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The astrophysicalS factor for the proton weak capture on3He is calculated with correlated-hyperspherical-
harmonics bound and continuum wave functions corresponding to realistic Hamiltonians consisting of the
Argonne v14 or Argonnev18 two-nucleon and Urbana-VIII or Urbana-IX three-nucleon interactions. The
nuclear weak charge and current operators have vector and axial-vector components that include one- and
many-body terms. All possible multipole transitions connecting any of thep-3He S- andP-wave channels to
the 4He bound state are considered. TheS factor at ap-3He center-of-mass energy of 10 keV, close to the
Gamow-peak energy, is predicted to be 10.1310220 keV b with the AV18/UIX Hamiltonian, a factor of.4.5
larger than the value adopted in the standard solar model. TheP-wave transitions are found to be important,
contributing about 40% of the calculatedS factor. The energy dependence is rather weak: the AV18/UIX
zero-energyS factor is 9.64310220 keV b, only 5% smaller than the 10 keV result quoted above. The model
dependence is also found to be weak: the zero-energyS factor is calculated to be 10.2310220 keV b with the
older AV14/UVIII model, only 6% larger than the AV18/UIX result. Our best estimate for theS factor at 10
keV is therefore (10.160.6)310220 keV b, when the theoretical uncertainty due to the model dependence is
included. This value for the calculatedS factor is not as large as determined in fits to the Super-Kamiokande
data in which thehep flux normalization is free. However, the precise calculation of theS factor and the
consequent absolute prediction for thehep neutrino flux will allow much greater discrimination among pro-
posed solar neutrino oscillation solutions.
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I. INTRODUCTION AND CONCLUSIONS

A. Motivation

Recently, there has been a revival of interest in the re
tion 3He(p,e1ne)

4He @1–6#. This interest has been spurre
by the Super-Kamiokande Collaboration measurements
the energy spectrum of electrons recoiling from scatter
with solar neutrinos@7–9#. Over most of the spectrum,
suppression of.0.5 is observed relative to the standard so
model ~SSM! predictions@10#. Above 12.5 MeV, however
there is an apparent excess of events. Thehepprocess, as the
proton weak capture on3He is known, is the only source o
solar neutrinos with energies larger than about 14 MeV
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their end-point energy is about 19 MeV. This fact has na
rally led to questions about the reliability of calculations
the hepweak capture cross section, upon which is based
currently accepted SSM value for the astrophysicalS factor
at zero energy, 2.3310220 keV b @11#. In particular, Bahcall
and Krastev have shown@1# that a large enhancement, by
factor in the range 25–30, of the SSMS-factor value given
above would essentially fit the observed excess@7# of recoil-
ing electrons, in any of three different neutrino scenarios
uniform suppression of the8B flux, vacuum oscillations, and
matter-enhanced oscillations@12#.

The theoretical description of thehepprocess, as well as
that of the neutron and proton radiative captures on2H, 3H,
and 3He, constitutes a challenging problem from the stan
point of nuclear few-body theory. Its difficulty can be appr
ciated by comparing the measured values for the cross
tion of thermal neutron radiative capture on1H, 2H, and
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3He. Their respective values are 334.260.5 mb @13#,
0.50860.015 mb@14#, and 0.05560.003 mb@15,16#. Thus,
in going from A52 to 4 the cross section has dropped
almost four orders of magnitude. These processes are
duced by magnetic-dipole transitions between the initial tw
cluster state in relativeS-wave and final bound states. In fac
the inhibition of theA53 and 4 captures has been und
stood for a long time@17#. The 3H and 4He wave functions,
denoted, respectively, byC3 andC4, are, to a good approxi
mation, eigenfunctions of the magnetic-dipole operatorm,
namely, mzC3.mpC3 and mzC4.0, where mp
52.793 n.m. is the proton magnetic moment~note that the
experimental value of the3H magnetic moment is 2.979
n.m., while 4He has no magnetic moment!. These relations
would be exact if the3H and 4He wave functions were to
consist of a symmetricS-wave term only, for example,C4
5f4(S)det@p↑1 ,p↓2 ,n↑3 ,n↓4#. Of course, tensor compo
nents in the nuclear interactions generate significantD-state
admixtures, which partially spoil this eigenstate property.
the extent that it is approximately satisfied, though, the m
trix elementŝ C3umzuC112& and^C4umzuC113& vanish due
to orthogonality between the initial and final states. This
thogonality argument fails in the case of the deuteron, si
then

mzC2.~mp2mn!f2~S!x0
0h0

1 , ~1.1!

wherexMS

S andhMT

T are two-nucleon spin and isospin state

respectively. The magnetic dipole operator can theref
connect the largeS-wave componentf2(S) of the deuteron
to aT51 1S0 np state~note that the orthogonality betwee
the latter and the deuteron follows from the orthogona
between their respective spin-isospin states!.

This quasiorthogonality, while again invalid in the case
the proton weak capture on protons, is also responsible
inhibiting thehepprocess. Both these reactions are induc
by the Gamow-Teller operator, which differs from the~lead-
ing! isovector spin part of the magnetic-dipole operator
sentially by an isospin rotation. As a result, thehep weak
capture andnd, pd, n-3He, andp-3H radiative captures are
extremely sensitive to~i! small components in the wav
functions, particularly theD-state admixtures generated b
tensor interactions, and~ii ! many-body terms in the elec
troweak current operator. For example, two-body curr
contributions provide, respectively, 50% and over 90%
the calculatedpd @18# and n-3He @11,19# cross sections a
very low energies.

In this respect, thehepweak capture is a particularly del
cate reaction, for two additional reasons: first and most
portantly, the one- and two-body current contributions
comparable in magnitude, but of opposite sign@11,20#; sec-
ond, two-body axial-vector currents, specifically those a
ing from excitation ofD isobars which have been shown
give the dominant contribution, are model dependent@20–
22#.

This destructive interference between one- and two-b
currents also occurs in then-3He ~‘‘ hen’’ ! radiative capture
@11,19#, with the difference that there the leading comp
01580
in-
-

-

o
-

-
e

,

re

f
or
d

-

t
f

-
e

-

y

-

nents of the two-body currents are model independent,
give a much larger contribution than that associated with
one-body current.

The cancellation in thehepprocess between the one- an
two-body matrix elements has the effect of enhancing
importance ofP-wave capture channels, which would ord
narily be suppressed. Indeed, one of the results of the pre
work is that these channels give about 40% of theS-factor
calculated value. That thehepprocess could proceed as ea
ily through P- as S-wave capture was not realized—or,
least, not sufficiently appreciated@23#—in all earlier studies
of this reaction we are aware of, with the exception of R
@4#, where it was suggested, on the basis of a very sim
one-body reaction model, that the3P0 channel may be im-
portant.

B. Previous studies of thehep capture

The history of hep cross section calculations has be
most recently reviewed by Bahcall and Krastev@1#. The first
estimate of the cross section@24# was based on the calcula
tion of the overlap of ans-wave proton continuum wave
function and a 1s neutron wave function in4He. It produced
a large value for theS factor, 630310220 keV b, and led to
the suggestion by Kuzmin@25# that between 20% and 50%
of the neutrinos in the high-energy end of the flux spectr
could originate from thehep reaction. Of course, as alread
discussed above and originally pointed out by Werntz a
Brennan@26#, if the 4He andp-3He states are approximated
respectively, by (1s)4 and (1s)32sc configurations (2sc is
the continuum wave function!, and antisymmetrized in
space, spin, and isospin, then the capture rate vanishes
tically. Werntz and Brennan@26# attempted to relate the ma
trix element of the axial current occurring in thehepcapture
to that of the electromagnetic current occurring in the th
mal neutron radiative capture on3He, and provided an uppe
limit for the hep S factor, 3.7310220 keV b, based on an
experimental upper limit of 100mb for the 3He(n,g)4He
cross section known at the time.

Werntz and Brennan assumed~i! the validity of isospin
symmetry, apart from differences in the neutron~in hencap-
ture! and proton~in hepcapture! continuum wave functions
which they related to each other viaucp(r )/cn(r )u
.C0 (C0 is the usual Gamow penetration factor!; ~ii ! that
two-body currents dominated both the weak and radia
captures, and that their matrix elements could be put in r
tion to each other through an isospin rotation. These auth
refined their earlier estimate for thehep Sfactor in a later
publication@23#, by using hard-sphere phase shifts to obta
a more realistic value for the ratio of the neutron to prot
continuum wave functions and by including the contributio
due toP-wave capture channels. These refinements led to
S factor value, 8.1310220 keV b, considerably larger than
they had obtained previously. They found, though, that thP
waves only contribute at the 10% level.

Subsequent studies of thehep process also attempted t
relate it to thehen radiative capture, but recognized the im
portance ofD-state components in the3He and 4He wave
functions—these had been ignored in Refs.@23,26#—and
used the Chemtob-Rho prescription@21# ~with some short-
range modification! for the two-body terms in the elec
troweak current operator. Tegne´r and Bargholtz@27# and
1-2
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WEAK PROTON CAPTURE ON3He PHYSICAL REVIEW C 63 015801
Wervelmanet al. @16# found, using a shell-model descriptio
of the initial and final states, that two-body current contrib
tions do not dominate the capture processes, in sharp con
with the assumptions of Refs.@23,26# and the later conclu-
sions of Refs.@11,19,20#. These two groups as well as Wol
et al. @15# arrived, nevertheless, at contradictory results, d
to the different values calculated for the ratio of weak
electromagnetic matrix elements. Tegne´r and Bargholtz@27#
obtained anS-factor value of (1768)310220 keV b, the
spread being due to the uncertain experimental value of
thermal neutron capture cross section before 1983. This
diction was sharpened by Wolfset al. @15#, who measured
thehencross section precisely. They quoted anhep S-factor
value of (15.364.7)310220 keV b. Wervelmanet al. @16#
also measured thehen cross section, reporting a value o
(5563) mb, in excellent agreement with the measurem
by Wolfs et al. of (5466) mb, but estimated anhep Sfac-
tor in the range (5768)310220 keV b. These discrepancie
are presumably due to the schematic wave functions use
the calculations.

In an attempt to reduce the uncertainties in the predic
values for both the radiative and weak capture rates, f
microscopic calculations of these reactions were perform
in the early 1990s@19,20#, based on ground- and scatterin
state wave functions obtained variationally from a realis
Hamiltonian with two- and three-nucleon interactions. T
main part of the electromagnetic current operator~denoted as
‘‘model independent’’! was constructed consistently from
the two-nucleon interaction model. The less well know
~‘‘model dependent’’! electroweak currents associated w
the excitation of intermediateD isobars and with transition
couplings, such as the electromagnetic or axialrp current,
were also included. However, it was emphasized that t
contribution was to be viewed as numerically uncertain,
very little empirical information is available on their cou
pling constants and short-range behavior. These stu
showed that both thehenandhepreactions have large~in the
case of the radiative capture, dominant! contributions from
two-body currents. Indeed, the values obtained with o
body only and full currents for thehep S factor ~radiative
capture cross section! were, respectively, 5.8310220 and
1.3310220 keV b ~6 and 112mb). These results indicate
that the common practice of inferring thehep Sfactor from
the measured radiative capture cross section is bound t
misleading, because of different initial-state interactions
then-3He andp-3He channels, and because of the large c
tributions associated with the two-body components of
electroweak current operator and their destructive inter
ence with the one-body current contributions. Yet the s
stantial overprediction of thehencross section, 112mb ver-
sus an experimental value of 55mb, was unsatisfactory. I
became clear that the contributions of the ‘‘mod
dependent’’ currents, particularly those due to theD isobar,
were unreasonably large~about 40 mb out of the total
112 mb). It was therefore deemed necessary to include
D degrees of freedom explicitly in the nuclear wave fun
tions, rather than eliminate them in favor of effective tw
body operators acting on nucleon coordinates, as had b
done in earlier studies. This led to the development of
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transition-correlation operator~TCO! method @11#—a
scaled-down approach to a fullN1D coupled-channel treat
ment. The radiative capture cross section was now calcul
to be between 75 and 80mb @11# ~excluding the small con-
tribution of the ‘‘uncertain’’ vpg current!, the spread de-
pending on whether thepND coupling constant in the tran
sition interactions is taken either from experiment or fro
the quark model. In this approach, thehep S factor was
calculated to be in the range between 1.4310220 and 3.1
310220 keV b @11#, the spread due to whether the axialND
coupling was determined by fitting the Gamow-Teller mat
element in tritiumb decay or, again, taken from the qua
model~uncertainties in the values of thepND coupling had
a much smaller impact!. In fact, the SSM value for the
hep Sfactor now quoted in the literature@1,2# is the average
of these last two results.

C. Overview of present calculations

Improvements in the modeling of two- and three-nucle
interactions and the nuclear weak current, and the signific
progress made in the last few years in the description of
bound and continuum four-nucleon wave functions, ha
prompted us to reexamine thehep reaction. The nuclear
Hamiltonian has been taken to consist of the Argonnev18
two-nucleon@28# and Urbana-IX three-nucleon@29# interac-
tions. To make contact with the earlier studies@11,20#, how-
ever, and to have some estimate of the model dependen
the results, the older Argonnev14 two-nucleon @30# and
Urbana-VIII three-nucleon@31# interaction models have als
been used. Both these Hamiltonians, the AV18/UIX a
AV14/UVIII, reproduce the experimental binding energi
and charge radii of the trinucleons and4He in exact Green’s
function Monte Carlo~GFMC! calculations@32,33#.

The correlated-hyperspherical-harmonics~CHH! method
is used here to solve variationally the bound- and scatter
state four-nucleon problem@34,35#. The binding energy of
4He calculated with the CHH method@34,36# is within
1–2 %, depending on the Hamiltonian model, of that o
tained with the GFMC method. The accuracy of the CH
method to calculate scattering states has been success
verified in the case of the trinucleon systems by compar
results for a variety ofNd scattering observables obtained b
a number of groups using different techniques@37#. Indeed,
the numerical uncertainties in the calculation of the t
nucleon continuum have been so drastically reduced thaNd
scattering observables can now be used to directly study
sensitivity to two- and three-nucleon interaction models—
Ay ‘‘puzzle’’ constitutes an excellent example of this type
studies@38#.

Studies along similar lines show@39# that the CHH solu-
tions for the four-nucleon continuum are also highly acc
rate. The CHH predictions@35# for the n-3H total elastic
cross section,sT5p(uasu213uatu2), and coherent scatterin
length,ac5as/413at/4, measured by neutron interferomet
techniques—as and at are the singlet and triplet scatterin
lengths—have been found to be in excellent agreement w
the corresponding experimental values. Then-3H cross sec-
tion is known over a rather wide energy range, and its
1-3



n
fo

F

tt
0

alu
w

ia
d
th
nc

n
en
an
he

an
ra

an
r
f

f
e
rs

ing
th

io
th

to

h
d

n
lly

an
on

u

pro-
el-
ly
very

tro-
r-

gy

the
k:

t 0
nt,

be
ed
-

ce
first
,

lv-

tly

the
at

ak

X

ny-
the

a-
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trapolation to zero energy is not problematic@40#. The situ-
ation is different for thep-3He channel, for which the
scattering lengths have been determined from effective ra
extrapolations of data taken above 1 MeV, and are there
somewhat uncertain,as5(10.862.6) fm @41# and at5(8.1
60.5) fm @41# or (10.261.5) fm @27#. Nevertheless, the
CHH results are close to the experimental values above.
example, the AV18/UIX Hamiltonian predicts@35# as
510.1 fm andat59.13 fm.

In Refs. @11,20# variational Monte Carlo~VMC! wave
functions had been used to describe both bound and sca
ing states. The triplet scattering length was found to be 1
fm with the AV14/UVIII Hamiltonian model, in satisfactory
agreement with the experimental determination and the v
obtained with the more accurate CHH wave functions. Ho
ever, the present work includes allS- andP-wave channels,
namely, 1S0 , 3S1 , 3P0 , 1P1 , 3P1, and 3P2, while all pre-
vious works only retained the3S1 channel, which was
thought, erroneously, to be the dominant one.

