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Abstract
We review the derivation of the electrostatic screening effect from first
principles. We show that under the conditions prevailing in the Sun the
number of particles in the Debye sphere is of the order of unity. Consequently,
fluctuations play a dominant role in the screening process and lead to an
energy exchange between the scattering particles and the surrounding plasma
that depends on the energy of the particles. Extensive molecular dynamics
calculations show that low-energy particles gain on the average energy from
the plasma while high-energy particles lose energy to the plasma, in contrast
with the classical Salpeter picture in which all particles gain during the close
approach to each other the mean Coulomb energy.

Next, we adopt the Langevin equation for charged particles with the
Rosenbluth potential. We show how the two completely independent methods,
the molecular dynamics and Langevin equation, yield the same physical results.

We then review the arguments for a static screening based on a static
potential and show its basic assumptions and shortcomings. The particular
assumptions leading to the Salpeter formula are discussed along with the
approximations involved in its derivation. One of the tacit fundamental
assumptions in the Salpeter approximation is that the scattering is fully elastic.
The inelastic nature of the collisions which are dominant under the solar
conditions is clarified.

PACS numbers: 52.25.Gj, 52.20.Hv, 95.30.Cq, 26.65.+t, 26.20.+f

1. Introduction

The rates of the nuclear reactions that take place in dense stellar cores are affected by the
environment. The effect is known as the screening factor. The Salpeter (1954) theory predicts
an enhancement of the rate of all nuclear reactions by a factor which in the limit of weak
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screening is given by exp(U/kT ), where U = Z1Z2e
2/(RDkT ), and where RD is the Debye

radius.
Salpeter (1954) assumed a mean-field theory and stated the approximations involved.

Salpeter defined the screening as the extra energy gained by a pair of approaching particles
over their relative kinetic energy at large separation. Alastuey and Jancovici (1978) formulated
the screening as the enhancement of the population of particles at vanishing separation.

Recently Bahcall et al (2001) (hereafter BBGS) have discussed the Salpeter formula and
claimed that it should apply to the Sun and that all claims concerning dynamic effects are
wrong, including the recent results of Shaviv and Shaviv (2001) (hereafter SS01).

The discussion of BBGS (and implicitly in Alastuey and Jancovici (1978)) is based on the
mean-field electrostatic potential. Further, the authors assume that two interacting ions always
gain energy from the plasma, as the particles approach each other. This additional energy, the
screening energy, is taken to be just the mean-field potential of the ions in the plasma, namely,
the long time average (the thermodynamic time) of the potential felt by an ion in the plasma.
As the particles move apart the tacit assumption is that this extra energy is exactly returned to
the plasma.

The source of the problem in our opinion is the confusion between the statistical and
long time averaged behaviour on one hand and the dynamic behaviour of dense plasma on the
other. BBGS are of the idea that the screening problem is a static one while we claim that
under the conditions in the Sun it is a dynamic one and should be treated as such. When one
treats the screening of scattering particles from first principles one finds that not all particles
gain the same energy during the close approach. Slow particles gain energy while fast particles
lose. Moreover, the energy gain/loss is not a trivial function of the relative kinetic energy, as
will be shown later.

In the first part of this paper we present the results of the molecular dynamic (here after
MD) method and the agreement between the MD predictions and classical statistical mechanics
and (1) infer the critical properties of the collisions between plasma particles, (2) define the
screening energy and (3) discuss typical results. Next, we turn to a completely different
method to calculate the screening using the Langevin formalism. We show that the qualitative
nature of the results does not change. We end with a discussion of the BBGS arguments and
show their physical implausibity.

2. Ab initio molecular dynamics approach

The advantage of the MD approach is that it is ab initio, namely it starts from first principles
with no assumptions about mean-field, fluctuations, energy exchange, etc. The disadvantage
is the rather long CPU time required for calculations with proper statistics. The MD method
used was described in detail by Shaviv and Shaviv (2000) (hereafter SS00).

A critical issue is the boundary conditions. In the classical MD calculations periodic
boundary conditions are assumed. The periodicity means that each ion and electron carries
with itself as it moves in the calculation box, an infinite series of images in the x, y and z
directions.

