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ABSTRACT

A screened potential modified by nonstandard electron cloud distributions, which are responsible for the shielding
effect on fusion of reacting nuclei in astrophysical plasmas, is derived. The case of clouds with depleted tails in space
coordinates is discussed. The modified screened potential is obtained both from statistical mechanics arguments
based on fluctuations of the inverse of the Debye-Hückel radius and from the solution of a Bernoulli equation used
in generalized statistical mechanics. Plots and tables useful for evaluating the penetration probability at any energy
are provided.

Subject headinggs: atomic processes — nuclear reactions, nucleosynthesis, abundances — plasmas

1. INTRODUCTION

Nuclear fusion reaction cross sections and rates are sensitive
to the screening effect of the electron cloud around the reacting
nuclei, an effect that has beenwidely investigated both theoretically
and experimentally since the early work of Salpeter (Salpeter
1954; Salpeter & Van Horn 1969). Different situations arise
when fusion reactions take place: (1) in laboratory experiments,
where a metal or gaseous target of a given element is bombarded
by an ionic or charged-particle beam and electrons are for themost
part bound in atomic orbits, such that few of them can be con-
sidered free; (2) in stellar cores and other space and astrophysical
plasmas, where ions and nuclei are embedded in an electronic
environment made by mainly free electrons; (3) in a deuterated
metal or other solid-state matrix, where an impinging deuteron
beam reacts with implanted deuterons.

1. In laboratory experiments, penetration through a screened
Coulomb potential at center-of-mass energy E is known to be
equivalent to that of bare nuclei at energy E þ Ue, where Ue =
Z1Z2e

2/Ra and Ra is the atomic radius, or the radius of the in-
nermost electrons. Z1e and Z2e are the charges of the two reacting
nuclei, and Ue is usually taken as constant in the evaluation of
cross sections and rates at any energy. Very often, at very low en-
ergy, fusion cross sections measured in laboratory experiments
are higher than the value calculated by means of the usual Debye-
Hückel (D-H) screening factor. The stopping power of the in-
coming beam and temperature reached after energy deposition
are important quantities for the correct measurement of the cross
sections. Modifications of the electron distribution can be in-
duced. The screening effect must be taken into account if one is
to obtain the correct astrophysical factor at very low energies
(Assenbaum et al. 1987; Carraro et al. 1988; Bracci et al. 1990;
Shoppa et al. 1993; Strieder et al. 2001).

2. In astrophysical plasmas, which can be considered ideal,
free electrons move around the reacting nuclei and occupy a sphere
of D-H radius RDH = [kT/(4�e2nZ�)]1/2, which is on the order of
Ra, with n the particle density and Z� =

P
i (Z

2
i þ Zi)Xi/Ai, where

the sum is over all positive ions and Xi is the mass fraction of

nuclei of type i. Only with decreasing radius does the effect of
screening become important. A screening factor for the reaction
rate can be derived when the energy of the Gamow peak EG >
Ue. It is given by the Debye factor f = exp (Ue/kT ) with, this
time, Ue = Z1Z2e2/RDH (Rolfs & Rodney 2005; Ichimaru 1993;
Castellani et al. 1997; Opher & Opher 2000). Recently, it has
been clarified through numerous experimental observations that
the velocity distribution function of electrons (and possibly also
of ions) in stellar atmospheres, and in space and astrophysical
plasmas, may deviate from aMaxwell-Boltzmann distribution in
the high-energy tail if nonlocal thermodynamic effects are non-
negligible (Oxenius 1986; Collins 1989; Peyraud-Cuenca 1992;
Chevallier 2002). In stellar atmospheres, atomic processes such
as radiative and dielectronic recombination exhibit rates that in-
dicate deviations from a Maxwellian distribution of electrons
(Maero et al. 2006). In stellar cores, signals of possible deviations
in the ion distributions are evident and, although small, should be
considered because they are capable of meaningfully influencing
nuclear fusion reaction rates (Ferro & Quarati 2005; Lissia &
Quarati 2005).

3. In deuteratedmetals or solid-statematter, the effect of strong
screening has yet to be clearly understood and discussed, although
a few interesting descriptions have recently been brought forward
to reproduce experimental results (Raiola et al. 2004; Coraddu
et al. 2004a, 2004b, 2006; Kim & Zubarev 2006). The approach
we are referring to here is very useful in understanding the fusion
rates in this matter, which could simulate some high-density as-
trophysical plasmas. However, this application deserves a sepa-
rate, detailed paper, and we will not pursue this case here.