The nuclear weak current consists of vector and ax
vector parts, with corresponding one-, two-, and many-bo
components. The weak vector current is constructed from
isovector part of the electromagnetic current, in accorda
with the conserved-vector-current~CVC! hypothesis. Two-
body weak vector currents have ‘‘model-independent’’ a
‘‘model-dependent’’ components. The model-independ
terms are obtained from the nucleon-nucleon interaction,
by construction satisfy current conservation with it. T
leading two-body weak vector current is the ‘‘p-like’’ op-
erator, obtained from the isospin-dependent spin-spin
tensor nucleon-nucleon interactions. The latter also gene
an isovector ‘‘r-like’’ current, while additional isovector
two-body currents arise from the isospin-independent
isospin-dependent central and momentum-dependent inte
tions. These currents are short ranged and numerically
less important than thep-like current. With the exception o
the r-like current, they have been neglected in the pres
work. The model-dependent currents are purely transve
and therefore cannot be directly linked to the underly
two-nucleon interaction. The present calculation includes
isovector currents associated with excitation ofD isobars
which, however, are found to give a rather small contribut
in weak vector transitions, as compared to that due to
p-like current. Thep-like and r-like weak vector charge
operators have also been retained in the present study.

The leading two- and many-body terms in the axial-vec
current, in contrast to the case of the weak vector~or elec-
tromagnetic! current, are those due toD-isobar excitation,
which are treated within the TCO scheme. This scheme
in fact been extended@42# to include three-body connecte
terms which were neglected in the earlier work@11#. The
axial charge operator includes the long-range pion-excha
term @43#, required by low-energy theorems and the partia
conserved-axial-current relation, as well as the~expected!
leading short-range terms constructed from the central
spin-orbit components of the nucleon-nucleon interacti
following a prescription due to Kirchbachet al. @44#.

The largest model dependence is in the weak axial c
rent. To minimize it, the poorly knownN→D transition
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axial-vector coupling constant has been adjusted to re
duce the experimental value of the Gamow-Teller matrix
ement in tritiumb decay. While this procedure is inherent
model dependent, its actual model dependence is in fact
weak, as has been shown in Ref.@45#. The analysis carried
out there could be extended to the present case.

D. Conclusions

We present here a discussion of the results for the as
physical S factor and their implications for the Supe
Kamiokande~SK! solar neutrino spectrum.

1. Results for the S factor

Our results for the astrophysicalS factor, defined as

S~E!5Es~E!exp~4pa/v rel!, ~1.2!

wheres(E) is thehepcross section at center-of-mass ener
E, v rel is thep-3He relative velocity, anda is the fine struc-
ture constant, are reported in Table I. By inspection of
table, we note that~i! the energy dependence is rather wea
the value at 10 keV is only about 4% larger than that a
keV; ~ii ! theP-wave capture states are found to be importa
contributing about 40% of the calculatedS factor. However,
the contributions fromD-wave channels are expected to
very small. We have verified explicitly that they are inde
small in 3D1 capture.~iii ! The many-body axial-vector cur
rents associated withD excitation play a crucial role in the
~dominant! 3S1 capture, where they reduce theS factor by
more than a factor of 4; thus the destructive interferen
between the one- and many-body current contributions,
obtained in Ref.@20#, is confirmed in the present study
based on more accurate wave functions. The~suppressed!
one-body contribution comes mostly from transitions invo
ing theD-state components of the3He and 4He wave func-
tions, while the many-body contributions are predominan
due to transitions connecting theSstate in3He to theD state
in 4He or vice versa.

It is important to stress the differences between
present and all previous studies. Apart from ignoring, or
least underestimating, the contribution due toP waves, the
latter only considered the long-wavelength form of the we
multipole operators, namely, theirq50 limit, whereq is the

TABLE I. The hep S factor, in units of 10220 keV b, calcu-
lated with CHH wave functions corresponding to the AV18/UI
Hamiltonian model, atp-3He c.m. energiesE50, 5, and 10 keV.
The rows labeled ‘‘One-body’’ and ‘‘Full’’ list the contributions
obtained by retaining the one-body only and both one- and ma
body terms in the nuclear weak current. The contributions due
3S1 channel only and allS- and P-wave channels are listed sep
rately.

E50 keV E55 keV E510 keV
3S1 S1P 3S1 S1P 3S1 S1P

One-body 26.4 29.0 25.9 28.7 26.2 29.3
Full 6.38 9.64 6.20 9.70 6.36 10.1
1-4
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WEAK PROTON CAPTURE ON3He PHYSICAL REVIEW C 63 015801
magnitude of the momentum transfer. In3P0 capture, for
example, only theC0 multipole, associated with the wea
axial-vector charge, survives in this limit, and the cor
spondingS factor is calculated to be 2.2310220 keV b, in-
cluding two-body contributions. However, when the tran
tion induced by the longitudinal component of the axi
vector current~via the L0 multipole, which vanishes atq
50) is also taken into account, theS factor becomes 0.82
310220 keV b, because of destructive interference betwe
the C0 andL0 matrix elements~see discussion in Sec. II C!.
Thus use of the long-wavelength approximation in the cal
lation of thehepcross section leads to inaccurate results

Finally, besides the differences listed above, the pres
calculation also improves that of Ref.@11# in a number of
other important respects: first, it uses CHH wave functio
corresponding to the latest generation of realistic inter
tions; second, the model for the nuclear weak current
been extended to include the axial-vector charge as we
the vector charge and current operators. Third, the one-b
operators now take into account the 1/m2 relativistic correc-
tions, which had previously been neglected. In3S1 capture,
for example, these terms increase by 25% the dominant~but
suppressed! L1 and E1 matrix elements calculated with th
~lowest-order! Gamow-Teller operator. These improvemen
in the treatment of the one-body axial-vector current in
rectly affect also the contributions of theD-excitation cur-
rents, since theND transition axial-vector coupling constan
is determined by reproducing the Gamow-Teller matrix e
ment in tritiumb decay, as discussed in Sec. IV E below

The chief conclusion of the present work is that thehep S
factor is predicted to be.4.5 times larger than the valu
adopted in the SSM. This enhancement, while very sign
cant, is smaller than that first suggested in Refs.@1,3#, and
then reconsidered by the SK Collaboration in Ref.@9#. A
discussion of the implications of our results for the SK so
neutrino spectrum is given below.

Even though our result is inherently model dependen
is unlikely that the model dependence is large enough
accommodate a drastic increase in the value obtained h
Indeed, calculations using Hamiltonians based on the AV
two-nucleon interaction only and the older AV14/UVIII two
and three-nucleon interactions predict zero energyS-factor
values of 12.1310220 and 10.2310220 keV b, respectively.
It should be stressed, however, that the AV18 model, in c
trast to the AV14/UVIII, does not reproduce the experime
tal binding energies and low-energy scattering parameter
the three- and four-nucleon systems. The AV14/UVIII pr
diction is only 6% larger than the AV18/UIX zero-energ
result. This 6% variation should provide a fairly realist
estimate of the theoretical uncertainty due to the model
pendence. It would be very valuable, though, to repeat
present study with a Hamiltonian consisting of the CD-Bo
interaction@46# which, in contrast to the AV14 and AV18
models, has strongly nonlocal central and tensor com
nents. We would expect the CD-Bonn calculation to pred
an S-factor value close to that reported here, provided
axial-vector current in that calculation was again constrai
to reproduce the known Gamow-Teller matrix element
01580
-

-

n

-

nt

,
-
s

as
dy

-

-

-

r

it
to
re.
8

-
-
of
-

e-
e

o-
t
e
d

tritium b decay@45#. To conclude, our best estimate for th
S factor at 10 keV c.m. energy is therefore (10.160.6)
310220 keV b.

2. Effect on the Super-Kamiokande solar neutrino spectrum

Super-Kamiokande~SK! detects solar neutrinos b
neutrino-electron scattering. The energy is shared betw
the outgoing neutrino and scattered electron, leading t
very weak correlation between the incoming neutrino ene
and the measured electron energy. The electron angle
tive to the solar direction is also measured, which would
principle allow reconstruction of the incoming neutrino e
ergy. However, the kinematic range of the angle is very f
ward, and is comparable to the angular resolution of the
tector. Furthermore, event-by-event reconstruction of
neutrino energy would be prevented by the detector ba
ground. Above its threshold of several MeV, SK is sensit
to the 8B electron neutrinos. These have a total flux
5.153106 cm22 s21 in the SSM@10#. While the flux is un-
certain to about 15%, primarily due to the nuclear-phys
uncertainties in the7Be(p,g)8B cross section, the spectra
shape is more precisely known@47#.

The SK results are presented as the ratio of the meas
electron spectrum to that expected in the SSM with no n
trino oscillations. Over most of the spectrum, this ratio
constant at.0.5. At the highest energies, however, an e
cess relative to 0.53SSM is seen~though it has diminished
in successive data sets!. The SK 825-day data, determine
graphically from Fig. 8 of Ref.@9#, are shown by the points
in Fig. 1 ~the error bars denote the combined statistical a
systematic error!. The excess above 12.5 MeV may be inte
preted as neutrino-energy dependence in the neutrino o
lation probability that is not completely washed out in t
electron spectrum. This excess has also been interprete

FIG. 1. Electron energy spectrum for the ratio between
Super-Kamiokande 825-day data and the expectation based o
oscillated 8B neutrinos@10#. The data were extracted graphical
from Fig. 8 of Ref.@9#. The five curves correspond, respectively,
no hep contribution ~dotted line!, and an enhancementa of 2.2
~solid line!, 4.4 ~long-dashed line!, 10 ~dashed line!, and 20~dash-
dotted line!.
1-5
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possible evidence for a largehep flux @1,3,9# ~though note
that the data never exceeds thefull SSM expectation from8B
neutrinos!. In the SSM, the totalhep flux is very small,
2.103103 cm22 s21. However, its end-point energy i
higher than for the8B neutrinos, 19 MeV instead of about 1
MeV, so that thehep neutrinos may be seen at the highe
energies. This is somewhat complicated by the energy r
lution of SK, which allows8B events beyond their nomina
end point. The ratio of thehepflux to its value in the SSM
~based on thehep S-factor prediction of Ref.@11#! will be
denoted bya, defined as

a[
Snew

SSSM
3Posc, ~1.3!

wherePosc is the hep-neutrino suppression constant. In th
present work,a5(10.1310220 keV b)/(2.3310220 keV b)
54.4, if hep neutrino oscillations are ignored. The lines
Fig. 1 indicate the effect of various values ofa on the ratio
of the electron spectrum with both8B andhep to that with
only 8B ~the SSM!. Though some differences are expected
the hepspectral shape due toP-wave contributions, here we
simply use the standardhep spectrum shape@48#. In calcu-
lating this ratio, the8B flux in the numerator has been su
pressed by 0.47, the best-fit constant value for the obse
suppression. If thehep neutrinos are suppressed by.0.5,
thena52.2. Two other arbitrary values ofa ~10 and 20! are
shown for comparison. As for the SK data, the results
shown as a function of the total electron energy in 0.5 M
bins. The last bin, shown covering 14–15 MeV, actually e
tends to 20 MeV. The SK energy resolution was appro
mated by convolution with a Gaussian of energy-depend
width, chosen to match the SK LINAC calibration data@49#.

The effects of a largerhep flux should be compared to
other possible distortions of the ratio. The data show no
cess at low energies, thus limiting the size of a neutr
magnetic moment contribution to the scattering@50#. The 8B
neutrino energy spectrum has recently been remeasure
Ortiz et al. @51# and their spectrum is significantly larger
high energies than that of Ref.@47#. Relative to the standard
spectrum, this would cause an increase in the ratio at h
energies comparable to thea54.4 case. The measured ele
tron spectrum is very steep, and the fraction of events ab
12.5 MeV is only;1% of the total above threshold. Thu
an error in either the energy scale or resolution could ca
an apparent excess of events at high energy. However, t
are known precisely from the SK LINAC@49# calibration; an
error in either could explain the data only if it were at abo
the 3s or 4s level @9#.

The various neutrino oscillation solutions can be dist
guished by their neutrino-energy dependence, though the
fects on the electron spectrum are small. Generally, the r
is expected to be rising at high energies, much like the ef
of an increasedhep flux. The present work predictsa54.4
~anda52.2 if thehepneutrinos oscillate!. From Fig. 1, this
effect is smaller than the distortion seen in the data or fo
in Refs. @1,3,9#, where thehep flux was fitted as a free pa
rameter. However, the much more important point is that
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is anabsoluteprediction. Fixing the value ofa will signifi-
cantly improve the ability of SK to identify the correct os
cillation solution.

In the remainder of the paper we provide details of t
calculation leading to these conclusions. In Sec. II we der
thehepcross section in terms of reduced matrix elements
the weak current multipole operators. In Sec. III we discu
the calculation of the bound- and scattering-state wave fu
tions with the CHH method, and summarize a number
results obtained for the4He binding energy andp-3He elas-
tic scattering observables, comparing them to experime
data. In Sec. IV we review the model for the nuclear we
current and charge operators, while in Sec. V we prov
details about the calculation of the matrix elements and
sulting cross section. Finally, in Sec. VI we summarize a
discuss our results.

II. CROSS SECTION

In this section we sketch the derivation of the cross s
tion for thep-3He weak capture process. The center-of-m
~c.m.! energies of interest are of the order of 10 keV—t
Gamow-peak energy is 10.7 keV—and it is therefore con
nient to expand thep-3He scattering state into partial wave
and perform a multipole decomposition of the nuclear we
charge and current operators. The present study includeS-
andP-wave capture channels, i.e., the1S0 , 3S1 , 3P0 , 1P1 ,
3P1, and 3P2 states in the notation2S11LJ with S50,1, and
retains all contributing multipoles connecting these state
the Jp501 4He ground state. The relevant formulas a
given in the next three subsections. Note that the1P1 , 3P1
and 3S1 , 3D1 channels are coupled. For example, a pu
1P1 incoming wave will produce both1P1 and 3P1 outgo-
ing waves. The degree of mixing is significant, particula
for the P waves, as discussed in Sec. III C.

A. Transition amplitude

The capture process3He(p,e1ne)
4He is induced by the

weak interaction Hamiltonian@52#

HW5
GV

A2
E dx e2 i(pe1pn)•xl s j s~x!, ~2.1!

where GV is the Fermi coupling constant (GV51.149 39
31025 GeV22 @53#!, l s is the leptonic weak current,

l s5ūngs~12g5!ve[~ l̄ 0 ,2 l!, ~2.2!

and j s(x) is the hadronic weak current density. The positr
and ~electron! neutrino momenta and spinors are denot
respectively, bype , pn andve , un . The Bjorken-Drell@54#
conventions are used for the metric tensorgst andg matri-
ces. However, the spinors are normalized asve

†ve5un
†un

51.
The transition amplitude in the c.m. frame is then giv

by
1-6
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^ f uHWu i &5
GV

A2
l s^2q;4Heu j s

†~q!up;p 3He&, ~2.3!

where q5pe1pn , up;p 3He&, and u2q;4He& represent the
p-3He scattering state with relative momentump and 4He
bound state recoiling with momentum2q, respectively, and

j s~q!5E dx eiq•xj s~x![„r~q!, j ~q!…. ~2.4!

The dependence of the amplitude upon the spin project
of the proton and3He is understood. It is useful to perform
a partial-wave expansion of thep-3He scattering wave
function

Cp,s1s3

(1) 5A4p (
LSJJz

A2L11iLK 1

2
s1 ,

1

2
s3USJzL

3^SJz ,L0uJJz&C̄113
LSJJz, ~2.5!

with

C̄113
LSJJz5eisL (

L8S8
@12 iRJ#LS,L8S8

21 C113
L8S8JJz , ~2.6!

wheres1 ands3 are the proton and3He spin projections,L,
S, andJ are the relative orbital angular momentum, chan
spin (S50,1), and total angular momentum (J5L1S), re-
spectively,RJ is the R matrix in channelJ, and sL is the
Coulomb phase shift,

sL5arg@G~L111 ih!#, ~2.7!

h5
2a

v rel
. ~2.8!

