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Abstract

Nuclear electron capture rate from continuum in an astrophysical plasma
environment (like solar core) is calculated using a modified Debye–Hückel
screening potential and the related non-Gaussian q-distribution of electron
momenta. For q = 1 the well-known Debye–Hückel results are recovered.
The value of q can be derived from the fluctuation of number of particles and
temperature inside the Debye sphere. For 7Be continuum electron capture in
solar core, we find an increase of 7–10% over the rate calculated with standard
Debye–Hückel potential. The consequence of these results is a reduction of
the same percentage of the SSM 8B solar neutrino flux, leaving the SSM 7Be
flux unchanged.

1. Introduction

Since the early works by Bethe [1] and Bahcall [2, 3] great attention has been devoted to the
screening effect of the Coulomb potential on electron capture (EC) by nuclei in astrophysical
plasmas [4] and on its implications with neutrino production.

The plasma influence has been in the main part explored by means of Debye–Hückel
(DH) treatment. However, Johnson et al [5] found that assumptions for the validity of the DH
potential are strongly violated in stellar cores, because, among other reasons, the requirement
to have many particles in a Debye sphere is not fulfilled. At solar conditions there are only
few (about four) particles per Debye sphere. Role and importance of several effects in the
electron component of a weakly nonideal hydrogen plasma have been recently investigated in
[6], inducing us to investigate on EC beyond the DH approach.

The contribution to nuclear EC rate of bound and continuum electrons has been widely
studied by Shaviv and Shaviv [7]. They have found that under solar conditions all elements
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with 4 < Z < 12 are fully ionized; therefore, the contribution from bound electrons to the
capture rate can be disregarded. Formerly, Bahcall and Moeller [8] reported that the ratio of
the rate from continuum over the rate from bound states is about 1.2.

Fluctuations of electric microfields and Debye particle numbers have been investigated by
Gruzinov and Bahcall [9] and by Brown and Sawyer [10] within the Feynman density matrix
treatment and the mean-field theory applied in the Boltzmann limit validity, i.e. at global
thermodynamical equilibrium. They have found that non-spherical fluctuations can change
the reaction rate by about 1–2% and that quantum corrections to the Maxwell–Boltzmann
(MB) limit for Z = 4 are less or about 1%.

Screening of the Coulomb field of the nucleus by outer electrons has been explored
by considering the Hulthén potential that has a shape very close to a screened Coulomb
potential. By solving analytically Klein–Gordon and/or Schrödinger equations one can
calculate the electron density at the nucleus and consequently derive the Fermi factors in
terms of hypergeometrical functions [11].

In all above-quoted papers, continuum EC rates are evaluated in the classical statistics
limit, using the MB electron momentum distribution that is the correct distribution for the
Coulomb and DH potential VDH(r), but is not the appropriate distribution to be used with
the modified DH (MDH) potential Vq(r) (Vq=1(r) = VDH(r)) introduced by us in [12]. The
spatial charge distribution related to the last-mentioned screening potential differs from the
others having a spatial cut-off. The linear Poisson equation used to deduce the screening DH
potential must be substituted by a nonlinear equation to take into account particle correlations
and fluctuations and Vq(r) is deduced as a power-law function. In [12] we have also derived
the potential Vq(r) in the framework of the super-statistics approach [13, 14], by considering
an inverse Debye radius fluctuating around its average value given by ξ = 〈1/RDH〉−1. The
evaluation of the rate requires non-Gaussian generalized q-distribution of electron momenta
with the same value of q of the spatial charge density distribution.

In this work, we evaluate the variation of the EC rate due to the MDH screening potential
over the pure Coulomb screening rate as a function of average Debye radius ξ and entropic
non-extensive parameter q [15–17]. We consider the case 0 < q < 1 to have a screening
potential with finite spatial range. This peculiarity of some high-density astrophysical plasmas
and of most of the Sun is due to the fact that, in these systems, the mean interparticle distance
is smaller or slightly smaller than DH radius [7]. Standard DH results are obtained in the limit
q → 1 of the electron non-Gaussian distribution.

The value of the parameter q can be fixed by means of its relation with the fluctuation of
particle numbers and of temperature inside the Debye sphere; therefore, the same value of q
can be used both for spatial charge density and for momentum distributions.

When this treatment is applied to EC by 7Be in the solar core, we can derive the amount
of the rate enhancement for the electrons of continuum over the DH rate. We find that,
at solar conditions, the rate can increase by about 7–10% over DH screening rate with q
ranging between 0.84 and 0.88 (small deformations of the MB distribution). This result can
be useful in the interpretation of the observed 7Be and 8B neutrino fluxes, in the evaluation
of relevant astrophysical factors and of CNO solar neutrinos [18–21]. For recent discussions
and comments on the EC by 7Be from a continuum three-body initial state we send to [22],
and references therein. See [23] for EC rate evaluated with a percentage of the non-thermal
fat-tail electron distribution.