When a real particle moves the images move as well. Consequently, as the recoil of a real
charge is calculated, an identical recoil is tacitly assumed for all images. The disadvantage
of this approach is that only the recoil of the real particles interacting with a single ion is
calculated correctly. The images have a vanishing effective mass and the recoil is identical
to that of the real charge. In this way, the energy gain/loss by scattering particles from the
plasma is poorly approximated.
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Figure 1. The dependence of the long time average potential energy per particle on the kinetic
energy in the laboratory. The filled circles represent the mean potential energy of the protons. The
filled squares are the mean of instantaneous force squared acting on the particle averaged over
particles in the energy bin and time. The pluses represent the absolute value of the average force.

To prevent the neglect of the recoil, we use a large number of particles (at least N = 403

and frequently more). For more details see SS00.

2.1. The statistical mechanics results

A fundamental prediction of statistical mechanics is that if the distribution function is separable,
then the mean potential energy of a particle does not depend on the kinetic energy. When
such a separation exists, if one considers the potential energy of particles in the energy range
(Ekin, Ekin + �E) then the result for the long time average potential should be independent
of Ekin or �E. We have therefore run a calculation in which the long time average potential
energy as a function of kinetic energy was carried out as follows:

U(Ekin, Ekin + �Ekin) = lim
L→∞

(
1

NL

) L∑
l=l0

N∑
i=1

ui(lτ )O
(
Ekin, E

i
kin

)
(1)

where ui(lτ ) is the potential energy of particle i at time lτ . τ is the time step and l is the
summation index. The function O

(
Ekin, E

i
kin

)
is defined by

O
(
Ekin, E

i
kin

) =
{

1 if Ekin � Ei
kin � Ekin + �Ekin

0 otherwise
. (2)

The function O assures that the potential energy of only particles in the right energy bin is
summed up in the averaging process. Note that the potential energy of any ion is not constant
as a function of time. However, the long time average of all ions should be the same. Here
we go one step further and check the long time average when the particles are in a restricted
kinetic energy range.

In figure 1 we show the long time average potential energy as a function of the energy
bin. The energy bins are 0.05 kT wide. Also shown is the time average of the force and the
time average of the force squared.
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Figure 2. The distribution of the proton potential energy at a given time. The results are shown
for T = 1.5 × 107 K and n = 1026#/cc and for n = 1027#/cc. The distributions are normalized
to unity and given in units of kT �.

We see that: (a) the mean potential energy does not depend on the kinetic energy; (b) the
absolute value of the mean force vanishes; (c) the mean of the square root of the force squared
is large.

A few comments: the force acting on a particle in the plasma fluctuates with a
large amplitude around a vanishing mean. The vanishing of the mean force agrees with
the assumption that the mean potential is spherically symmetric and the ion sits at the centre
(at rest). However, the non-vanishing of the instant force implies large fluctuations in the force
(the fluctuations are in magnitude and direction). Clearly, assuming a smooth constant in
the time potential may lead to large errors in the dynamic problem of screening.

2.2. The distribution of the potential energy of particles

The number of particles in a Debye sphere is given by

ND = (4π/3)R3
D where R2

D = kT /4πe2
∑

j

(
Z2

j + Zj

)
nj (3)

where nj is the number density of species j with charge Zj . This expression assumes that
both the electrons and the ions contribute to the Debye potential. Assuming pure hydrogen
plasma, n = 1026 and T = 1.5 × 107 K we find that in the core of the Sun RD = 0.877〈r〉 where
〈r〉 = n−1/3 and ND = 2.83.

As the potential part of the distribution function of the particles is FN ≈ exp(ϕij/kT ),
where ϕij is the Coulomb interaction between two particles, one expects that the potential
energy of the single particle will also have a distribution (in contrast to a constant value equal
to the mean thermodynamic value).