Here a is the fine-structure constant andv rel is the p-3He
relative velocity,v rel5p/m, m being the reduced mass,m
5mm3 /(m1m3) (m and m3 are the proton and3He rest
masses, respectively!. Note thatC (1) has been constructe
to satisfy outgoing-wave boundary conditions, and that
spin quantization axis has been chosen to lie alongp̂, which
defines thez axis. Finally, the scattering wave functio
C113

LSJJz as well as the4He wave functionC4 are obtained
variationally with the CHH method, as described in Sec.

The transition amplitude is then written as

^ f uHWu i &5
GV

A2
A4p (

LSJJz

A2L11iLK 1

2
s1 ,

1

2
s3USJzL

3^SJz ,L0uJJz&F l̄ 0^C4ur†~q!uC̄113
LSJJz&

2 (
l50,61

l l^C4uêql* • j†~q!uC̄113
LSJJz&G , ~2.9!
01580
ns

l

e

.

where, with the future aim of a multipole decomposition
the weak transition operators, the lepton vectorl has been
expanded as

l5 (
l50,61

l lêql* , ~2.10!

with l l5êql• l, and

êq0[êq3 , ~2.11!

êq61[7
1

A2
~ êq16 iêq2!. ~2.12!

The orthonormal basisêq1 , êq2 , êq3 is defined byêq35q̂,
êq25p3q/up3qu, êq15êq23êq3.

B. Multipole expansion

Standard techniques@52# can now be used to perform th
multipole expansion of the weak charge and current ma
elements occurring in Eq.~2.9!. The spin quantization axis is
alongp̂ rather than alongq̂. Thus, we first express the state
quantized alongp̂ as linear combinations of those quantiz
along q̂:

uJJz& p̂5(
Jz8

DJ
z8Jz

J
~2f,u,f!uJJz8& q̂ , ~2.13!

whereDJ
z8Jz

J
are standard rotation matrices@52,55# and the

anglesu andf specify the directionq̂. We then make use o
the transformation properties under rotations of irreduci
tensor operators to arrive at the following expressions:

^C4ur†~q!uC̄113
LSJJz&5A4p~2 i!J~2 !J2Jz

3D2Jz,0
J ~2f,2u,f!CJ

LSJ~q!,

~2.14!

^C4uêq0* • j†~q!uC̄113
LSJJz&5A4p~2 i!J~2 !J2Jz

3D2Jz,0
J ~2f,2u,f!LJ

LSJ~q!,

~2.15!

^C4uêql* • j†~q!uC̄113
LSJJz&52A2p~2 i!J~2 !J2Jz

3D2Jz ,2l
J ~2f,2u,f!

3@lMJ
LSJ~q!1EJ

LSJ~q!#.

~2.16!

Here l561, andCJ
LSJ, LJ

LSJ, EJ
LSJ and MJ

LSJ denote the
reduced matrix elements of the Coulomb (C), longitudinal
(L), transverse electric (E), and transverse magnetic~M!
multipole operators, explicitly given by@52#

Cll z
~q!5E dx r~x! j l~qx!Yll z

~ x̂!, ~2.17!
1-7
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Lll z
~q!5

i

qE dx j ~x!•¹ j l~qx!Yll z
~ x̂!, ~2.18!

Ell z
~q!5

1

qE dx j ~x!•¹3 j l~qx!Y l l z

l1 , ~2.19!

Mll z
~q!5E dx j ~x!• j l~qx!Y l l z

l1 , ~2.20!

whereY l l z

l1 are vector spherical harmonics.

Finally, it is useful to consider the transformation prope
ties under parity of the multipole operators. The we
charge/current operators have components of both sc
polar-vector~V! and pseudoscalar/axial-vector~A! character,
and hence

Tll z
5Tll z

~V!1Tll z
~A!, ~2.21!

where Tll z
is any of the multipole operators above. Obv

ously, the parity ofl th-poleV operators is opposite of that o
l th-pole A operators. The parity of Coulomb, longitudina
and electricl th-poleV operators is (2) l , while that of mag-
netic l th-poleV operators is (2) l 11.

C. Cross section

The cross section for the3He(p,e1ne)
4He reaction at a

c.m. energyE is given by

s~E!5E 2pdS Dm1E2
q2

2m4
2Ee2EnD

3
1

v rel

1

4 (
sesn

(
s1s3

u^ f uHWu i &u2
dpe

~2p!3

dpn

~2p!3
,

~2.22!

whereDm5m1m32m4519.287 MeV (m4 is the 4He rest
mass!, andv rel is thep-3He relative velocity defined above
It is convenient to write

1

4 (
sesn

(
s1s3

u^ f uHWu i &u25~2p!2GV
2LstN

st, ~2.23!

where the lepton tensorLst is defined as

Lst[
1

2 (
sesn

l sl t*

5
1

2
trFgs~12g5!

~p” e2me!

2Ee
gt~12g5!

p” n

2En
G

5ve
svn

t1vn
sve

t2gstve•vn1 iesatbve,avn,b , ~2.24!

with e0123521, ve
s5pe

s/Ee , and vn
s5pn

s/En . The nuclear
tensorNst is defined as
01580
-
k
ar/

Nst[(
s1s3

Ws~q;s1s3!Wt* ~q;s1s3!, ~2.25!

where

Ws50~q;s1s3!5(
LSJ

X0
LSJ~ q̂;s1s3!CJ

LSJ~q!, ~2.26!

Ws53~q;s1s3!5(
LSJ

X0
LSJ~ q̂;s1s3!LJ

LSJ~q!, ~2.27!

Ws561~q;s1s3!52
1

A2
(
LSJ

X71
LSJ~ q̂;s1s3!

3@6MJ
LSJ~q!1EJ

LSJ~q!#. ~2.28!

The dependence upon the directionq̂ and proton and3He
spin projectionss1 ands3 is contained in the functionsXl

LSJ

given by

Xl
LSJ~ q̂;s1s3!5(

Jz

A2L11iL~2 i!J~2 !J2Jz

3 K 1

2
s1 ,

1

2
s3USJzL ^SJz ,L0uJJz&

3D2Jz ,l
J ~2f,2u,f!, ~2.29!

with l50,61. Note that the Cartesian components of t
lepton and nuclear tensors (s,t51,2,3) are relative to the
orthonormal basisêq1 , êq2 , êq3, defined at the end of Sec
II A.

The expression for the nuclear tensor can be further s
plified by making use of the reduction formulas for the pro
uct of rotation matrices@55#. In fact, it can easily be shown
that the dependence ofNst upon the angle cosu5p̂•q̂ can
be expressed in terms of Legendre polynomialsPn(cosu)
and associated Legendre functionsPn

m(cosu) with m51,2.
However, given the large number of channels included in
present study~all S- andP-wave capture states!, the resulting
equations forNst are not particularly illuminating, and will
not be given here. Indeed, the calculation of the cross s
tion, Eq. ~2.22!, is carried out numerically with the tech
niques discussed in Sec. V B.

It is useful, though, to discuss the simple case in wh
only the contributions involving transitions from the3S1 and
3P0 capture states are considered. In the limitq50, one then
finds

s~E!.
2

p

GV
2

v rel
me

5f 0~E!@ uL1
011~A!u21uE1

011~A!u2

1uC0
110~A!u2#, ~2.30!

whereL1
011(A) and E1

011(A) are the longitudinal and trans
verse electric axial-vector current reduced matrix eleme
1-8
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WEAK PROTON CAPTURE ON3He PHYSICAL REVIEW C 63 015801
~from 3S1 capture!, andC0
110(A) is the Coulomb axial-vecto

charge reduced matrix element~from 3P0 capture! at q50.
Here the ‘‘Fermi function’’ f 0(E) is defined as

f 0~E!5E
1

x0
dx xAx221~x02x!2, ~2.31!

with x05(Dm1E)/me . The expression in Eq.~2.30! can
easily be related,mutatis mutandis, to that given in Ref.@20#.

Although theq50 approximation can appear to be a
equate for thehep reaction, for whichq<20 MeV/c and
qR.0.14 or less (R being the 4He radius!, the expression
for the cross section given in Eq.~2.30! is in fact inaccurate.
To elaborate this point further, consider3P0 capture. The
long-wavelength forms of theC0(q;A) andL0(q;A) multi-
poles, associated with the axial-vector charge and longit
nal component of the axial-vector current, are constant
linear in q, respectively, as can be easily inferred from E
~2.17! and ~2.18!. The corresponding reduced matrix el
ments are, to leading order inq,

C0
110~q;A!.c01•••, ~2.32!

L0
110~q;A!. l 0q1•••, ~2.33!

wherec05C0
110(A) in the notation of Eq.~2.30!. The 3P0

capture cross section can be written, in this limit, as

s~E;3P0!.
2

p

GV
2

v rel
me

5@ f 0~E!uc0u21 f 1~E!me
2u l 0u2

22 f 2~E!me Re~c0* l 0!#. ~2.34!

When the full model for the nuclear axial-vector charge a
current is considered, the constantsc0 and l 0, at zerop-3He
relative energy, are calculated to bec05 i0.043 fm3/2 and
l 05 i0.197 fm5/2 ~note that they are purely imaginary atE
50). The ‘‘Fermi functions’’ f 0(E), f 1(E), and f 2(E),
which arise after integration over the phase space, atE50
have the valuesf 0(0)52.543106, f 1(0)53.613109, and
f 2(0)59.593107. The zero energyS factor obtained by in-
cluding only the termc0 is 2.2310220 keV b. However,
when both thec0 and l 0 terms are retained, it become
0.68310220 keV b.

In fact, this last value is still inaccurate: when not only t
leading, but also the next-to-leading order terms are con
ered in the expansion of the multipoles in powers ofq ~see
Sec. V B!, the S factor for 3P0 capture increases to 0.8
310220 keV b, its fully converged value. The conclusion
this discussion is that use of the long-wavelength approxi
tion in thehep reaction leads to erroneous results.

Similar considerations also apply to the case of3S1 cap-
ture: at values ofq different from zero, the transition can b
induced not only by the axial current via theE1(A) and
L1(A) multipoles, but also by the axial-vector charge a
vector current via theC1(A) and M1(V) multipoles. While
the contribution ofM1(V) is much smaller than that of th
leadingE1(A) andL1(A), the contribution ofC1(A) is rela-
01580
i-
d
.

d

d-

a-

tively large, and its interference with that ofL1(A) cannot be
neglected. This point is further discussed in Sec. VI B.

As a final remark, we note that the general expression
the cross section in Eq.~2.22! as follows from Eqs.~2.23!–
~2.29! contains interference terms among the reduced ma
elements of multipole operators connecting different capt
channels. However, these interference contributions h
been found to account for less than 2% of the totalS factor at
zerop-3He c.m. energy.

III. BOUND- AND SCATTERING-STATE WAVE
FUNCTIONS

The 4He bound-state andp-3He scattering-state wav
functions are obtained variationally with the CHH meth
from realistic Hamiltonians consisting of the Argonnev18
two-nucleon@28# and Urbana-IX three-nucleon@29# interac-
tions ~the AV18/UIX model! or the older Argonnev14 two-
nucleon@30# and Urbana-VIII three-nucleon@31# interactions
~the AV14/UVIII model!. The CHH method, as implemente
in the calculations reported in the present work, has b
developed by Viviani, Kievsky, and Rosati in Ref
@34,35,56,57#. Here, it will be reviewed briefly for complete
ness, and a summary of relevant results obtained for
three- and four-nucleon bound-state properties, andp-3He
effective-range parameters will be presented.

A. CHH method

In the CHH approach a four-nucleon wave functionC is
expanded as

C5(
p

@cA~xAp ,yAp ,zAp!1cB~xBp ,yBp ,zBp!#, ~3.1!

where the amplitudescA andcB correspond, respectively, t
the partitions 311 and 212, and the indexp runs over the
even permutations of particlesijkl . The dependence on th
spin-isospin variables is understood. The overall antisymm
try of the wave functionC is ensured by requiring that bot
cA andcB change sign under the exchangei
 j .

The Jacobi variables corresponding to the partition 311
are defined as

xAp5r j2r i , ~3.2!

yAp5A4/3~r k2Ri j !, ~3.3!

zAp5A3/2~r l2Ri jk !, ~3.4!

while those corresponding to the partition 212 are defined as

xBp5r j2r i , ~3.5!

yBp5A2~Rkl2Ri j !, ~3.6!

zBp5r l2r k , ~3.7!
1-9
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whereRi j (Rkl) and Ri jk denote the c.m. positions of pa
ticles ij (kl) and ijk, respectively. In theLS-coupling
scheme, the amplitudescA andcB are expanded as

cA~xAp ,yAp ,zAp!5(
a

Fa,pfa
A~xAp ,yAp ,zAp!Ya,p

A ,

~3.8!

cB~xBp ,yBp ,zBp!5(
a

Fa,pfa
B~xBp ,yBp ,zBp!Ya,p

B ,

~3.9!

where

Ya,p
A 5$@@Yl 1a

~ ẑAp!Yl 2a
~ ŷAp!# l 12a

Yl 3a
~ x̂Ap!#La

3@@@sisj #Saa
sk#Sba

sl #Sa
%JJz

@@@ t i t j #Taa
tk#Tba

t l #TTz
,

~3.10!

Ya,p
B 5$@@Yl 1a

~ ẑBp!Yl 2a
~ ŷBp!# l 12a

Yl 3a
~ x̂Bp!#La

3@@sisj #Saa
@sksl #Sba

#Sa
%JJz

@@ t i t j #Taa
@ tkt l #Tba

#TTz
.

~3.11!

Here a channela is specified by orbital angular momen
l 1a , l 2a , l 3a , l 12a , and La ; spin angular momentaSaa ,
Sba , and Sa ; and isospinsTaa and Tba . The total orbital
and spin angular momenta and cluster isospins are
coupled to the assignedJJz andTTz .

The correlation factorsFa,p consist of the product of pair
correlation functions that are obtained from solutions of tw
body Schro¨dinger-like equations, as discussed in Ref.@34#.
These correlation factors take into account the strong st
dependent correlations induced by the nucleon-nucleon in
action, and improve the behavior of the wave function
small interparticle separations, thus accelerating the con
gence of the calculated quantities with respect to the num
of required hyperspherical harmonics basis functions,
fined below.

The radial amplitudesfa
A andfa

B are further expanded a

fa
A~xAp ,yAp ,zAp!5(

n,m

unm
a ~r!

r4
zAp

l 1ayAp
l 2axAp

l 3aXnm
a ~f2p

A ,f3p!,

~3.12!

fa
B~xBp ,yBp ,zBp!5(

n,m

wnm
a ~r!

r4
zBp

l 1ayBp
l 2axBp

l 3aXnm
a ~f2p

B ,f3p!,

~3.13!

where the magnitudes of the Jacobi variables have been
placed by the hyperspherical coordinates, i.e., the hype
dius r,

r5AxAp
2 1yAp

2 1zAp
2 5AxBp

2 1yBp
2 1zBp

2 , ~3.14!

which is independent of the permutationp considered, and
the hyperangles appropriate for partitionsA andB. The latter
are given by
01580
en

-

e-
r-
t
r-
er
e-

re-
a-

cosf3p5xAp /r5xBp /r, ~3.15!

cosf2p
A 5yAp /~r sinf3p!, ~3.16!

cosf2p
B 5yBp /~r sinf3p!. ~3.17!

Finally, the hyperangle functionsXnm
a consist of the product

of Jacobi polynomials,

Xnm
a ~b,g!5Nnm

a ~sinb!2mPn
K2a ,l 3a11/2

~cos 2b!

3Pm
l 1a11/2, l 2a11/2

~cos 2g!, ~3.18!

where the indicesm and n run, in principle, over all non-
negative integers,K2a5 l 1a1 l 2a12m12, andNnm

a are nor-
malization factors@34#.