In section 2, we report the expressions of the rates evaluated with q-generalized distribution
at a few different values of q. In section 3, we present numerical results of the rates, for electrons
belonging to the continuum for different values of the parameter q and focusing to the case of
EC by 7Be in the solar core. Finally, in section 4, we outline our conclusions.
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2. Rates

It is known that in nuclear continuum EC the evaluation of the rates includes the Fermi factor,
i.e. the electronic density at the limit of r → 0 in a pure Coulomb potential. Therefore,
the pure nuclear rate is corrected because of the Coulomb interaction between the captured
electron and the nucleus. Usually, within a plasma environment, the DH potential is adopted
in place of Coulomb potential. In this case, the electron density at the nucleus is known only
numerically from the solution of the appropriate Schrödinger equation.

In an astrophysical environment, the momentum distribution of screening electrons can
differ significantly from the MB distribution. We have recently introduced a MDH screening
potential to take into account nonlinear and correlation effects by means of fluctuation of
1/ξ = 〈1/RDH〉 [12]. Of course, also in this case we need to evaluate the electron density at
r = 0 by solving the appropriate Schrödinger problem for electrons in the continuum.

Whereas Schrödinger solution with a Hulthén potential can be given in a close analytic
form, the MDH potential (as well as the standard DH potential) admits only numerical solutions
for the electron density at r = 0. Alternatively, one can use the Hulthén potential that fits
quite well the MDH potential in the small r region (near the nucleus), but contains an infinite
tail instead of having a cut-off at an appropriate value of r ≡ rcut as for the MDH potential
with q < 1. A Coulomb cut-off potential, obtained by imposing the condition VC(r) = 0
for r > rcut and consequent discontinuity in the potential at r = rcut, was used in the past as
the simplest way to screen the Coulomb field [24]. Otherwise, in our approach, the cut-off
condition arises naturally and the MDH potential is a smooth function for any r > 0, vanishing
for r > rcut.

In the following, we evaluate the rate for the free electron capture by a (A,Z) nucleus,
given by the integral, in the three-dimensional space of velocities, of electron capture cross-
section σe times the electron velocity v, the normalized probability density (FC, FDH, FH or
Fq) that an electron of the continuum spectrum, with velocity v and travelling in a screening
potential (VC, VDH, VH or Vq), be at the nucleus with coordinate r = 0 and the normalized
probability that the electron velocity be v, probability given by the distribution function fq(v)

(q = 1 for C, DH and H, where fq=1(v) ≡ fMB(v) is the normalized MB distribution of
electrons). This distribution must be appropriate to the screening potential used.

We define the pure Coulomb nuclear electron capture rate, averaged over a MB
distribution, as

RC(T ) =
∞∫

0

(σev)FCfMB(v)4πv2 dv, (1)

where

σe = G2

π(h̄c)4

c

v
(W0 + W)2χ (2)

is the nuclear electron capture cross-section [2, 3] with G the Fermi constant, W0 the nuclear
energy release for one electron with total energy W , χ = C2

V〈1〉2 + C2
A〈σ 〉2 the well-known

reduced nuclear matrix element [2].
The Fermi factor for Coulomb potential, given by FC(E) = 2πη/(1 − e−2πη) with

η = 4/(a0p) where a0 is the Bohr radius and p = mev is the electron momentum, follows
from the definition FC(E) = limr→0 |ψC(r)/pr|2, where ψC(r) is the wavefunction of the
Schrödinger equation with the Coulomb potential.

The Hulthén rate RH has been evaluated by averaging over the MB distribution
and by substituting into the Coulomb rate of equation (1) the Fermi factor FH(E) =
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limr→0 |ψH(r)/pr|2, where ψH(r) is now the wavefunction of the Schrödinger equation with
the Hulthén potential VH(r) = −(Z e2/RDH) e−2r/RDH(1 − e−2r/RDH)−1 and, in this case, the
Fermi factor can be obtained analytically [11, 25].

Finally, the non-extensive rate Rq can be obtained by substituting into equation (1) the
factor FC(E) with the Fermi factor Fq(E) = limr→0 |ψq(r)/pr|2, where ψq(r) can be obtained
as a numerical solution of the Schrödinger equation with the MDH potential [12]

Vq(r) = −Z e2

r
[1 − (1 − q) δqr]1/1−q, (3)

with δq = 1/[(2 − q)ξ ].
Consistently with the derivation of the MDH potential in the definition of Rq we must

insert in place of the MB distribution the normalized non-extensive distribution fq(v) [12]
defined in

fq(v) = Bq

(
me

2πkT

)3/2

expq

(
−mev

2

2kT

)
, (4)

with expq(x) = [1 + (1 − q)x]1/1−q
+ the q-exponential ([x]+ = xθ(x) where θ(x) is the

Heaviside step function) and for q < 1,

Bq =
√

1 − q
5 − 3q

2

3 − q

2



(

1
2 + 1

1−q

)



(
1

1−q

) . (5)

For q = 1 formula (4) reduces to the MB distribution.
The integral for the rate Rq , when q < 1, is performed over the real interval [0, vcut] with

vcut = √
2kT /[(1 − q)me] < c which defines a cut-off condition in the velocity space. When

q → 1 the rate Rq reduces to the DH rate RDH.

3. Results

We pose our attention to the case of solar EC by 7Be. Results can be easily extended to any
(A,Z) nucleus (calculations are in progress).