An important issue in the shielding of electrostatic potential in
plasmas concerns the investigation of nonlinear charge-screening
effects that can induce modifications in the D-H potential, usu-
ally derived by linearizing the Poisson equation (Cravens 1997;
Gruzinov & Bahcall 1998). One of the first studies that, on a mi-
croscopic basis, demonstrated deviations from the D-H factor
was carried out by Johnson et al. (1992; see also Shaviv 2004;
Shaviv & Shaviv 2000, 2001, 2002; Chitanvis 2007). The different
approaches mentioned so far are based on the assumption that
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electrons are distributed in space according to a Boltzmann fac-
tor. A few authors (Bryant 1996; Treumann et al. 2004; Leubner
2004; Kim& Jung 2004; Rubab &Murtaza 2006) have assumed
a stationary k-Lorentz distribution to describe significant deviations
from the standard distribution, constructed from experimental dis-
tributions, due to the presence of enhanced high-energy tails. In a
recent paper (Rubab & Murtaza 2006), for instance, one can find
citations to many works in which such distributions are reported.
By analyzing energy profiles, Rubab & Murtaza derive an effec-
tive length smaller than the standardD-H radius, depending on the
k-parameter. This result is obtained by solving a Poisson equation
in the weak linear approximation. The consequence must be an
increased barrier penetration factor.

Our approach differs. We assume that the electron cloud is spa-
tially distributed following a generalized steady state distribution
of the q-type, which reduces to an exponential distribution when
the q-parameter (also known as the Tsallis entropic parameter)
approaches the limit q ! 1 (Tsallis 1988; Tsallis&Borges 2003).
We refer the reader to Leubner & Vörös (2005), Leubner (2005),
and Burlaga et al. (2006) for a detailed description of Tsallis gen-
eralized statistics and some of its applications to astrophysical
problems. We then calculate the modified screening potential by
considering two different approaches. One concerns the use of a
generalized Poisson equation or Bernoulli equation, as used by
Tsallis & Borges (2003); the other is based on superstatistics
(Beck 2001, 2004; Wilk & Wyodarczyk 2001, 2007), consider-
ing fluctuations of an intensive parameter (the inverse of the D-H
radius). This implies fluctuations in the temperature and density
of the components of the plasma. Once we obtain the modified
potential, we calculate the penetration probability through that
potential. In this paper we limit ourselves to values 0 < q < 1
(a distribution in spatial coordinates with a depleted tail cut off
at about h1/RDHi), leaving aside the case q > 1, which describes
an enhanced distribution in space coordinates at long distances.

In the standard D-H shielding approach, after linearization of
the Poisson equation the electrostatic screened potential behaves
asVDH� r�1 exp (�r/RDH), where r is the coordinate withwhich
to evaluate the D-H potential. The assumptions made to derive the
above relation are, among other things, that (Cravens 1997; Bellan
2006) plasmas are collisionless; the induced perturbation is slow
and depends slowly on time (slowness); only electrostatic fields
are present, while induced fields are negligible; temperature is
spatially uniform and the plasma remains in equilibrium during a
perturbation; a temperature can always be defined; the number of
particles inside the D-H sphere is large and therefore fluctuations
are small; and, although ions and electrons have random thermal
motion, perturbations induced around the equilibrium, which are
responsible for small spatial variations in the electrostatic poten-
tial, can be neglected.

Of course, if the real situation differs from that required by one
or more of these assumptions, the use of the D-H potential may
produce errors in the evaluation of the penetration factor and
nuclear reaction rates. Deviations from the conditions imposed
by the assumptions are taken into account in this work by choosing
the inverse of the D-H length, 1/RDH, as a fluctuating parameter.
The electrostatic quantity rV(r) is asymptotically given, in this
case, by a power law instead of an exponential because it must
satisfy a differential equation, the Bernoulli equation (or a spe-
cial case of it), that has power-law functions as solutions. We
can derive the modified D-H potential Vq(r) and, a posteriori, the
charge distribution �q as asymptotically power-law functions.
Also, in the standardD-H approach two equations are needed, one
coming from electromagnetism (the Poisson equation), the other
from statisticalmechanics (theBoltzmann factor). The penetration

factor �(E ) can be calculated by means of the WKB approach
using the modified D-H potential. We obtain results that differ
from those calculated with the standard D-H potential and which
will be useful in the interpretation of experimental results on
atomic and nuclear rates in several astrophysical systems and pro-
cesses.We also derive the equivalent energyUq, which we give in
the form of an interpolating analytical expression, a plot, and a
tabulation. The energy Uq turns out to be a function of the var-
iable D/E, where D is defined by D = Z1Z2e

2h1/RDHi. It is easy
to observe thatUq depends, for a wide range of values of D/E, on
1/(kT )1/2 and n1/2.

In x 2, we explain how to derive the modified potential on the
basis of superstatistics arguments with the inverse D-H length as
a fluctuating parameter; we then introduce a nonlinear differen-
tial equation, to be associated with the Poisson equation, whose
solution coincides with the potential derived directly from the
superstatistics approach. In x 3, we derive the penetration factor,
which can be used for the evaluation of nuclear fusion rates in
astrophysical plasmas, and we indicate the range of validity of
the approximations adopted. In x 4 we discuss some represen-
tative examples, while in x 5 we report our conclusions.