Namely, not all particles have the same potential energy. Indeed, in figure 2 we show
the potential energy distribution in equilibrium found in a snap shot. Two cases are shown:
T = 1.5 × 107, n = 1026#/cc and n = 1027#/cc. The potential energy is given in units of
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Figure 3. The time dependence of the potential of a single particle. The time steps are constant at
10−3 of the time units. The plasma frequency is beyond the range.

kT � (where � = e2/〈r〉kT ). The width of the distribution is proportional to 1/
√

ND which
in the present case is slightly less than unity. According to Ginzburg (1960), the fact that
fluctuations are large implies that the mean-field theory is not a good approximation in this
case.

2.3. A stochastic potential

We saw above that the force (and the potential) acting on a given particle in the plasma
fluctuates. An example of the potential felt by a certain particle is shown in figure 3 over many
time steps. The actual time step is significantly shorter than the fluctuations in the figure.

The physical picture that emerges from the MD calculation is that of protons interacting
with a fluctuating cloud of positive and negative charges as well as with the target proton.
Under these conditions, we have to see the interaction between the two protons as the effective
interaction between two particles in a stochastic fluctuating medium. Hence a static potential
cannot provide the entire picture. The stochastic approach can be described with a single
particle Hamiltonian of the following form:

Hi,p = p2

2m
+ V0(r) + V1(r, t) = H0 + V1(r, t) (4)

where V0 is the static potential. H0 is the Hamiltonian that would lead to the Debye potential.
V1 represents the time-dependent part of the fluctuating environment around the interacting
protons.

If np(r, t) is the instantaneous number density of the protons then clearly one way to
obtain the time-dependent potential is

V1(r, t) = e2
∫

dr ′ δn(r ′, t) − nD(r ′)
|r − r ′| (5)

where the fluctuation beyond the local Debye potential is given by δn(r, t). In other words, we
expect V1(r, t) to vanish when the fluctuations decay as the number of particles in the Debye
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Figure 4. The screening energy as a function of the kinetic energy of the particle in the laboratory.
Filled circles are the screening energy in units of kT. Crosses are the Gaussian dispersion given in
the same units. Filled squares are the number of particles in the energy bin. The results are for
T = 1.5 × 107 K and n = 1026 pure hydrogen composition.

sphere increases. Once the potential is a function of time the behaviour of particles with
different velocities (or kinetic energies) differs unlike the case of a time-independent potential
where all particles gain/lose the same energy. Moreover, the time dependence is required to
describe the energy exchange between the variable environment and the scattered particle.

2.4. A simple definition of the screening

The MD method allows us to define the screening energy in a simple and clear way. Consider
two particles i and j moving in the plasma and scatter one off the other. Let E

tot−L,f

i be the
total energy of particle i of the pair when they are far apart and let E

tot−L,c
i be the total energy

when they reach the distance of closest approach. The screening energy is given by

Ei,scr = E
tot−L,c
i − E

tot−L,f

i . (6)

A symmetric expression exists for particle j . The total energy includes kinetic as well
as potential parts and is evaluated in the laboratory. The screening energy is the energy
gained/lost by a pair of scattering protons as they move from far away to the distance of
closest approach. This is very close to the original definition given by Salpeter (1954) to
the screening energy (cf ibid equation (2)). In figure 4 we show the results for the screening
energy. Clearly, particles with low kinetic energy absorb energy from the plasma during the
approach from far away to the distance of closest approach, while particles with high energy
lose energy to the plasma. The results can be easily understood in dynamic terms: the plasma
contains mainly protons with kinetic energies of the order of kT . When a particle with high
kinetic energy penetrates the screening cloud it loses energy to the plasma. On the other hand,
a low-energy particle gains energy.
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3. Self-consistent Langevin simulation of Coulomb collisions in plasma

We consider a head-on collision between two protons immersed in a fully ionized hydrogen
plasma. We write the equations of motion as

mp,1
dv1

dt
= e2 r12

|r12|3
+ e2

N∑
i �=1,2

r1i

|r1i|3

mp,2
dv2

dt
= e2 r21

|r21|3
+ e2

N∑
i �=1,2

r2i

|r2i |3
(7)

where rij = ri − rj and we separate the direct interaction between the two scattering particles
and the interaction between each one of them and the rest of the particles in the plasma. The
summation is carried over all particles. At this point the electrons are treated like protons
with opposite charge so that the sum runs over all particles in the plasma. The two scattering
protons have indices p1 and p2 while the field ions (which can be electrons, protons or heavier
ions) are marked with index β.

