2D2!1

gA
2

64
~3D32k2D412k2D5!J

FT

~r !,

F2
C ~r !5

gAmp
2

2mNf p
2

ĉ3
R

3
y0L

p ~r !1
gA

3

32p f p
4 H 1

6
~3D11k2D22D̃1p!

mp
2

mp
2 1k2

1
1

24
~3D11k2D2!1

gA
2

64S 2D31
1

3
k2D41

2

3
k2D5D J

FT

~r !,
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F3
C ~r !5

gAmp
2

2mNf p
2

2

3 S ĉ4
R1

1

4D y0L
p ~r !1

gA
3

32p f p
4 H 2

3
D12

2

3
~D12D1p!

mp
2

mp
2 1k2J

FT

~r ! ~C13!

and

F1
T ~r !5

gAmp
2

2mNf p
2
ĉ3

Ry2L
p ~r !1

gA
3

32p f p
4 H 1

2
~3D11k2D22D̃1p!

1

mp
2 1k2

1
1

4
D21

gA
2

64
~26D413D5!J

FT

~r !,

F2
T ~r !5

gAmp
2

2mNf p
2
ĉ3

Ry2L
p ~r !1

gA
3

32p f p
4 H 1

2
~3D11k2D22D̃1p!

1

mp
2 1k2

2
1

4
D21

gA
2

64
~2D41D5!J

FT

~r !,

F3
T ~r !52

gAmp
2

2mNf p
2 S ĉ4

R1
1

4D y2L
p ~r !1

gA
3

32p f p
4 H D12D1p

mp
2 1k2 J

FT

T

~r !, ~C14!
-

t

wherek[uku, Di5Di(k) and

$ f ~k2!%FT~r ![E d3k

~2p!3
SL

2 ~k2!e2 ik•r f ~k2!,

$ f ~k2!%FT
T ~r ![r

]

]r

1

r

]

]r E d3k

~2p!3
SL

2 ~k2!e2 ik•r f ~k2!.

The explicit results of Fourier transformation ofDi(k)
andk2Di(k) are given by~‘‘ → ’’ denotes Fourier transforma
tion!:

D1→2
mp

2

2pr 2E0

1

dz K2~x!,

D2→
1

2pr 2E0

1

dz zz̄ xK1~x!,

D3→
mp

2

2pr 2E0

1

dz@6K2~x!1xK1~x!#,

D4→
1

2pr 2E0

1

dz@zz̄ x2K0~x!1~6zz̄21!xK1~x!#,

D5→
1

2pr 2E0

1

dz xK1~x! ~C15!

and

k2D25D12mp
2 D5→2

mp
2

2pr 2E0

1

dz@K2~x!1xK1~x!#,
05520
k2D4→2
mp

2

2pr 2E0

1

dzF6zz̄21

zz̄
@2xK1~x!1K2~x!#

1x2K0~x!2xK1~x!G ,

k2D5→2
mp

2

2pr 2E0

1

dz
1

zz̄
@2xK1~x!1K2~x!#, ~C16!

where

x[
mpr

Azz̄
. ~C17!

Next we turn to the three-body currents of Eq.~A17!. The
Fourier-transformed three-body current has the form

A123
a 52 (

cycle(123)

gA
3

16f p
4 ~2t1

atW2•tW32t2
atW3•tW12t3

atW1•tW2!I123

~C18!

with

I123[F)
i 5 l

3 E d3kl

~2p!3
eikl•rle2kl

2/2L2G
3~2p!3d (3)~k11k21k3!

3S s12
4

3

k1s1•k1

k1
21mp

2 D s2•k2

k2
21mp

2

s3•k3

k3
21mp

2
.

The calculation ofI 123
i is rather involved. We may star

with exploiting the identity

~2p!3d (3)~k11k21k3!5E d3xeix•(k11k21k3) ~C19!
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to arrive at

I 123
i 52

4mp
4

3 E d3xF 5

12mp
2

s1
i dL̄

(3)
~x!1s1

i y0L̄
p

~ uxu!

2S x̂i x̂ j2
d i j

3 Ds1
j y2L̄

p
~ uxu!Gs2•~x1r12!

ux1r12u

3y1L̄
p

~ ux1r12u!
s3•~x1r13!

ux1r13u
y1L̄

p
~ ux1r13u!,

with L̄[A2L. This representation is nicely transparent, a
the resulting integrand is nonoscillatory and rapidly dam
ing. The remaining integration can be done by means o
Monte Carlo simulation with Metropolis random walks.

2. The parameter d̂R

Up to N3LO, unknown parameters occur only inA.
At N4LO, several unknown parameters appear in bothV and
A0, but no new parameters appear inA. By the chiral filter
argument, one can ignore the N4LO terms in bothV andA0
while going to N4LO in A. Thus, up to N4LO, the only
genuinely unknown parameters reside inA. The crucial ob-
servation is that up to N4LO, there is effectively only one
constantd̂R that governs the GT amplitudes of all the cas
under consideration. The argument goes as follows.

The two parameters,d̂1 and d̂2, and the fourX’s can be
combined into three unknown parametersd̂6,3 that reflect
short-range physics. It is the Fermi-Dirac statistics that
duces the number of unknowns from three to one. To
this, let Js and Jt be the exchange operators in spin a
isospin spaces, respectively;Js5 1

2 (11s1•s2), and Jt

5 1
2 (11tW1•tW2). An explicit calculation gives the identity

s13s25 i (s12s2)Js, and likewise fortW13tW2. Now, the
h

R
.S

.
o,

.
o,

y

05520
d
-
a

s

-
e

Fermi-Dirac statistics requires thatJ rJsJt521, where
J r is the Majorana exchange operator that exchanges
orbital coordinatesr1 and r2. As a result,

O 3
i ,a52O2

i ,aJsJt5O2
i ,aJ r . ~C20!

When multiplied by the delta functiond (3)(r), the opera-
tors are nonvanishing only for theL50 states, which then
implies S1T51. Acting onL50 states,O1

i ,a is identically
zero, since either spin or isospin must be equal to zero. F
thermore, theL50 states are eigenstates of the operatorJ r

with eigenvalue 1, so thatO2
i ,a becomes identical toO 3

i ,a .
Thus we are left with only one unknown parameter

d̂R[d̂21d̂3

5d̂112d̂21
1

3
ĉ31

2

3
ĉ41

1

6
. ~C21!

The above argument is not strictly valid for the cuto
delta functiondL

(3)(r), which has a finite~albeit very small!
range;L21. However, deviations from the ordinary del
function case is higher order in chiral counting and hen
can be ignored.

Since d̂R accompanies the regularized delta-functi
dL

(3)(r), its contribution depends onL rather strongly. How-
ever, the renormalization-group invariance of EFT requi
that this sensitivity toL should be compensated by the co
tributions of the remaining terms. Since the single-parti
piece ofA has noL dependence, and since all the curren
other thanA have only weakL dependence, this compens
tion must occur between the finite-range two-body GT a
the regularized delta-function term. This has been ind
verified in our calculation over a wide range ofL ~500–800
MeV! although, as mentioned above, the results for the
MeV cutoff should be viewed with caution.
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