Once the expansions for the radial amplitudesfA andfB

are inserted into Eqs.~3.8! and ~3.9!, the wave functionC
can schematically be written as

C5 (
anm

F znm
a,A~r!

r4
Znm

a,A~r,V!1
znm

a,B~r!

r4
Znm

a,B~r,V!G ,

~3.19!

where zA(r)[u(r) and zB(r)[w(r) are yet to be deter-
mined, and the factorsZnm

a,W , with W5A,B, include the de-
pendence upon the hyperradiusr due to the correlation func
tions, and the angles and hyperangles, denoted collecti
by V, and are given by

Znm
a,W~r,V!5(

p
Fa,pYa,p

W zW,p
l 1a yW,p

l 2a xW,p
l 3a Xn,m

a ~f2p
W ,f3p!.

~3.20!

The CHH method for three-nucleon systems has b
most recently reviewed in Ref.@18#, and will not be dis-
cussed here. It leads, in essence, to wave functions ha
the same structure as in Eq.~3.19! with suitably defined
Z(r,V).

B. 3He and 4He wave functions

The Rayleigh-Ritz variational principle

^dzCuH2EuC&50 ~3.21!

is used to determine the hyperradial functionsznm
a (r) in Eq.

~3.19! and bound-state energyE. Carrying out the variations
with respect to the functionsznm

a leads to a set of coupled
second-order linear differential equations in the variabler
which, after discretization, is converted into a generaliz
eigenvalue problem and solved by standard numerical te
niques@34#.

The present status of3He @58# and 4He @34,36# binding-
energy calculations with the CHH method is summarized
Tables II and III. The binding energies calculated with t
CHH method using the AV18 or AV18/UIX Hamiltonian
models are within 1.5% of corresponding ‘‘exact’’ GFM
results@32# and of the experimental value~when the three-
nucleon interaction is included!. The agreement between th
1-10
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CHH and GFMC results is less satisfactory when the AV
or AV14/UVIII model is considered, presumably because
the slower convergence of the CHH expansions for
AV14 interaction. This interaction has tensor compone
which do not vanish at the origin.

C. p-3He continuum wave functions

The p-3He cluster wave functionC113
LSJJz, having incom-

ing orbital angular momentumL and channel spinS (S
50,1) coupled to total angularJJz , is expressed as

C113
LSJJz5CC

JJz1CA
LSJJz, ~3.22!

where the termCC vanishes in the limit of large intercluste
separations, and hence describes the system in the re
where the particles are close to each other and their mu
interactions are strong. The termCA

LSJJz describes the system
in the asymptotic region, where intercluster interactions
negligible. It is given explicitly as

CA
LSJJz5

1

A4
(

i
(
L8S8

@@si ^ f3~ jkl !#S8^ YL8~ ŷi !#JJz

3FdLL8dSS8

FL8~pyi !

pyi

1RLS,L8S8
J

~p!
GL8~pyi !

pyi
g~yi !G , ~3.23!

TABLE II. Binding energies in MeV of4He calculated with the
CHH method using the AV18 and AV18/UIX, and the older AV1
and AV14/UVIII, Hamiltonian models. Also listed are the corr
sponding ‘‘exact’’ GFMC results@32,33# and the experimenta
value.

Model CHH GFMC

AV18 24.01 24.1~1!

AV18/UIX 27.89 28.3~1!

AV14 23.98 24.2~2!

AV14/UVIII 27.50 28.3~2!

Expt. 28.3

TABLE III. Binding energiesB3 of 3He, andp-3He singlet and
triplet S-wave scattering lengthsas andat calculated with the CHH
method using the AV18 and AV18/UIX, and the older AV14 an
AV14/UVIII, Hamiltonian models. The corresponding experimen
values are also listed.

Model B3 ~MeV! as ~fm! at ~fm!

AV14 7.03
AV18 6.93 12.9 10.0
AV14/UVIII 7.73 9.24
AV18/UIX 7.74 11.5 9.13

Expt. 7.72 10.862.6 @41# 8.160.5 @41#

10.261.5 @27#
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whereyi is the distance between the proton~particle i ) and
3He ~particles jkl), p is the magnitude of the relative mo
mentum between the two clusters,f3 is the 3He wave func-
tion, andFL and GL are the regular and irregular Coulom
functions, respectively. The functiong(yi) modifies the
GL(pyi) at small yi by regularizing it at the origin, and
g(yi)→1 as yi*10 fm, thus not affecting the asymptoti
behavior ofC113

LSJJz. Finally, the real parametersRLS,L8S8
J (p)

are theR-matrix elements introduced in Eq.~2.6!, which de-
termine phase shifts and~for coupled channels! mixing
angles at the energyp2/(2m) (m is the p-3He reduced
mass!. Of course, the sum overL8 andS8 is over all values
compatible with a givenJ and parity.

The ‘‘core’’ wave functionCC is expanded in the sam
CHH basis as the bound-state wave function, and both
matrix elementsRLS,L8S8

J (p) and functionsznm
a (r) occurring

in the expansion ofCC are determined by making the func
tional

@RLS,L8S8
J

~p!#5RLS,L8S8
J

~p!

2
m

A6
K C113

L8S8JJzUH2E32
p2

2m UC113
LSJJzL

~3.24!

stationary with respect to variations in theRLS,L8S8
J andznm

a

~Kohn variational principle!. HereE3527.72 MeV is the
3He ground-state energy. It is important to emphasize t
the CHH scheme, in contrast to Faddeev-Yakubovsky m
mentum space methods, permits the straightforward in
sion of Coulomb distortion effects in thep-3He channel.

The p-3He singlet and triplet scattering lengths predict
by the Hamiltonian models considered in the present w
are listed in Table III, and are found to be in good agreem
with available experimental values, although these are ra
poorly known. The experimental scattering lengths ha
been obtained, in fact, from effective range parametrizati
of data taken above 1 MeV, and therefore might have la
systematic uncertainties.

The most recent determination of phase-shift and mixi
angle parameters forp-3He elastic scattering has been pe
formed in Ref.@41# by means of an energy-dependent pha
shift analysis ~PSA!, including almost all data measure
prior 1993~for a listing of old PSA’s, see Ref.@41#!. New
measurements are currently under way at TUNL@59# and
Madison@60#. At low energies (E,4 MeV) the process is
dominated by scattering inL50 and 1 waves, with a smal
contribution from L52 waves. Therefore, the importan
channels are1S0 , 3P0 , 3S1-3D1 , 1P1-3P1 , 3P2 , 1D2-3D2,
and 3D3, ignoring channels withL.2. The general trend is
the following:~i! the energy dependence of theS-wave phase
shifts indicates that theL50 channel interaction between th
p and 3He is repulsive~mostly, due to the Pauli principle!,
while that of the fourP-wave phase shifts (3P0 , 1P1 , 3P1,
and 3P2) shows that in these channels there is a strong
traction. Indeed, this fact has led to speculations about
existence of four resonant states@61#. ~ii ! TheD-wave phase
shifts are rather tiny, even atE.2 MeV. ~iii ! The only

l
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mixing-angle parameter playing an important role atE
,4 MeV is e(Jp512), in channel1P1-3P1.

Precise measurements have been taken at a c.m. ener
1.2 MeV, and consist in differential cross sections(u) @62#
and proton analyzing powerAy(u) @60# data (u is the c.m.
scattering angle!. The theoretical predictions fors(u), ob-
tained from the AV18 and AV18/UIX interactions, are com
pared with the corresponding experimental data in Fig
Inspection of the figure shows that the differential cross s
tion calculated with the AV18/UIX model is in excellen
agreement with the data, except at backward angles.

By comparing, in Table IV, the calculated phase-shift a
mixing-angle parameters with those extracted from the P
@41# at E51.2 MeV, one observes a qualitative agreeme
except for the3P1 and 3P2 phase shifts which are signifi
cantly underestimated in the calculation. The mixing-an
parametere(12) is found to be rather large,.214°, in
qualitative agreement with that obtained from the PSA~it is

TABLE IV. Phase-shift and mixing-angle parameters~in deg!
for p-3He elastic scattering at c.m. energy of 1.2 MeV, calcula
with the CHH method using the AV18 and AV18/UIX Hamiltonia
models. The corresponding experimental values obtained in
phase-shift analysis of Ref.@41# are also listed.

Parameter AV18 AV18/UIX PSA

1S0 –33.3 –31.3 –27.463.5
3S1 –28.8 –27.1 –26.560.6
3P0 4.1 3.2 2.660.6
3P1 8.1 7.4 10.160.5
3P2 7.7 6.9 8.960.5
1P1 6.5 5.5 4.261.5
e(12) –14.7 –13.2 –7.860.6

FIG. 2. Differential cross sections(u) as function of the c.m.
scattering angleu at c.m. energy of 1.2 MeV. The experiment
data are taken from Ref.@62#. The long-dashed and solid lines co
respond, respectively, to the CHH calculations with the AV18 a
AV18/UIX Hamiltonian models.
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worth pointing out, however, that in the PSA the mixin
angle was constrained to vanish atE50, which may be un-
physical!. The experimental error for each parameter quo
in Ref. @41# is an average uncertainty over the whole ene
range considered, and it is therefore only indicative. It wo
be very interesting to relate these discrepancies to
Nd Ay puzzle and to specific deficiencies in the nuclear
teraction models. A detailed study ofp-3He elastic scattering
is currently underway and will published elsewhere@63#.

IV. WEAK CHARGE AND CURRENT OPERATORS

The nuclear weak charge and current operators h
scalar/polar-vector~V! and pseudoscalar/axial-vector~A!
components

r6~q!5r6~q;V!1r6~q;A!, ~4.1!

j6~q!5 j6~q;V!1 j6~q;A!, ~4.2!

whereq is the momentum transfer,q5pe1pn , and the sub-
scripts6 denote charge raising~1! or lowering (2) isospin
indices. Each component, in turn, consists of one-, two-,
many-body terms that operate on the nucleon degree
freedom:

r~q;a!5(
i

r i
(1)~q;a!1(

i , j
r i j

(2)~q;a!1•••, ~4.3!

j ~q;a!5(
i

j i
(1)~q;a!1(

i , j
j i j
(2)~q;a!1•••, ~4.4!

wherea5V, A and the isospin indices have been suppres
to simplify the notation. The one-body operatorsr i

(1) andj i
(1)

have the standard expressions obtained from a nonrelativ
reduction of the covariant single-nucleonV and A currents,
and are listed below for convenience. TheV-charge operator
is written as

r i
(1)~q;V!5r i ,NR

(1) ~q;V!1r i ,RC
(1) ~q;V!, ~4.5!

with

r i ,NR
(1) ~q;V!5t i ,6eiq•r i, ~4.6!

r i ,RC
(1) ~q;V!52 i

~2mv21!

4m2
t i ,6q•~si3pi !e

iq•r i. ~4.7!

The V-current operator is expressed as

j i
(1)~q;V!5

1

2m
t i ,6@pi ,eiq•r i#12 i

mv

2m
t i ,6q3sie

iq•r i,

~4.8!

where@¯,¯#1 denotes the anticommutator,p, s, andt are
the nucleon’s momentum, Pauli spin, and isospin operat
respectively, andmv is the isovector nucleon magnetic mo
ment (mv54.709 n.m.). Finally, the isospin raising an
lowering operators are defined as

d

e

d
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t i ,6[~t i ,x6 it i ,y!/2. ~4.9!

The term proportional to 1/m2 in r i ,RC
(1) (q;V) is the well-

known @64,65# spin-orbit relativistic correction. The vecto
charge and current operators above are simply obtained
the corresponding isovector electromagnetic operators by
replacementt i ,z/2→t i ,6 , in accordance with the CVC hy
pothesis. Theq dependence of the nucleon’s vector for
factors~and, in fact, also that of the axial-vector form facto
below! has been ignored, since the weak transition un
consideration here involves very small momentum transf
q<20 MeV/c. For this same reason, the Darwin-Foldy re
tivistic correction proportional toq2/(8m2) in r i ,RC

(1) (q;V)
has also been neglected. TheA-charge operator is given, t
leading order, by

r i
(1)~q;A!52

gA

2m
t i ,6si•@pi ,eiq•r i#1 , ~4.10!

while theA-current operator considered in the present w
includes leading and next-to-leading order corrections in
expansion in powers ofp/m, i.e.,

j i
(1)~q;A!5 j i ,NR

(1) ~q;A!1 j i ,RC
(1) ~q;A!, ~4.11!

with

j i ,NR
(1) ~q;A!52gAt i ,6sie

iq•r i, ~4.12!

j i ,RC
(1) ~q;A!5

gA

4m2
t i ,6S si@pi

2 ,eiq•r i#12@si•pipi ,eiq•r i#1

2
1

2
si•q @pi ,eiq•r i#12

1

2
q @si•pi ,eiq•r i#1

1 iq3pie
iq•r i D2

gP

2mmm
t i ,6qsi•qeiq•r i.

~4.13!

The axial-vector coupling constantgA is taken to be@66#
1.265460.0042, by averaging values obtained, respectiv
from the beta asymmetry in the decay of polarized neutr
(1.262660.0033 @67,68#! and the half-lives of the neutro
and superallowed 01→01 transitions, i.e., @2 f t(01

→01)/ f t(n)21#51.268160.0033 @66#. The last term in
Eq. ~4.13! is the induced pseudoscalar contribution (mm is
the muon mass!, for which the coupling constantgP is taken
as @69# gP526.78gA . As already mentioned in Sec. I, i
3S1 capture matrix elements ofj i ,NR

(1) are suppressed. Cons
quently, the relativistic terms included inj i ,RC

(1) , which would
otherwise contribute at the percent level, give in fact a 2
contribution relative to that of the leadingj i ,NR

(1) at q50.
Among these, one would naively expect the induced pseu
scalar term to be dominant, due to the relatively large va
of gP . This is not the case, however, since matrix eleme
of the induced pseudoscalar term scale w
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gPq2/(2gAmmm) (<0.014 in theq range of interest! rela-

tive to thoseq̂• j i ,NR
(1) (q;A). Note that in the limitq50, the

expressions forr i ,NR
(1) (q;V) and j i ,NR

(1) (q;A) reduce to the fa-
miliar Fermi and Gamow-Teller operators.

In the next five subsections we describe:~i! the two-body
V-current andV-charge operators, required by the CVC h
pothesis;~ii ! the two-bodyA-current andA-charge operators
due top- andr-meson exchanges, and therp mechanism;
~iii ! the V- and A-current and charge operators associa
with excitation ofD-isobar resonances, treated in perturb
tion theory and within the transition-correlation-operat
method. Since the expressions for these operators are
tered in a number of papers@11,20,70,71#, we collect them
here for completeness.

A. Two-body weak vector current operators

The weak vector~V! current and charge operators are d
rived from the corresponding electromagnetic operators
making use of the CVC hypothesis, which for two-bod
terms implies

@ 1
2 ~t i ,a1t j ,a!, j i j ,z

(2) ~q;g!#5 ieazbj i j ,b
(2) ~q;V!, ~4.14!

where j i j ,z
(2) (q;g) are the isovector~charge-conserving! two-

body electromagnetic currents, anda,b5x,y,z are isospin
Cartesian components. A similar relation holds between
electromagnetic charge operators and its weak vector co
terparts. The charge-raising or lowering weak vector curr
~or charge! operators are then simply obtained from the li
ear combinations

j i j ,6
(2) ~q;V!5 j i j ,x

(2) ~q;V!6 ij i j ,y
(2) ~q;V!. ~4.15!

The two-body electromagnetic currents have ‘‘mod
independent’’~MI ! and ‘‘model-dependent’’~MD! compo-
nents, in the classification scheme of Riska@72#. The MI
terms are obtained from the two-nucleon interaction, and
construction satisfy current conservation with it@70#. Studies
of the electromagnetic structure ofA52 –6 nuclei, such as
for example, the threshold electrodisintegration of the d
teron at backward angles@73#, the magnetic form factors o
the trinucleons@42#, the magnetic dipole transition form fac
tors in 6Li @74#, and finally the neutron and proton radiativ
captures on hydrogen and helium isotopes@19,73,75#—
properties in which the isovector two-body currents play
large role and are, in fact, essential for the satisfactory
scription of the experimental data—have shown that
leading operator is the~isovector! ‘‘ p-like’’ current obtained
from the isospin-dependent spin-spin and tensor interacti
The latter also generate an isovector ‘‘r-like’’ current. There
are additional MI isovector currents, which arise from t
central and momentum-dependent interactions, but these
short ranged and have been found to be numerically far
important than thep-like current @70,73#. Their contribu-
tions are neglected in the present study.