In figure 1, we report for several values of ξ the quantity

�PX(E) = FC(E) − FX(E)

FC(E)
, (6)

where X = H, DH and q (with q = 0.95, 0.85, 0.75) that represents the percentage variation of
probability density at r = 0 compared to the probability density when the screening potential
is a pure Coulomb potential.

Bahcall and Moeller [8] and Gruzinov and Bahcall [9] have found that, for RDH > 0.4a0

and Z = 4, the quantity �PDH(E) is less than 1%, for 0.3a0 � RDH � 0.4a0 about 2%
and have concluded that plasma screening is unimportant for capture from continuum. Our
calculation of DH electron density at r = 0 (which corresponds to the case of q = 1) agrees
with their results. However, in [8, 9] the above authors have calculated the rate averaging
over the MB distribution, in the frame of a global thermodynamical equilibrium; therefore,
they have found a negligible screening effect over Coulomb rate and a negligible effect of
fluctuations and correlations over the DH rate. Although electron density at r = 0 due to
Vq(r) is smaller than Coulomb density, in the velocity space the probability density in the low-
momentum region is greater than MB because the continuum electron distribution fq(v) we
use in this work privileges low-momentum electrons. Therefore, screening may be important
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Figure 1. Relative variation �PX(E) of the Fermi factor FX(E) over the Coulomb Fermi factor
FC(E) for ξ = 0.45a0 and ξ = 0.90a0 and energy 0 keV < E < 25 keV.

Table 1. Relative variation ��X(T ) of the rate RX(T ) over the Coulomb rate RC(T ) for several
values of ξ , at the temperature kT = 1.27 keV, for the three values of q of figure 1.

H DH q = 0.95 q = 0.85 q = 0.75

ξ = 0.30a0 2.24% 0.58% −2.92% −9.45% −15.44%
ξ = 0.45a0 1.82% 0.69% −2.65% −9.03% −15.06%
ξ = 0.60a0 1.62% 0.45% −2.91% −9.36% −15.48%
ξ = 0.75a0 1.52% 0.23% −3.13% −9.58% −15.70%
ξ = 0.90a0 1.45% 0.08% −3.28% −9.73% −15.82%

in the continuum EC rate. This can be seen in table 1, where we report the calculated deviations
of the rate RX(T ) with respect to RC(T ), by means of the function

��X(T ) = RC(T ) − RX(T )

RC(T )
, (7)

at the value of kT = 1.27 keV (where EC by 7Be takes place), for the three values of q of
figure 1.

For any q < 1,Rq > RC. We have verified that deviations depend very smoothly on kT

except for ξ � 0.45a0 and depend very strongly on q.
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The value of q for EC by 7Be in solar plasma can be derived from the expression that links
q to fluctuation of 1/RDH [12]. By using the equation of state for q-nonextensive systems [26]
we obtain for 0 < q < 1,

√
1 − q = �NDH

NDH
= 1√

NDH

1√
1 + (1 − q)K

, (8)

where K = 3
2NDH ln[0.211 · (0.45a0)

2] − ln(NDH!).
In the solar core, where the average electron density is ne = 9.1a−3

0 , NDH, the number
of particles inside the Debye sphere is about 4, we can derive q = 0.86. It is more safe to
consider a range of values of q between 0.84 and 0.88. At kT = 1.27 keV and ξ = 0.45 a0

the calculated Rq(T ) is estimated to be about 7–10% over the standard DH (q = 1) estimate.
Let us consider the 7Be–p fusion, reaction producing 8B and, as a consequence, 8B

neutrinos, in competition with 7Be electron capture [27]. We have verified that the effect of
the MDH potential over its rate is negligible. In fact, correction to FC is effective only at
relative 7Be–p energies lower than 2.4 keV where fusion cross-section has a negligible value
because its most effective energy is at 18 keV. Therefore, if the EC rate of 7Be increases over
its standard evaluation of a given percentage, 7Be increases its destruction while the neutrino
flux from 7Be does not change because the 7Be density decreases. However, the 8B flux should
diminish of the same percentage. This behaviour is in line with what is found in experiments
[21].

4. Conclusions

We have calculated the EC rate Rq(T ) for electrons of the continuum spectrum, with the use
of the MDH screening potential Vq(r) (derived in [12]). The value of the parameter q has
been estimated from its relation with the fluctuation of the number of particles contained in the
Debye sphere, in the solar core. It is reasonable to take the range of values 0.84 < q < 0.88.
We have calculated the rate averaging over the electron non-Gaussian q-distribution fq(v).

Considering the EC by 7Be at ξ = 0.45a0 and kT = 1.27 keV we have evaluated an
increase of the capture rate Rq(T ) of 7–10% over the standard DH rate RDH(T ) that is
0.69% smaller, at the same conditions, than the Coulomb rate RC(T ). Of course, a smaller
value of q should imply a much greater enhancement of the EC rate over the DH one.
The main consequence concerns the calculated neutrino 8B flux that decreases by the same
percentage with respect to its evaluation with standard DH screening, while the 7Be flux
remains unchanged.
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