The idea now is to replace the potential due to all other particles by dynamic friction and a
stochastic force and obtain the corresponding Langevin equations for the two protons moving
in the plasma (cf Qiang et al 2000, Riskin 1997, Bobylev and Nanbu 2000), namely

mp,1
dv1

dt
= e2 r12

|r12|3
+ mp,1Fd(v1) + mp,1Q1(v1) · S(t)

mp,2
dv2

dt
= e2 r21

|r21|3
+ mp,2Fd(v2) + mp,2Q2(v2) · S(t)

(8)

where Fd is a deterministic dynamic friction force and the vector S is a random vector with
the following properties:

〈S(t)〉 = 0 and 〈Si(t)Sj (t)〉 = δijδD(t − t ′) i, j = 1, 2, 3, . . . (9)

namely completely stochastic. Here δD is the Dirac δ function. The force term Qi is known
as the Langevin force (i is the index of the particle. Q is a tensor).

Rosenbluth et al (1957) have shown that in the case of a plasma, the dynamic friction can
be described as a generalized potential now known as the Rosenbluth potential. Assume a
particle moves through a plasma composed of ions β, then the dynamic friction force exerted
by the β particles on particle α, Fα , is given as

Fα(v) = −λ
mα + mβ

mαmβ

(4πeαeβ)2∇vϕβ(v). (10)

When different species β exist, the force is the sum over the force exerted by each species
separately. λ = ln � is the classical Coulomb cutoff . The first Rosenbluth potential ϕ is
given by

ϕβ(v) = − 1

4π

∫
fβ(v′) dv′

|v − v′| (11)

where the integration is carried over the velocity distribution of the scattering particles fβ(v).
The tensor Q is derived from the diffusion tensor via the relation Dij = QikQjk where

Dij = C
∂2G(v)

∂vi∂vj

where G(v) =
∫

f (vβ)|v − vβ |dvβ (12)

G(v) is the second Rosenbluth potential and it is related to the first one (Qiang et al 2000).
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Figure 5. The solution to the Langevin equation for three plasma densities. The energy gain/loss
by two protons scattering off each other in a head-on collision is shown as a function of the relative
kinetic energy at large separation.

The above Langevin equation relates the states of the particles before and after the
collision. We are interested in the relation between the state of the particles before the
collision and the state of the particles at the classical turning point (Qiang et al 2000, Lampe
et al 2000, Manheimer et al 1997, Fang 1978).

Next, we assume the plasma to be in equilibrium and hence assume the Maxwellian
distribution so that the Rosenbluth potential becomes (see Shohet 1971, Sturrock 1994):

ϕβ(vz) = nβ

( mβ

2πkT

)3/2 4π

vz

∫ vz

0
exp

(
−mβv2

β

2kT

)
v2

β dvβ. (13)

To simplify the physics we consider the two particles to move along the z axis and calculate
the energy change due to the dynamic force.

In figure 5 we show the solution of the Langevin equation for particles arriving from far
away and undergoing a head-on collision with one another. The results are given in terms of
the absolute energy. The results for the energy gain/loss are given in units of �. We see the
anticipated behaviour, namely, when the energy is low relative to kT , the particle gains energy
from the plasma and vice versa when the energy is high. These results, which are based on
simplified analytical potentials, confirm the basic results of the MD calculations.

The stochastic term Q gives rise to a distribution around the mean results shown in figure 5.
Detailed results will be reported elsewhere.

4. The arguments justifying the Salpeter approximation

BBGS attempt to explain why the Salpeter formula is the correct and accurate one under the
conditions prevailing in the core of the Sun. In doing so they misquote Salpeter (1954). As
a matter of fact, the argument given by BBGS is not the one given by Salpeter (1954). In
principle, our definition of the screening energy conforms with Salpeter’s definition (except
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for the fact that Salpeter defines the screening energy in the centre of mass system while we
use the laboratory system).