Use of the CVC relation leads to thep-like and r-like
weak vector currents below:
1-13
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j i j
(2)~k i ,k j ;pV!5 i~ti3tj !6FvPS~kj !si~sj•k j !2vPS~ki !sj~si•k i !1

k i2k j

ki
22kj

2 @vPS~ki !2vPS~kj !#~si•k i !~sj•k j !G ,

~4.16!

j i j
(2)~k i ,k j ;rV!52 i~ti3tj !6FvV~kj !si3~sj3k j !2vV~ki !sj3~si3k i !2

vV~ki !2vV~kj !

ki
22kj

2 @~k i2k j !~si3k i !•~sj3k j !

1~si3k i !sj•~k i3k j !1~sj3k j !si•~k i3k j !#1
k i2k j

ki
22kj

2 @vVS~ki !2vVS~kj !#G , ~4.17!
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wherek i andk j are the momenta delivered to nucleonsi and
j with q5k i1k j , the isospin operators are defined as

~ti3tj !6[~ti3tj !x6 i~ti3tj !y , ~4.18!

andvPS(k), vV(k), andvVS(k) are given by

vPS~k!5vst~k!22v tt~k!, ~4.19!

vV~k!5vst~k!1v tt~k!, ~4.20!

vVS~k!5vt~k!, ~4.21!

with

vt~k!54pE
0

`

r 2dr j 0~kr !vt~r !, ~4.22!

vst~k!5
4p

k2 E0

`

r 2dr@ j 0~kr !21#vst~r !, ~4.23!

v tt~k!5
4p

k2 E0

`

r 2dr j 2~kr !v tt~r !. ~4.24!

Here vt(r ), vst(r ), and v tt(r ) are the isospin-dependen
central, spin-spin, and tensor components of the two-nuc
interaction~either the AV14 or AV18 in the present study!.
The factor j 0(kr)21 in the expression forvst(k) ensures
that its volume integral vanishes. Configuration-space
pressions are obtained from

j i j
(2)~q;a!5E dx eiq•xE dk i

~2p!3

dk j

~2p!3
eiki•(r i2x)eik j •(r j 2x)

3 j i j
(2)~k i ,k j ;a!, ~4.25!

where a5pV or rV. Techniques to carry out the Fourie
transforms above are discussed in Ref.@70#.

In a one-boson-exchange~OBE! model, in which the
isospin-dependent central, spin-spin, and tensor interact
are due top- andr-meson exchanges, the functionsvPS(k),
vV(k), andvVS(k) are simply given by
01580
n

x-

ns

vPS~k!→vp~k![2
f p

2

mp
2

f p
2 ~k!

k21mp
2

, ~4.26!

vV~k!→vr~k![2
gr

2~11kr!2

4m2

f r
2~k!

k21mr
2

, ~4.27!

vVS~k!→vrS[gr
2

f r
2~k!

k21mr
2

, ~4.28!

wheremp andmr are the meson masses,f p , gr , andkr are
the pseudovectorpNN, vectorrNN, and tensorrNN cou-
pling constants, respectively,f p(k) and f r(k) denotepNN
andrNN monopole form factors, i.e.,

f a~k!5
La

22ma
2

La
21k2

, ~4.29!

with a5p or r. For example, in the CD-Bonn OBE mode
@46# the values for the couplings and cutoff masses
f p

2 /4p50.075,gr
2/4p50.84,kr56.1, Lp51.7 GeV/c, and

Lr51.31 GeV/c. Even though the AV14 and AV18 are no
OBE models, the functionsvPS(k) and, to a less extent
vV(k) andvVS(k) projected out from theirvt, vst, andv tt

components are quite similar to those ofp- and r-meson
exchanges in Eqs.~4.26!–~4.28! ~with cutoff masses of orde
1 GeV/c), as shown in Refs.@70,75#.

Among the MD ~purely transverse! isovector currents,
those due to excitation ofD isobars have been found to b
the most important, particularly at low momentum transfe
in studies of electromagnetic structure@42# and reactions
@11# of few-nucleon systems. Their contribution, however,
still relatively small when compared to that of the leadi
p-like current. Discussion of the weak vector currents as
ciated withD degrees of freedom is deferred to Sec. IV E

B. Two-body weak vector charge operators

While the main parts of the two-body electromagnetic
weak vector current are linked to the form of the nucleo
nucleon interaction through the continuity equation, the m
important two-body electromagnetic or weak vector cha
operators are model dependent, and should be viewe
relativistic corrections. Indeed, a consistent calculation
1-14
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two-body charge effects in nuclei would require the inc
sion of relativistic effects in both the interaction models a
nuclear wave functions. Such a program is yet to be car
out, at least for systems withA>3.

There are nevertheless rather clear indications for the
evance of two-body electromagnetic charge operators f
the failure of the impulse approximation in predicting t
deuteron tensor polarization observable@76#, and charge
form factors of the three- and four-nucleon systems@42,77#.
The model commonly used@71# includes thep-, r-, and
v-meson exchange charge operators with both isoscalar
isovector components, as well as the~isoscalar! rpg and
~isovector! vpg charge transition couplings~in addition to
the single-nucleon Darwin-Foldy and spin-orbit relativis
corrections!. Thep- andr-meson exchange charge operato
are constructed from the isospin-dependent spin-spin
tensor interactions, using the same prescription adopted
the corresponding current operators@71#. At moderate values
of momentum transfer (q,5 fm21), the contribution due to
the ‘‘p-like’’ exchange charge operator has been found to
typically an order of magnitude larger than that of any of t
remaining two-body mechanisms and one-body relativi
corrections@42#.

In the present study we retain, in addition to the one-bo
operator of Eq.~4.5!, only the ‘‘p-like’’ and ‘‘ r-like’’ weak
vector charge operators. In the notation of the previous s
section, these are given by

r i j
(2)~k i ,k j ;pV!52

1

m
@t j ,6vPS~kj !si•qsj•k j

1t i ,6vPS~ki !si•k isj•q#, ~4.30!

r i j
(2)~k i ,k j ;rV!52

1

m
@t j ,6vV~kj !~si3q!•~sj3k j !

1t i ,6vV~ki !~sj3q!•~si3k i !#,

~4.31!

where nonlocal terms from retardation effects in the me
propagators or from direct couplings to the exchanged
sons have been neglected@78,79#. In ther i j

(2)(k i ,k j ;rV) op-
erator terms proportional to powers of 1/(11kr), because of
the larger-meson tensor coupling (kr.6 –7), have also
been neglected. Indeed, these terms have been ignored
in most studies of nuclear charge form factors.

C. Two-body weak axial-vector current operators

In contrast to the electromagnetic case, the axial-ve
current operator is not conserved. Its two-body compone
cannot be linked to the nucleon-nucleon interaction and
this sense, should be viewed as model dependent. Amon
two-body axial-vector current operators, the leading term
that associated with excitation ofD-isobar resonances. W
again defer its discussion to Sec. IV E. In the present sec
we list the two-body axial-vector current operators due top-
and r-meson exchanges~the pA and rA currents, respec
tively!, and therp-transition mechanism~therpA current!.
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Their individual contributions have been found numerica
far less important than those fromD-excitation currents in
studies of weak transitions involving light nuclei@20,45,80#.
These studies@20,45# have also found that thepA and rA
current contributions interfere destructively, making th
combined contribution almost entirely negligible. These co
clusions are confirmed in the present work.

The pA, rA, and rpA current operators were first de
scribed in a systematic way by Chemtob and Rho@21#. Their
derivation has been given in a number of articles, includ
the original reference mentioned above and the more re
review by Towner@22#. Their momentum-space expressio
are given by

j i j
(2)~k i ,k j ;pA!52

gA

2m
~ti3tj !6vp~kj !si3k jsj•k j

1
gA

m
t j ,6vp~kj !~q1 isi3Pi !sj•k j1 i
 j ,

~4.32!

j i j
(2)~k i ,k j ;rA!5

gA

2m
~ti3tj !6vr~kj !@q si•~sj3k j !

1 i~sj3k j !3Pi2@si3~sj3k j !#3k j #

1
gA

m
t j ,6vr~kj !@~sj3k j !3k j

2 i@si3~sj3k j !#3Pi #1 i
 j , ~4.33!

j i j
(2)~k i ,k j ;rpA!52

gA

m
gr

2~ti3tj !6

f r~ki !

ki
21mr

2

f p~kj !

kj
21mp

2

3sj•k j@~11kr!si3k i2 iPi #1 i
 j ,

~4.34!

wherePi5pi1pi8 is the sum of the initial and final moment
of nucleoni, respectively,pi andpi8 , and the functionsvp(k)
and vr(k) have already been defined in Eqs.~4.26! and
~4.27!. Configuration-space expressions are obtained by
rying out the Fourier transforms in Eq.~4.25!. The values
used for thepNN and rNN coupling constants and cutof
masses are the following:f p

2 /4p50.075, gr
2/4p50.5, kr

56.6, Lp54.8 fm21, and Lr56.8 fm21. The r-meson
coupling constants are taken from the older Bonn O
model @81#, rather than from the more recent CD-Bonn i
teraction@46# (gr

2/4p50.81 andkr56.1). This uncertainty
has in fact essentially no impact on the results reported in
present work for two reasons. First, the contribution fro
j (2)(rA), as already mentioned above, is very small. Seco
the complete two-body axial-vector current model, includi
the currents due toD-excitation discussed below, is con
strained to reproduce the Gamow-Teller matrix element
tritium b decay by appropriately tuning the value of th
ND-transition axial-vector couplinggA* . Hence changes in
gr andkr only require a slight readjustment of thegA* value.
1-15
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Finally, note that the replacementsvp(k)→vPS(k) and
vr(k)→vV(k) could have been made in the expressions
j (2)(pA) and j (2)(rA) above, thus eliminating the need fo
the inclusion ofad hoc form factors. While this procedure
would have been more satisfactory, since it constrains
short-range behavior of these currents in a way consis
with that of the two-nucleon interaction, its impact on t
present calculations would still be marginal for the same r
sons given above.

D. Two-body weak axial-vector charge operators

The model for the weak axial-vector charge opera
adopted here includes a term of pion-range as well as sh
range terms associated with scalar- and vector-meson
changes@44#. The experimental evidence for the presen
of these two-body axial-vector charge mechanisms r
on studies of 01
02 weak transitions, such as th
processes16N(02,120 keV)→16O(01) and 16O(01)1m2

→16N(02,120 keV)1nm , and first-forbiddenb decays in
the lead region@82#. Shell-model calculations of these tra
sitions suggest that the effective axial-vector charge coup
of a bound nucleon may be enhanced by roughly a facto
2 over its free nucleon value. There are rather strong ind
tions that such an enhancement can be explained by
body axial-vector charge contributions@44#.

The pion-range operator is taken as

r i j
(2)~k i ,k j ;pA!52 i

gA

4 f̄ p
2 ~ti3tj !6

f p
2 ~ki !

ki
21mp

2
si•k i1 i
 j ,

~4.35!

where f̄ p is the pion decay constant (f̄ p593 MeV), k i is
the momentum transfer to nucleoni, and f p(k) is the mono-
pole form factor of Eq.~4.29! with Lp54.8 fm21. The
structure and overall strength of this operator are determ
by soft pion theorem and current algebra arguments@43,83#,
and should therefore be viewed as ‘‘model independent.
can also be derived, however, by considering nucle
antinucleon pair contributions with pseudoscalarpN cou-
pling.

The short-range axial-vector charge operators can be
tained in a ‘‘model-independent’’ way, consistently with th
two-nucleon interaction model. The procedure is descri
in Ref. @44#, and is similar to the one used to derive t
‘‘model-independent’’ electromagnetic or weak vector cu
rents. Here we consider the charge operators associated
with the central and spin-orbit components of the interacti
since these are expected to give the largest contributi
after ther (2)(pA) operator above. This expectation is in fa
confirmed in the present study. The momentum-space
pressions are given by

r i j
(2)~k i ,k j ;sA!5

gA

2m2
@t i ,6v̄s~kj !1t j ,6v̄st~kj !#si•Pi

1 i
 j , ~4.36!
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r i j
(2)~k i ,k j ;vA!5

gA

2m2
@t i ,6v̄v~kj !1t j ,6v̄vt~kj !#

3@si•Pj1 i~si3sj !•k j #

2 i
gA

4m2
~ti3tj !6v̄vt~kj !si•k i1 i
 j ,

~4.37!

wherePi5pi1pi8 , and

v̄a~k!54pE
0

`

dr r 2 j 0~kr !v̄a~r !, ~4.38!

with a5s, st, v, and vt. The following definitions have
been introduced:

v̄s~r !5
3

4
vc~r !1

m2

2 E
r

`

dr8r 8Fvb~r 8!2
1

2
vbb~r 8!G ,

v̄v~r !5
1

4
vc~r !2

m2

2 E
r

`

dr8r 8Fvb~r 8!2
1

2
vbb~r 8!G ,

~4.39!

wherevc(r ), vb(r ), andvbb(r ) are the isospin-independen
central, spin-orbit, and (L•S)2 components of the AV14 or
AV18 interactions, respectively. The definitions forv̄st(r )
and v̄vt(r ) can be obtained from those above, by replac
the isospin-independentvc(r ), vb(r ), and vbb(r ) with the
isospin-dependentvct(r ), vbt(r ), andvbbt(r ).

E. D-isobar contributions

In this section we review the treatment of the weak c
rent and charge operators associated with excitation oD
isobars in perturbation theory and within the context of t
TCO method@11#. Among the two-body axial-vector curren
operators, those associated withD degrees of freedom hav
in fact been found to be the most important ones@11,20#.

In the TCO approach, the nuclear wave function is writt
as

CN1D5FS)
i , j

~11Ui j
TR!GC, ~4.40!

whereC is the purely nucleonic component,S is the sym-
metrizer, and the transition operatorsUi j

TR convertNN pairs
into ND andDD pairs. The latter are defined as

Ui j
TR5Ui j

ND1Ui j
DN1Ui j

DD , ~4.41!

Ui j
ND5@ustII ~r i j !si•Sj1uttII ~r i j !Si j

II #ti•T j , ~4.42!

Ui j
DD5@ustIII ~r i j !Si•Sj1uttIII ~r i j !Si j

III #T i•T j .
~4.43!

Here, Si and T i are spin- and isospin-transition operato
which convert nucleoni into a D isobar, Si j

II and Si j
III are
1-16
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WEAK PROTON CAPTURE ON3He PHYSICAL REVIEW C 63 015801
tensor operators in which, respectively, the Pauli s
operators of either particlei or j, and both particlesi andj are
replaced by corresponding spin-transition operators.
Ui j

TR vanishes in the limit of large interparticle separation
since noD components can exist asymptotically.

In the present study theC is taken from CHH solutions o
the AV14/UVIII or AV18/UIX Hamiltonians with nucleons
only interactions, while theUi j

TR is obtained from two-body
bound and low-energy scattering-state solutions of the
N-D coupled-channel problem with the Argonnev28Q @84#
~AV28Q! interaction, containing explicitN andD degrees of
freedom. This aspect of the present calculations, includ
the validity of the approximation inherent to Eq.~4.40!, was
discussed at length in the original work@11# and has been
reviewed more recently in Ref.@42#, making a further review
here unnecessary. The AV28Q interaction provided an ex
lent description of theNN database available in the ear
1980s. No attempt has been made to refit this model to
more recent and much more extensive Nijmegen datab
@85#.

In the TCO scheme, the perturbation theory description
D admixtures is equivalent to the replacements

Ui j
ND,PT5

v i j ~NN→ND!

m2mD
, ~4.44!

Ui j
DD,PT5

v i j ~NN→DD!

2~m2mD!
, ~4.45!

where the kinetic energy contributions in the denominat
of Eqs. ~4.44! and ~4.45! have been neglected~static D ap-
proximation!. The transition interactionsv i j (NN→ND) and
v i j (NN→DD) have the same operator structure asUi j

ND and

Ui j
DD of Eqs. ~4.42! and ~4.43!, but with the usta(r ) and

utta(r ) functions replaced by, respectively,

vsta~r !5
~ f f !a

4p

mp

3

e2x

x
C~x!, ~4.46!

v tta~r !5
~ f f !a

4p

mp

3 S 11
3

x
1

3

x2D e2x

x
C2~x!. ~4.47!

Herea5II, III, x[mpr , ( f f )a5 f p f p* , f p* f p* for a5II, III,
respectively,f p* being thepND coupling constant, and th

cutoff function C(x)512e2lx2
. In the AV28Q interaction

f p* 5(6A2/5)f p , as obtained in the quark model, andl
54.09. When compared toUi j

TR, the perturbation theory
Ui j

TR,PT corresponding to Eqs.~4.44! and~4.45! producesND
andDD admixtures that are too large at short distances,
therefore leads to a substantial overprediction of the effe
associated withD isobars in electroweak observables@11#.

We now turn our attention to the discussion ofND and
DD weak transition operators. The axial-vector current a
charge operators associated with excitation ofD isobars are
modeled as

j i
(1)~q;N→D,A!52gA* Ti ,6Sie

iq•r i, ~4.48!
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j i
(1)~q;D→D,A!52ḡAQ i ,6Sie

iq•r i ~4.49!

and

r i
(1)~q;N→D,A!52

gA*

mD
Ti ,6Si•pie

iq•r i ~4.50!

r i
(1)~q;D→D,A!52

ḡA

2mD
Q i ,6Si•@pi ,eiq•r i#1 ,

~4.51!

wheremD is theD-isobar mass,S (Q) is the Pauli operator
for the D spin 3/2~isospin 3/2!, andTi ,6 and Q i ,6 are de-
fined in analogy to Eq.~4.9!. The expression forj i

(1)(q;D
→N,A) @r i

(1)(q;D→N,A)# is obtained from that for
j i
(1)(q;N→D,A) @r i

(1)(q;N→D,A)# by replacingSi and T i

by their Hermitian conjugates. The coupling constantsgA*

and ḡA are not well known. In the quark model, they a
related to the axial-vector coupling constant of the nucle
by the relationsgA* 5(6A2/5)gA and ḡA5(1/5)gA . These
values have often been used in the literature in the calc
tion of D-induced axial-vector current contributions to we
transitions. However, given the uncertainties inherent
quark-model predictions, a more reliable estimate forgA* is
obtained by determining its value phenomenologically in
following way. It is well established by now@45# that the
one-body axial-vector current of Eq.~4.12! leads to a.4%
underprediction of the measured Gamow-Teller matrix e
ment in tritiumb decay; see Table V. Since the contributio
of D→D axial-vector currents~as well as those due to th
two-body operators of Sec. IV C! are found to be numeri-
cally very small, as can be seen again from Table V, this

TABLE V. Contributions to the Gamow-Teller~GT! matrix el-
ement of tritiumb decay, obtained with the CHH trinucleon wav
functions corresponding to the AV18/UIX Hamiltonian model. Th
rows labeled ‘‘One-body NR’’ and ‘‘One-body RC’’ list the contri
butions associated with the single-nucleon axial current operato
Eq. ~4.12! and Eq.~4.13!, respectively, while the row labeled ‘‘Me
sonic’’ lists the sum of the contributions due to thep-, r-, and
rp-exchange axial-vector current operators of Eqs.~4.32!–~4.34!
with cutoff massesLp54.8 fm21 andLr56.8 fm21. Finally, the

rows labeled ‘‘D-gA* ,’’ ‘‘ D-ḡA , ’’ and ‘‘ D renormalization’’ list,
respectively, the contributions associated with panels~a! and ~b!,
~c!,~d! and~f!, and~e!, ~g! and~j!, of Fig. 3. The cumulative resul
reproduces the ‘‘experimental value’’ 0.957 for the GT matrix e
ment @45#, once the change in normalization of the wave functio
due to the presence ofD components is taken into account.

GT matrix element

One-body NR 0.9218
One-body RC –0.0084
Mesonic 0.0050
D-gA* 0.0509

D-ḡA
0.0028

D renormalization 0.0074
1-17
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discrepancy can then be used to determinegA* @86#. Obvi-
ously, this procedure produces different values forgA* de-
pending on how theD-isobar degrees of freedom are treate
These values are listed in Table VI for comparison. ThegA*
value that is determined in the context of a TCO calculat
based on the AV28Q interaction is about 40% larger than
naive quark-model estimate. However, when perturba
theory is used for the treatment of theD isobars, thegA*
value required to reproduce the Gamow-Teller matrix e
ment of tritiumb decay is much smaller than the TCO es
mate, as expected. Finally, theN→D axial-vector current
derived in perturbation theory from Eqs.~4.44! and~4.48! is,
of course, identical to the expression given in Refs.@20,45#.

The N→D andD→D weak vector currents are modele
consistently with the CVC hypothesis, as

j i
(1)~q;N→D,V!52 i

m*

m
Ti ,6q3Sie

iq•r i, ~4.52!

j i
(1)~q;D→D,V!52 i

m̄

12m
Q i ,6q3Sie

iq•r i, ~4.53!

where theND-transition magnetic momentm* is taken equal
to 3 n.m., as obtained from an analysis ofgN data in the
D-resonance region@87#, while the value used for theD
magnetic momentm̄ is 4.35 n.m. by averaging results of
soft-photon analysis of pion-proton bremsstrahlung data n
the D11 resonance@88#. The contributions due to the wea
vector currents above have been in fact found to be v
small in thep-3He capture process. Finally,D-to-D weak
vector charge operators are ignored in the present st
since their associated contributions are expected to be n
gible.

V. CALCULATION

The calculation of thep-3He weak capture cross sectio
proceeds in two steps: first, the Monte Carlo evaluation
the weak charge and current operator matrix elements,
the subsequent decomposition of these in terms of redu
matrix elements; second, the evaluation of the cross sec
by carrying out the integrations in Eq.~2.22!.

A. Monte Carlo calculation of matrix elements

In a frame where the direction of the momentum trans
q̂ also defines the quantization axis of the nuclear spins,

TABLE VI. The values of theN→D axial coupling constantgA*
in units ofgA , when theD-isobar degrees of freedom are treated
PT or in the context of a TCO calculation based on the AV2
interaction. The purely nucleonic CHH wave functions correspo
to the AV18/UIX Hamiltonian model.

D-isobar treatment gA* /gA

PT 1.224
TCO 2.868
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matrix element of, as an example, the weak axial-vector~or
vector! current has the multipole expansion

^C4uêql* • j†~q!uC̄113
LSJ,Jz5l

&5A2p iJ@lMJ
LSJ~q!1EJ

LSJ~q!#,
~5.1!

with l561. The expansion above is easily obtained fro
that in Eq. ~2.16!, in which the quantization axis for the
nuclear spins was taken along the direction of the rela
momentump̂, by settingu5f50 and usingDJ

z8 ,Jz

J
(0,0,0)

5dJ
z8 ,Jz

. Then, again as an example, the reduced matrix

ement of the axial-vector electric dipole operator involving
transition from thep-3He 3S1 state is simply given by

E1
011~q;A!52

i

A2p
^C4uêql* • j†~q;A!uC̄113

011,Jz5l
&.

~5.2!

The problem is now reduced to the evaluation of mat
elements of the same type as on the right-hand side of
~5.2!. These can schematically be written as

^C4,N1DuOuC113,N1D&

@^C4,N1DuC4,N1D&^C113,N1DuC113,N1D&#1/2
, ~5.3!

where the initial and final states have the form of Eq.~4.40!.
It is convenient to expand the latter as

CN1D5C1(
i , j

Ui j
TRC1•••, ~5.4!

so that the numerator of Eq.~5.3! can be expressed as

^C4,N1DuOuC113,N1D&5^C4uO~N only!uC113&

1^C4uO~D!uC113&, ~5.5!

where the operatorO(N only) denotes all one- and two
body contributions to the weak charge or current operatorO,
involving only nucleon degrees of freedom, i.e
O(N only)5O(1)(N→N)1O(2)(NN→NN), while O(D)
includes terms that involve theD-isobar degrees of freedom
associated with the explicitD transitions O(1)(N→D),
O(1)(D→N), O(1)(D→D), and with the transition operator
Ui j

TR. A diagrammatical illustration of the terms contributin
to O(D) is given in Fig. 3: the terms~a!–~e!, ~f!–~i!, and~j!
represent, respectively, two-, three-, and four-body operat
The terms~e! and~g!–~j! are to be viewed as renormalizatio
corrections to the ‘‘nucleonic’’ matrix element ofO(1)(N
→N), due to the presence ofD admixtures in the wave func
tions. Connected three-body terms containing more tha
singleD isobar have been ignored, since their contributio
are expected to be negligible. Indeed, the contribution fr
diagram~d! has already been found numerically very sma

The two-body terms of Fig. 3 are expanded as opera
acting on the nucleons’ coordinates. For example, the te
~a! and ~c! in Fig. 3 have the structure, respectively,

~a!5Ui j
DN†Oi

(1)~N→D!, ~5.6!

d

1-18
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~c!5Ui j
DN†Oi

(1)~D→D!Ui j
DN , ~5.7!

which can be reduced to operators involving only Pauli s
and isospin matrices by using the identities:

S†
•A S•B5

2

3
A•B2

i

3
s•~A3B!, ~5.8!

S†
•A S•B S•C5

5

3
iA•~B3C!2

1

3
s•A B•C

2
1

3
A•B C•s1

4

3
A•~B•s!C,

~5.9!

whereA, B, andC are vector operators that commute wi
s, but not necessarily among themselves. While the th
and four-body terms in Fig. 3 could have been reduced
precisely the same way, the resulting expressions in term
s andt matrices become too cumbersome. Thus, for thes
was found to be more convenient to retain the explicit r
resentation ofS (S†) as a 432(234) matrix

S53
2ê2 0

A2

3
ê0 2

1

A3
ê2

2
1

A3
ê1 A2

3
ê0

0 2ê1

4
and ofS as a 434 matrix

FIG. 3. Diagrammatic representation of the operators inclu
in O(D), due to the one-body current and charge opera
O(1)(N→D), O(1)(D→N), and O(1)(D→D), given in Eqs.
~4.48!–~4.53!, and to the transition correlationsUDN, UND, UDD,
and corresponding Hermitian conjugates. Thin, thick, and das
lines denote, respectively, nucleons,D isobars, and transition cor

relationsUBB8 or UBB8†, with B,B8[N,D.
01580
n

e-
in
of
it
-

S5F 3ê0 A6ê2 0 0

2A6ê1 ê0 A8ê2 0

0 2A8ê1 2ê0 A6ê2

0 0 2A6ê1 23ê0

G ,

where ê657( x̂6 iŷ)/A2, ê05 ẑ, and êm* 5(2)mê2m , and
derive the result of terms such as~f!5Ui j

ND†Oj
(1)(D

→D)U jk
DN on stateuC& by first operating withU jk

DN , then

with Oj
(1)(D→D), and finally with Ui j

ND†. These terms~as
well as three-body contributions to the wave function n
malizations, see below! were neglected in the calculation
reported in Ref.@11#.

Of course, the presence ofD admixtures also influence
the normalization of the wave functions, as is obvious fro
Eq. ~5.3!:

^CN1DuCN1D&5K CU11(
i , j

@2Ui j
DN†Ui j

DN1Ui j
DD†Ui j

DD#

1 (
i , j ,kÞ i , j

@Ui j
DN†Uik

DN1Ui j
ND†Uk j

ND#UCL
1•••. ~5.10!

The wave function normalization ratio
^CN1DuCN1D&/^CuC&, obtained for the bound three- an
four-nucleon systems, are listed in Table VII. Note that t

TABLE VII. The wave function normalization ratios
^CN1DuCN1D&/^CuC& obtained for the bound three- and fou
nucleon systems, when the TCO calculation is based on the AV
interaction. The purely nucleonic CHH wave functionsuC& corre-
spond to the AV18/UIX Hamiltonian model.

Model 3H 3He 4He

AV28Q 1.0238 1.0234 1.0650

TABLE VIII. Cumulative contributions to the RME’sC̄0(q;V)

and L̄0(q;V) in 1S0 capture at zerop-3He c.m. energy. The mo-
mentum transferq is 19.2 MeV/c, and the results correspond to th
AV18/UIX Hamiltonian model. The row labeled ‘‘One-body’’ lists
the contributions associated with the operators in Eq.~4.5! for the
weak vector charger(V) and Eq.~4.8! for the weak vector curren
j (V); the row labeled ‘‘Mesonic’’ lists the results obtained by in
cluding, in addition, the contributions associated with the opera
in Eqs. ~4.30! and ~4.31! for r(V), and Eqs.~4.16! and ~4.17! for
j (V). The D terms inr(V) are neglected, while those inj (V) are

purely transverse and therefore do not contribute to theL̄0 RME.
Note that the RME’s are purely real and in fm3/2 units.

C̄0(q;V) L̄0(q;V)

One-body 20.85731022 20.86431022

Mesonic 20.85631022 20.91931022

d
s

d

1-19



o
the

t
y

ctions
he

L. E. MARCUCCI et al. PHYSICAL REVIEW C 63 015801
TABLE IX. Cumulative contributions to the RME’sC̄1(q;A), L̄1(q;A), Ē1(q;A), andM̄1(q;V) in 3S1

capture at zerop-3He c.m. energy. The momentum transferq is 19.2 MeV/c, and the results correspond t
the AV18/UIX Hamiltonian model. The row labeled ‘‘One-body’’ lists the contributions associated with
operators in Eq.~4.10! for the weak axial-vector charger(A), Eq. ~4.11! for the weak axial-vector curren
j (A), and Eq.~4.8! for the weak vector currentj (V); the row labeled ‘‘Mesonic’’ lists the results obtained b
including, in addition, the contributions associated with the operators in Eqs.~4.35!–~4.37! for r(A), Eqs.
~4.32!–~4.34! for j (A), and Eqs.~4.16! and ~4.17! for j (V); finally, the row labeled ‘‘D ’’ lists the results
obtained by also including the contributions of the operators in Eqs.~4.50! and~4.51! for r(A), Eqs.~4.48!
and ~4.49! for j (A), and Eqs.~4.52! and ~4.53! for j (V). The D contributions in bothr(A) and j (A) are
calculated with the TCO method, and take into account the change in normalization of the wave fun
due to the presence ofD components. Those inj (V) are calculated in perturbation theory. Note that t
RME’s are purely imaginary and in fm3/2 units.

C̄1(q;A) L̄1(q;A) Ē1(q;A) M̄1(q;V)

One-body 0.14731021 20.73031021 20.106 0.33331022

Mesonic 0.15631021 20.67931021 20.98431021 20.26331022

D 0.15531021 20.29331021 20.44031021 20.48431022
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the
normalization of thep-3He continuum state is the same
that of 3He, up to corrections of order~volume! 21.

The matrix elements in Eqs.~5.5! and ~5.10! are com-
puted, without any approximation, by Monte Carlo integ
tions. The wave functions are written as vectors in the sp
isospin space of the four nucleons for any given spa
configurationR5(r1 , . . . ,r4). For the givenR we calculate
the state vector@O(R,N only)1O(R,D)#C(R) with the
techniques developed in Refs.@42,70#. The spatial integra-
tions are carried out with the Monte Carlo method by sa
pling R configurations according to the algorithm of M
tropolis et al. @89#, using a probability densityW(R)
proportional to

W~R!}A^C4
†~R!C4~R!&, ~5.11!

where the notation̂•••& implies sums over the spin-isosp
states of the4He wave function. Typically 200 000 configu
rations are enough to achieve a relative error of<5% on the
total S factor.