Salpeter argues about the validity of the approximations he implemented in his derivation:
‘We have used a continuous (average) charge density ρ̄(r) and in its evaluation have used the
statistical Boltzmann factor exp[−U(r)/kT ] for particles at the point r. For this procedure
to be strictly valid many nuclei and electrons should be contained in a volume small enough
so that ρ̄(r) and U(r) do not vary appreciably over this volume’. In other words, Salpeter
(1954) discusses density fluctuations and states that he ignores them in his approximation. The
Salpeter (1954) approximation boils down to assuming negligible density spatial fluctuations.

We turn now to discuss the plausibility of the physical dynamic argument. Let〈
δEin

(
E−∞

kin

)〉
be the average energy gain/loss by two approaching particles, the energy of

which at large separation is E−∞
kin . Note that the energy gain/loss δEin

(
E−∞

kin

)
may have a

distribution and we here use the average over this distribution.
We assume here that the average energy gain/loss by the particles depends on the relative

kinetic energy at large separation. Similarly, let
〈
δEout

(
E∞

kin

)〉
be the average energy gain/loss

by two particles as they move from the distance of closest approach to a large separation.
Again, we assume dependence on the relative kinetic energy at large separation. Define by
�Ecoll

(
E−∞

kin

)
the energy change in a collision by a pair of particles that have before the

scattering a relative kinetic energy E−∞
kin and after the collision they have a relative kinetic

energy of E∞
kin = E−∞

kin + �Ecoll
(
E−∞

kin

)
. In the general case (when the energy change depends

on the relative kinetic energy at large separation) the total change in the relative energy during
a collision of the two particles is given by

�Ecoll
(
E−∞

kin

) =
∫

δEin
(
E−∞

kin − E
)
δEout

(
E−∞

kin + E
)

dE (14)

where the integration is carried out over all energies E. Let now f (Ekin) be the distribution
function of kinetic energies at equilibrium. Clearly, at equilibrium the following condition
must hold 〈

�Ecoll
(
E−∞

kin

)〉 =
∫ ∞

0
dE−∞

kin f
(
E−∞

kin

)
�Ecoll

(
E−∞

kin

) = 0. (15)

As the distribution is a positive definite function, it follows that either �Ecoll
(
E−∞

kin

)
changes

sign at least once at some relative kinetic energy or �Ecoll
(
E−∞

kin

) ≡ 0. The first possibility
about the change of sign does not depend on the particular interaction but on the condition
of equilibrium. This is exactly what the MD result shows. The Salpeter approximation
corresponds to the second case, namely,

�Ecoll
(
E−∞

kin

) ≡ 0

δEin
(
E−∞

kin

) = δD(δEin − U)

δEout
(
E∞

kin

) = δD(δEout + U).

(16)

The first condition implies no change of energy in a collision irrespective of the relative energy
at large separation. The second condition means that the energy gained by the two particles
from the plasma upon approaching each other is constant and equal to the mean potential
energy per particle. The third condition means that as the particles separate they always
lose the same energy, namely the energy gained upon approach. Another way to put it is as
follows: in the Salpeter approximation all proton–proton collisions are fully elastic, no energy
is lost/gained to the plasma. The SS01 results are the extension to inelastic collisions.

The screening energy is δEin
(
E−∞

kin

)
and the MD calculations as well as the Langevin

equations show that it is positive for low E−∞
kin and negative for high kinetic energies.
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5. Conclusions

The screening energy is associated with the relaxation processes in the plasma.
Thermodynamic averages are long time averages and hence not relevant to the details of
the scattering and the relaxation which takes place during single scatterings and collisions.

Fluctuations become important when ND ≈ 1 and as a consequence the scatterings take
place under a time-dependent effective potential. The interaction with the fluctuations is such
that on average low-energy particles gain energy and vice versa.

When a totally different method is used to calculate the classical screening, the same basic
results are found, supporting the detailed results of the MD method.
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