B. Calculation of the cross section

Once the reduced matrix elements~RME’s! have been
obtained, the calculation of the cross sections(E) is reduced
to performing the integrations over the electron and neutr
momenta in Eq.~2.22! numerically. We write

s~E!5
1

~2p!2

GV
2

v rel
E

0

pe* dpepe
2E

21

1

dxeE
21

1

dxn

3E
0

2p

df pn
2 f 21LstN

st, ~5.12!

where one of the azimuthal integrations has been carried
since the integrand only depends on the differencef5fe
2fn . The d function occurring in Eq.~2.22! has also been
integrated out resulting in the factorf 21, with
01580
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ut,

f 5U11
pexen

m4
1

pn

m4
U. ~5.13!

The magnitude of the neutrino momentum is fixed by ene
conservation to be

pn5
2D̄

11pexen /m41A~11pexen /m4!212D̄/m4

,

~5.14!

whereD̄5Dm1E2Ee2pe
2/2m4. The variablexen is defined

as

xen5p̂e•p̂n5xexn1A12xe
2A12xn

2 cosf, ~5.15!

TABLE X. Cumulative contributions to the RME’sC̄0(q;A)

and L̄0(q;A) in 3P0 capture at zerop-3He c.m. energy. The mo-
mentum transferq is 19.2 MeV/c, and the results correspond to th
AV18/UIX Hamiltonian model. The row labeled ‘‘One-body’’ lists
the contributions associated with the operators in Eq.~4.10! for the
weak axial-vector charger(A) and Eq.~4.11! for the weak axial-
vector currentj (A); the row labeled ‘‘Mesonic’’ lists the results
obtained by including, in addition, the contributions associated w
the operators in Eqs.~4.35!–~4.37! for r(A), and Eqs.~4.32!–
~4.34! for j (A); finally, the row labeled ‘‘D ’’ lists the results ob-
tained by also including the contributions of the operators in E
~4.50! and~4.51! for r(A), and Eqs.~4.48! and~4.49! for j (A). The
D contributions in bothr(A) andj (A) are calculated with the TCO
method, and take into account the change in normalization of
wave functions due to the presence ofD components. Note that the
RME’s are purely imaginary and in fm3/2 units.

C̄0(q;A) L̄0(q;A)

One-body 0.37131021 0.18231021

Mesonic 0.44431021 0.18331021

D 0.45931021 0.18831021
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TABLE XI. Cumulative contributions to the RME’sC̄1(q;V), L̄1(q;V), Ē1(q;V), andM̄1(q;A) in 1P1

capture at zerop-3He c.m. energy. The momentum transferq is 19.2 MeV/c, and the results correspond t
the AV18/UIX Hamiltonian model. The row labeled ‘‘One-body’’ lists the contributions associated with
operators in Eq.~4.5! for the weak vector charger(V), Eq. ~4.8! for the weak vector currentj (V), and Eq.
~4.11! for the weak axial-vector currentj (A); the row labeled ‘‘Mesonic’’ lists the results obtained b
including, in addition, the contributions associated with the operators in Eqs.~4.30! and~4.31! for r(V), Eqs.
~4.16! and ~4.17! for j (V), and Eqs.~4.32!–~4.34! for j (A); finally, the row labeled ‘‘D ’’ lists the results
obtained by also including the contributions of the operators in Eqs.~4.52! and ~4.53! for j (V), and Eqs.
~4.48! and ~4.49! for j (A). The D contributions inj (A) are calculated with the TCO method, and take in
account the change in normalization of the wave functions due to the presence ofD components. Those in
j (V) are calculated in perturbation theory. TheD terms inr(V) are neglected, while those inj (V) are purely

transverse and therefore do not contribute to theL̄1 RME. Note that the RME’s are purely real and in fm3/2

units.

C̄1(q;V) L̄1(q;V) Ē1(q;V) M̄1(q;A)

One-body 20.22231021 20.16231021 20.23131021 20.10031022

Mesonic 20.22231021 20.20931021 20.29831021 20.77931023

D 20.29831021 20.80931023
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where xe5cosue and xn5cosun . Finally, the integration
over the magnitude of the electron momentum extends f
zero up to

pe* 5A@Am4
21me

212m4~Dm1E!2m4
2#22me

2.
~5.16!

The lepton tensor is explicitly given by Eq.~2.24!, while the
nuclear tensor is constructed using Eqs.~2.25!–~2.29!. Com-
puter codes have been developed to calculate the requ
rotation matrices corresponding to theq̂ direction (u,f) with

cosu5 ẑ•q̂5
ẑ•~pe1pn!

upe1pnu
5

pexe1pnxn

Ape
21pn

212pepnxen

.

~5.17!

Finally, note that the nuclear tensor requires the values of
RME’s at the momentum transferq @the denominator in the
second line of Eq.~5.17!#. It has been found convenient t
make the dependence uponq of the RME’s explicit by ex-
panding

TJ
LSJ~q!5qm(

n>0
t2n
LSJq2n, ~5.18!

consistently with Eqs.~2.17!–~2.20!. Here m5J,J61, de-
pending on the RME considered. For example,m51 for the
L0

110(A) RME. Given the low momentum transfers involve
q<20 MeV/c, the leading and next-to-leading order term
t0 and t2 are sufficient to reproduce accuratelyT(q). Note
that the long-wavelength approximation corresponds, ty
cally, to retaining only thet0 term.

A moderate number of Gauss points~of the order of 10!
for each of the integrations in Eq.~5.12! is sufficient to
achieve convergence within better than 1 part in 103. The
computer program has been successfully tested by repro
ing the result obtained analytically by retaining only t
3S1 E1(A) andL1(A) and 3P0 C0(A) RME’s.
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VI. RESULTS AND DISCUSSION

The S factor calculated values are listed in Table I, a
their implications to the recoil electron spectrum measured
the SK experiment~see Fig. 1! have already been discusse
in the introduction. In Tables VIII–XVI, we present our re
sults, obtained with the AV18/UIX Hamiltonian model, fo
the RME’s connecting any of thep-3He S- andP-wave chan-
nels to the4He bound state. The values for these RME’s a
given at zero energy and a lepton momentum transfeq
519.2 MeV/c. In Tables XIV–XVI results for two otherq
values are also listed. Note that the RME’s listed in all tab
are related to those defined in Eqs.~2.14!–~2.16! via

T̄J
LSJ5A v rel

4pa
@exp~4pa/v rel!21#TJ

LSJ, ~6.1!

which can be shown to remain finite in the limitv rel→0,
corresponding to zero energy.

In Table XVII we list the individual contributions of the
S- andP-wave capture channels to the totalS factor at zero
c.m. energy, obtained with the AV18/UIX, the AV18 onl
~to study the effects of the three-nucleon interaction!, and the
older AV14/UVIII ~to study the model dependence and
make contact with the earlier calculations of Refs.@11,20#!.
The model dependence is discussed in Sec. VI D.

TABLE XII. Cumulative contributions to the RME’sC̄1(q;V),

L̄1(q;V), Ē1(q;V), andM̄1(q;A) in the 3P1 capture at zerop-3He
c.m. energy. The momentum transferq is 19.2 MeV/c, and the
results correspond to the AV18/UIX Hamiltonian model. Notati
as in Table XI. Note that the RME’s are purely real and in fm3/2

units.

C̄1(q;V) L̄1(q;V) Ē1(q;V) M̄1(q;A)

One-body 0.95331023 0.11831022 0.52131023 0.30431021

Mesonic 0.21731022 0.17431022 0.12831022 0.30431021

D 0.12731022 0.30331021
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TABLE XIII. Cumulative contributions to the RME’sC̄2(q;A), L̄2(q;A), Ē2(q;A), andM̄2(q;V) in the
3P2 capture at zerop-3He c.m. energy. The momentum transferq is 19.2 MeV/c, and the results correspon
to the AV18/UIX Hamiltonian model. Notation as in Table IX. Note that the RME’s are purely imaginary
in fm3/2 units.

C̄2(q;A) L̄2(q;A) Ē2(q;A) M̄2(q;V)

One-body 20.14631023 0.23631021 0.29231021 20.11031022

Mesonic 20.11431023 0.23631021 0.29331021 20.11631022

D 20.98831024 0.23831021 0.29531021 20.11831022
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In Tables I, VIII–XIII, XV, and XVI, the cumulative
nucleonic contributions are normalized as

@one-body1mesonic#5
^C4uO~N only!uC113&

@^C4uC4&^C113uC113&#1/2
.

~6.2!

However, when theD-isobar contributions are added to th
cumulative sum, the normalization changes to

@one-body1mesonic1D#

5
^C4,N1DuO~N only!1O~D!uC113,N1D&

@^C4,N1DuC4,N1D&^C113,N1DuC113,N1D&#1/2
. ~6.3!

As already pointed out earlier in Sec. V A, the normalizati
of the initial scattering state is the same as that of3He, up to
corrections of order~volume! 21. In Table XV we also report
results in which theD components in the nuclear wave fun
tions are treated in perturbation theory, as discussed in S
IV E and V A, and theO(D) only includes the operators i
panel~a! of Fig. 3. In this case, the cumulative contributio
@one-body1mesonic1DPT# are normalized as in Eq.~6.2!.

A. 1S0 capture

The 1S0 capture is induced by the weak vector charge a
longitudinal component of the weak vector current via t
C0(V) and L0(V) multipoles, respectively. The associat
RME’s, while small, are not negligible—they are about 20
of the ‘‘large’’ E1(A) RME in 3S1 capture; see Table IX
These 1S0 transitions are inhibited by an isospin selecti
rule; indeed, they vanish atq50, since in this limit
01580
cs.

d

C0~q;V!→ 1

A4p
(

i
t i ,6[

1

A4p
T6 ~6.4!

and

L0~q;V!52
1

q FH,E dxj 0~qx!Y00~ x̂!r~x;V!G
→2

1

q FH,
1

A4p
T6G , ~6.5!

where the expression forL0(V) has been obtained by inte
grating Eq. ~2.18! by parts, and then using the continui
equation to relate ¹• j (x;V) to the commutator
2 i@H,r(x;V)#. The 4He andp-3He states have total isos
pinsT,Tz50,0 and 1,1, respectively, ignoring additional, b
very small, isospin admixtures induced by isosp
symmetry-breaking components of the interaction. Theref
matrix elements of the~total! isospin raising or lowering
operatorsT6 between theseT,Tz states vanish.

Equation ~6.5! shows that, if the initial and final CHH
wave functions were to be exact eigenfunctions of the AV
UIX Hamiltonian, then one would expect, neglecting the
netic energy of the recoiling4He:

L0~q;V!5
E32E4

q
C0~q;V!, ~6.6!

where E3 and E4 are the three- and four-nucleon groun
state energies. Note that the relation above is in fact valid
any CJ(q;V) andLJ(q;V) multipoles. Forq519.2 MeV/c
the ratioL0 /C0 is expected to be 1.07, which is in perfe
agreement with that obtained in the calculation, when
IX
s of
do-
TABLE XIV. One-body contributions, at momentum transfersq50 and 19.2 MeV/c, to the RME’s

L̄1(q;A) and Ē1(q;A) in 3S1 capture at zerop-3He c.m. energy. The results correspond to the AV18/U
Hamiltonian model. The rows labeled ‘‘NR’’ and ‘‘RC’’ list the contributions obtained with the operator
Eq. ~4.12! and Eq.~4.13!, respectively; the row labeled ‘‘IPS’’ lists the contribution of the induced pseu
scalar current only@last term in Eq.~4.13!#. Note that the RME’s are purely imaginary and in fm3/2 units.

L̄1(q;A) Ē1(q;A)
q50 MeV/c q519.2 MeV/c q50 MeV/c q519.2 MeV/c

NR 20.72631021 20.58631021 20.103 20.83831021

RC 20.15431021 20.14531021 20.22031021 20.21931021

IPS 0.74131023
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TABLE XV. Cumulative contributions, at momentum transfersq50 and 19.2 MeV/c, to the RME’s

L̄1(q;A) and Ē1(q;A) of the weak axial current in3S1 capture at zerop-3He c.m. energy. The result
correspond to the AV18/UIX Hamiltonian model. The row labeled ‘‘One-body’’ lists the contributi
associated with the operator in Eq.~4.11!; the row labeled ‘‘Mesonic’’ lists the results obtained by includin
in addition, the contributions associated with the operators in Eqs.~4.32!–~4.34!; finally, the rows labeled
‘‘ D-TCO’’ and ‘‘D-PT’’ list the results obtained by also including the contributions of the operators in
~4.48! and ~4.49!, calculated either in the TCO scheme or in PT. TheD-TCO results also take into accoun
the change in normalization of the wave functions due to the presence ofD components. Note that the RME’
are purely imaginary and in fm3/2 units.

L̄1(q;A) Ē1(q;A)
q50 MeV/c q519.2 MeV/c q50 MeV/c q519.2 MeV/c

One-body 20.88031021 20.73031021 –0.125 –0.106
Mesonic 20.82931021 20.67931021 –0.117 20.98431021

D-TCO 20.44031021 20.29331021 20.62531021 20.44031021

D-PT 20.44731021 20.29831021 20.63131021 20.44331021
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two-body current contributions are taken into account;
Table VIII. As already discussed in Sec. IV A, the prese
model for the weak vector current satisfies current conse
tion with thev6 part of the nucleon-nucleon interaction~ei-
ther AV14 or AV18!. The spin-orbit and quadrati
momentum-dependent components of the interaction, h
ever, require additional short-range currents that have b
neglected in this work. If their contributions were to be co
pletely negligible, then the degree of agreement between
expected and calculated values for the ratioL0 /C0 would
simply reflect the extent to which the present variatio
wave functions are truly exact eigenfunctions of the AV1
UIX Hamiltonian. However, the CHH wave function use
here gives a ground-state energy of227.9 MeV for 4He,
which is about 400 keV higher than predicted for the AV1
UIX model in GFMC calculations@32#. In view of these
considerations, the perfect agreement referred to above
be accidental.

Finally, the C1(V) and L1(V) RME’s interfere destruc-
tively in the cross section~see discussion at the end of Se
II C!, substantially reducing the1S0 channel contribution to
the S factor; see Table XVII.
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B. 3S1 capture

The 3S1 capture is induced by the weak axial-vect
charge and current, and weak vector current operators via
multipoles C1(A), L1(A), E1(A), and M1(V). All earlier
studies only retained the dominantL1(A) andE1(A) transi-
tions. However, as is evident from Table IX, theM1(V) and
especiallyC1(A) RME’s are not negligible. Furthermore, th
C1(A) and L1(A) RME’s interfere constructively in the
cross section, since their signs are opposite. For exam
neglecting theC1(A) contribution would produce anS-factor
value of 4.94310220 keV b, 30% smaller than the3S1 total
result 6.38310220 keV b ~see Table XVII!.

The destructive interference between the one- and ma
body axial-vector current contributions in theL1(A) and
E1(A) RME’s, first obtained in Refs.@11,20#, is confirmed in
the present work. The axial-vector currents associated witD
excitation play a crucial role. The~suppressed! one-body
contribution comes mostly from transitions involving th
D-state components of the3He and 4He wave functions,
while the many-body contributions are predominantly due
transitions connecting theS state of 3He to theD state of
4He or vice versa. To clarify this point, it is useful to defin
dy’’

n Eqs.
TABLE XVI. Cumulative contributions at zerop-3He c.m. energy to the RMEC̄0(q;A) in 3P0 capture

at momentum transfersq50 and 19.2 MeV/c, and to the RMEĒ1(q;V) in 1P1 capture, atq59 and
19.2 MeV/c. The results correspond to the AV18/UIX Hamiltonian model. The row labeled ‘‘One-bo
lists the contributions associated with the operators in Eq.~4.10! and Eq.~4.8!; the row labeled ‘‘Mesonic’’
lists the results obtained by including, in addition, the contributions associated with the operators i
~4.35!–~4.37! and Eqs.~4.16! and ~4.17!; finally, the rows labeled ‘‘D ’’ list the results obtained by also
including the contributions of the operators in Eqs.~4.50! and~4.51! and Eqs.~4.52! and~4.53!. Note that the

C̄0(q;A) @Ē1(q;V)# RME is purely imaginary~real!. Units are fm3/2.

C̄0(q;A) Ē1(q;V)
q50 MeV/c q519.2 MeV/c q59 MeV/c q519.2 MeV/c

One-body 0.34631021 0.37131021 20.23431021 20.23131021

Mesonic 0.41431021 0.44431021 20.30031021 20.29831021

D 0.42831021 0.45931021 20.30031021 20.29831021
1-23
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the one- and two-body densities

r (1)~x!5K 4HeU(
i

d~x2ur i2Rjkl u!Oi
(1)Up-3HeL ,

~6.7!

r (2)~x!5K 4HeU(
i , j

d~x2r i j !Oi j
(2)Up-3HeL , ~6.8!

whereOi
(1) is the ~lowest-order! Gamow-Teller operator o

Eq. ~4.12! at q50, and Oi j
(2) is the most important

D-excitation current associated with diagrams of type~a! in
Fig. 3. These densities are normalized such that

E
0

`

dx r (a)~x!5O(a)2contribution. ~6.9!

In Fig. 4 we display separately the contributions
r (1)(x) due to transitions involving theL50→L50 andL
52→L52 components of the3He and4He wave functions.

TABLE XVII. Contributions of theS- andP-wave capture chan
nels to thehep Sfactor at zerop-3He c.m. energy in 10220 keV b.
The results correspond to the AV18/UIX, AV18, and AV14/UVI
Hamiltonian models.

AV18/UIX AV18 AV14/UVIII

1S0 0.02 0.01 0.01
3S1 6.38 7.69 6.60
3P0 0.82 0.89 0.79
1P1 1.00 1.14 1.05
3P1 0.30 0.52 0.38
3P2 0.97 1.78 1.24

Total 9.64 12.1 10.1

FIG. 4. Contributions to the density functionr (1)(x), defined in
Eq. ~6.7!, due to transitions involving theL50→L50 ~solid
circles! and L52→L52 ~open squares! components in the3He
and 4He wave functions. Note that the 2→2 density function has
been multiplied by a factor of 10, for ease of presentation.
01580
Note that theL50
L52 transitions vanish, since th
Gamow-Teller operator has no dependence on the spatia
ordinates in theq50 limit. The 0→0 density, while much
larger than the 2→2 density, consists of positive and neg
tive pieces, which nearly cancel out in the integral. Inde
out of a total integral of 0.19, the 0→0 and 2→2 contribu-
tions are, respectively, 0.02 and 0.17. It is important to
emphasize that in the 0→0 integral the whole contribution
comes from the mixed-symmetryS8 states of the3He and
4He wave functions, since the Gamow-Teller operator, in
q50 limit, cannot connect their dominant~symmetric! S
states, as already pointed out in Sec. I A. This fact has b
analytically verified using a simplified form for the nucle
wave functions, given by~for 4He, as an example!

C4.F11(
i , j

us,4~r i j !si•sj1utt,4~r i j !Si j ti•tj G
3F)

i , j
f c,4~r i j !GF4 , ~6.10!

whereF45det@p↑1 ,p↓2 ,n↑3 ,n↓4# is the spin-isospin Slate
determinant, andf c,4(r ), us,4(r ), and utt,4(r ) are central,
spin-spin, and tensor correlation functions, respectively. T
noncentral terms in Eq.~6.10! generate theS8- and D-state
components.

Finally, in Fig. 5, we display both the density function
r (1)(x) and r (2)(x). The density functionr (2)(x), although
much smaller thanr (1)(x), has no zeros, and consequen
its integral is comparable to that ofr (1)(x).

It is interesting to examine the ‘‘small’’M1 RME induced
by the weak vector current. It is dominated by the contrib
tions due to two-body currents, which interfere destructiv
with ~and, in fact, are much larger in magnitude than! those
from one-body currents. This matrix element can be appro
mately related to that occurring in then-3He radiative cap-
ture at thermal neutron energies@11#. Ignoring isospin-
symmetry breaking, one has

FIG. 5. Density functionsr (1)(x) ~solid circles! and r (2)(x)
~open squares!, defined in Eqs.~6.7! and ~6.8!.
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up-3He&.
C0

A2
T1uT51,MT50&, ~6.11!

and hence, in a schematic notation,

^4Heuêl* • j z
†~g!un-3He&.

1

A2
^4Heuêl* • j z

†~g!uT51,MT50&

.2
1

2C0
^4Heuêl* • j1

† ~V!up-3He&,

~6.12!

whereC0 is the Gamow penetration factor,j z(g) is the elec-
tromagnetic current, and use has been made of the C
relation to relate the commutator@T1 ,j1

† (V)# to j z
†(g). Note

that in the first line of Eq.~6.12! the contribution from the
T,MT50,0 ~113!-state has been neglected, since the isos
lar magnetic moment of the nucleon is a factor of.5
smaller than the isovector one, and the dominant two-b
electromagnetic currents are isovector. On the basis of
~6.12!, one would predictn-3He radiative capture cross se
tions, at zero energy, of 227mb, 142 mb, and 480mb with
one-body, one- plus two-body, and full currents—the lat
include the D-excitation currents treated in perturbatio
theory ~PT!, which severely overestimates their contributi
@11#. The value 480mb is almost an order of magnitud
larger than the measured cross section, 5563 mb @16#. Ig-
noring the D contribution, for which the PT estimate i
known to be unrealistic, the result obtained with one- a
two-body currents~the model-independent ones of Se
IV A !, 142 mb, is still too large by a factor of.2.6. How-
ever, the approximations made in Eqs.~6.11! and ~6.12! are
presumably too rough for a reaction as delicate as then-3He
capture~see discussion in Sec. I A!. Indeed, this process pro
vides a sensitive testing ground for models of interactio
and currents. A calculation of its cross section with CH
wave functions is currently underway.

In Table XIV we list the one-body axial-vector curre
contributions at two values ofq, 0, and 19.2 MeV/c, corre-
sponding to the lowest and highest momentum transfers
lowed by thep-3He kinematics. A number of comments a
in order. First, the RME associated with the Gamow-Te
operator, labeled NR in the table, has a rather strong de
dence onq. At q50 this RME is suppressed~see discussion
above!. Whenq.0, however, the next term in the expansi
of the plane wave in Eq.~4.12! leads to an operator havin
the structuret i ,6si r i ,z

2 , which can connect the ‘‘large’’S-
and D-state components of the bound-state wave functio
Its contribution, although of order (qR)2.0.02 (R
.1.4 fm is thea-particle radius!, is not negligible. Second
the suppression mechanism referred to above also make
relativistic corrections to the Gamow-Teller operator of E
~4.13! relatively important. Third, the induced pseudosca
term, last term in Eq.~4.13!, is purely longitudinal, and itsel
suppressed, since it is proportional to the NR operator.

In Table XV we report the cumulative contributions to th
L1(A) and E1(A) RME’s at q50 and 19.2 MeV/c. The
01580
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momentum transfer dependence of the results origin
from that of the one-body currents; the mesonic a
D-excitation current contributions are, in fact, very weak
dependent onq. Note that the results obtained by treating t
D currents either with the TCO method or in PT differ b
1–2 %. This is because theND axial-vector coupling con-
stantgA* is determined by fitting, independently in the TC
and PT schemes, the Gamow-Teller matrix element of
tium b decay. This procedure severely reduces the mo
dependence of the weak axial-vector current. Finally,
note that, if the quark model value were to be used forgA*
(gA* 56A2/5gA), the L1(A)@E1(A)# RME at q
519.2 MeV/c would have been20.48931021@20.716
31021# using the TCO method and20.15031021

@20.23431021# in the PT treatment, respectively.

C. P-wave capture

There are fourP-wave capture channels:3P0 , 1P1 , 3P1,
and 3P2. Note that 1P1 and 3P1 are coupled channels~see
Sec. III C!. The 3P0 capture is induced by the weak axia
vector charge and the longitudinal component of the we
axial-vector current via theC0(A) and L0(A) multipoles,
respectively. The associated RME’s, as defined in Eq.~6.1!,
are listed in Table X. The two-body axial-vector charge o
erators of Sec. IV D, among which the pion-exchange term
dominant, give a.20% correction to the one-body contr
bution in theC0(A) RME. TheL0(A) RME is about 40% of,
and has the same sign as, theC0(A) RME. This positive
relative sign produces a destructive interference betw
these RME’s in the cross section, substantially reducing
3P0 overall contribution to theS factor, as discussed in Se
II C. The C0(A) andL0(A) RME’s are expected to have th
same sign, as justified by the following argument. T
C0(q;A) multipole operator can be written, in theq→0
limit, as

C0~q;A!→2
1

A4p

gA

2m (
i

@t i ,6si•, pi #1

.
i

A4p

gA

2 (
i

@t i ,6si•r i ,H#, ~6.13!

where we have used the approximate relationpi
.2 im@r i ,H# ~violated by the momentum-dependent com
ponents of the two-nucleon interaction!, and in the second
line of Eq. ~6.13! have ignored, in a rather cavalier fashio
terms liket i ,6si•Hr i2r iH•sit i ,6 . For theL0(q;A) mul-
tipole we find, in the same limit,

L0~q;A!→ i

A4p

gA

3
q(

i
t i ,6si•r i , ~6.14!

and therefore we would expect theC0(A) andL0(A) RME’s
to be approximately in the ratio

C0~A!

L0~A!
.

3

2

E32E4

q
, ~6.15!
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which, given the rather severe approximations made in
riving Eq. ~6.13!, is reasonably close to the~one-body! value
obtained in the calculation~1.6 versus 2.0!.

The 1P1 and 3P1 captures are induced by the weak vec
charge and current, and weak axial-vector current via
multipoles C1(V), L1(V), E1(V), and M1(A). The calcu-
lated values for the associated RME’s are listed in Tables
and XII. The RME magnitudes of the weak vector transitio
in 3P1 capture are much smaller than those in1P1 capture.
In the long-wavelength approximation, the one-bodyC1(V),
L1(V), and E1(V) multipoles are independent of spin, an
therefore cannot connect the dominant part of the3P1 wave
function, which has total spinS51, to theS-wave compo-
nent of 4He, which hasS50. This is not the case for the1P1
channel, in which the total spinS50 term is in fact largest.
Indeed, because of this suppression, the two-body weak
tor charge and current contributions are found to be do
nant in 3P1 capture. The situation is reversed for the ax
transition, since there the spin-flip nature of theM1(A) mul-
tipole makes the associated RME in3P1 larger than that in
1P1 ~in absolute value!.

The E1(V) operator can be shown to have the lon
wavelength form@18#

E1~q;V!52
A2

q
@H,C1~q;V!#, ~6.16!

and so theE1(V) and C1(V) RME’s would be expected to
be in the ratio

E1~q;V!

C1~q;V!
.A2

E32E4

q
.1.51, ~6.17!

assuming the validity of the long-wavelength approximatio
and that the CHH wave functions are truly exact eigenfu
tions of the Hamiltonian. We reiterate here that the curre
used in the present work satisfy the continuity equation o
with thev6 part of the AV14 and AV18 interactions, namel
in momentum spaceq• j (q;V)5@T1v6 ,rNR

(1)(q;V)#. The
currents induced by the momentum-dependent compon
of the interactions, such as the spin-orbit term, have b
neglected. Thus the ratio obtained in the calculation is 1
for the 1P1 channel, somewhat smaller than the expec
value presumably because of the ‘‘missing’’ currents and
approximate eigenstate property satisfied by the pre
CHH ~variational! wave functions. These same cautiona
remarks also apply to the comparison between theC1(V)
andL1(V) RME’s, which should be related to each other v
Eq. ~6.6!.

The situation is more delicate in3P1 capture, since this
transition is suppressed. Here the long-wavelength appr
mation of theE1(V) multipole is inadequate, and higher o
der terms in the power expansion inq need to be retained
so-called retardation terms. In fact the situation is clos
related to that of electric dipole transitions inpd radiative
capture at very low energies~0–100 keV!. We refer the
reader to Ref.@18# for a thorough discussion of these issue

The 3P2 capture is induced by the weak axial-vect
charge and current, and weak vector current operators via
01580
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multipolesC2(A), L2(A), E2(A), and M2(V). The associ-
ated RME’s are listed in Table XIII. TheL2(A) andE2(A)
RME’s are comparable to theL1(A) and E1(A) RME’s in
3S1 capture, and are dominated by the contributions of o
body currents. In fact, the latter can now connect the la
S-wave components of the three- and four-nucleon bou
states. The density functionr (1)(x), defined in analogy to
Eq. ~6.7! ~but for the 3P2 channel!, is displayed in Fig. 6,
and should be compared to that in Fig. 5 for3S1 capture.
While smaller in magnitude than the latter—after all, the3P2
transition is inhibited with respect to the3S1 transition by a
factor of .qR and the presence of the centrifugal barrier
the 3P2 density has the same sign, and therefore its integ
turns out to be comparable to that of the3S1 density.

Finally, to illustrate the momentum-transfer dependen
of theP-wave RME’s, we list in Table XVI theC0(A) RME
obtained in3P0 capture atq50 and 19.2 MeV/c, and the
E1(V) RME obtained in 1P1 capture at q59 and
19.2 MeV/c. Theq dependence of these RME’s is substa
tially weaker than that reported in Table XV for3S1 capture.
The C0(A) andE1(V) transitions in the limitq50 have, in
contrast to theE1(A) transition in 3S1 capture, no additiona
suppression mechanisms, beyond the centrifugal bar
since they can connect the largeS-wave components of the
three- and four-nucleon bound-state wave functions.

D. Model dependence

In Table XVII we list, for allS- andP-wave channels, the
S-factor values obtained with the AV18/UIX, AV18, an
AV14/UVIII interactions. Note that the sum of the chann
contributions is a few percent smaller than the total res
reported at the bottom of the table~see the end of Sec. II C!.
The ND axial-vector coupling constant is determined by fi
ting the Gamow-Teller matrix element in tritiumb decay,
within each given Hamiltonian model. As a result of th
procedure the model dependence of theS-factor predictions
is substantially reduced.

Inspection of Table XVII shows that inclusion of th
three-nucleon interaction reduces the totalS factor by about

FIG. 6. Density functionr (1)(x) defined in Eq.~6.7! in the 3P2

capture channel.
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20% ~compare the AV18 and AV18/UIX results!. This de-
crease is mostly in the3S1 contribution, and can be trace
back to a corresponding reduction in the magnitude of
one-body axial-vector current matrix elements. The latter
sensitive to the triplet scattering length, for which the AV
and AV18/UIX models predict, respectively, 10.0 fm an
9.13 fm ~see Table III!.

The comparison between the AV18/UIX and AV14/UVI
models, which both reproduce the measured bound-s
properties and low-energy scattering parameters of the th
and four-nucleon systems, suggests a rather weak mode
pendence. It is important to reiterate that this is acco
plished by virtue of the procedure used to constrain the ax
vector current. Indeed, the AV18/UIX and AV14/UVIII3S1
contributions to theS factor obtained with one-body curren
only are, respectively, 26.4310220 and 35.8310220 keV b.
This difference is presumably due to the stronger ten
component of AV14 as compared to that of AV18.

Finally, the 3S1 contribution to theS factor obtained with
the AV14/UVIII model in the present work, 6.6
310220 keV b, is to be compared with the older predictio
of Ref. @11#, 1.3310220 keV b. It is important to point out
that the older calculation~i! used the long-wavelength form
of the E1(A) andL1(A) operators,~ii ! ignored the contribu-
tions of transitions induced by the axial-vector charge a
i,

s.

,

9,
l.
.

rl

n

n

.
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vector current,~iii ! retained only the leading nonrelativisti
~Gamow-Teller! term of the single-nucleon axial current, an
~iv! employed bound and continuum wave functions, o
tained with the VMC method. In regard to this last point, w
note that, for example, theĒ1(q50;A) RME calculated in
Ref. @11# with the Gamow-Teller operator is 0.61
31021 fm3/2 versus a value of 0.119 fm3/2 obtained here.
The factor of.2 increase is only due to differences in th
wave functions. The present CHH wave functions are
pected to be more accurate than the VMC wave functions
Ref. @11#.
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