2. MODIFIED DEBYE-HÜCKEL POTENTIAL

Combining Gauss’s law and the relation that links the elec-
trostatic field to the electric potential V(r) of a point test unitary
charge at the origin in a vacuum, from the Poisson equation one
obtains the pure Coulomb potential. After a sufficiently long time,
electrons and ions rearrange themselves in response to the forces
on them. The ion density eventually becomes uniform, while the
electron density near the test charge increases. At the new ther-
mal equilibrium, the distribution of electrons in the electrostatic
field is assumed to be given by the well-known Boltzmann fac-
tor. Assuming the Boltzmann factor for all the particles, after
linearization and using the condition of neutrality, the Poisson
equation can be written

1

r

d 2

dr 2
½rV (r)�¼ 1

R2
DH

V (r); ð1Þ

with a solution given by the D-H potential, and the charge den-
sity �DH is expressed as

�DH � � 1

rRDH

exp

�
� r

RDH

�
: ð2Þ

When one or more of the linearity constraints are violated or re-
laxed, a different description of the screening is required.
If we assume that nonlinear effects produce fluctuations in the

inverse D-H radius, by following the development usually adopted
in superstatistics for the inverse temperature � = 1/kT (Beck 2001,
2004), we can describe the plasma around the test charge as being
made of cells in which RDH is approximately constant, and the
system can be described by ordinary statistical mechanics, in this
case by the exponential (Boltzmann) factor exp (�r/RDH). In the
long term, the system is described by a spatial average over the
mean of the fluctuating quantity 1/RDH. A fluctuation of the in-
verse D-H radius also implies a fluctuation of the plasma pa-
rameter, given by

� ¼ 1

nR3
DH

¼
�
4�e2Z�
kT

�3=2 ffiffiffi
n

p
: ð3Þ

With fewchanges,we follow the approachof Wilk&Wyodarczyk
for the case of distributions with depleted tails (q < 1; Wilk &
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Wyodarczyk 2001, 2007). Here we focus our attention on the
q < 1 distribution because this exhibits a depleted tail with a
cutoff, that is, the spatial distributionwe assume for the electrons.
We assume that a certain variable r of the system is confined be-
tween 0 and [(1 � q)k0]

�1, where k0 is a constant parameter. We
define the function

F q<1(r; k0) ¼ Cq

Z 1

0

fq<1(r; k; k0) exp (�kr)dk; ð4Þ

where Cq is a normalization factor and fq<1(r, k; k0) is the prob-
ability density for observing a certain value k of the system,which
is spread around the value k0. The expression we choose for
fq<1(r, k; k0) is a gamma distribution:

fq<1(r; k; k0) ¼
Aq(r; k0)

1=(1�q)

�(1=(1� q))

; k½1=(1�q)��1 exp ½�kAq(r; k0)�; ð5Þ

where

Aq(r; k0) ¼
2� q

1� q
k�1
0 � r ð6Þ

and q is the entropic Tsallis parameter.
Inserting the function fq<1(r, k; k0) into F q<1(r; k0), we ob-

tain the normalized power-law distribution

F q<1(r; k0) ¼ k0

�
1� 1� q

2� q
k0r

�1=(1�q)

: ð7Þ

The average value and variance of k depend on the variable r
according to

k̄¼ 1

(1� q)Aq(r; k0)
; k2 ¼ 2� q

½(1� q)Aq(r; k0)�2
; ð8Þ

where x(r) =
Ð
x(r, k) fq<1(r, k; k0)dk is evaluated by means of

the distribution fq<1(r, k; k0). However, the relative variance de-
pends only on q:

! ¼ k2 � k̄2

k̄2
¼ 1� q: ð9Þ

We note that the quantity k0 coincides with the spatial average of
k̄, that is,

hki ¼ k0; ð10Þ

where hxi =
Ð
x(r)F q<1(r; k0)dr is evaluated bymeans of the dis-

tribution F q<1(r; k0), which is the weighted average of the ex-
ponential (or Boltzmann-like) factor exp (�kr) with weight equal
to fq<1(r, k; k0) and coincides with the Laplace transform of
fq<1(r, k; k0).
Some special limiting cases are

fq!1(r; k; k0) ¼ �(k� k0); ð11Þ
F q!1(r; k0) ¼ k0 exp (�k0r); ð12Þ

the ordinary Boltzmann-like factor, with k2 = k̄2, and where
A0(r; k0) = 2/k0 � r and

F q!0(r; k0) ¼ k0(1� k0r); ð14Þ

a linear function, with k2 = 2k̄2.
Let us now identify the functional F q<1(r; k0) with the quan-

tity rVq(r) and replace kwith 1/RDH, so that k0 = h1/RDHi coincides
with the spatial average of the fluctuation in D-H radius. By
setting

�q ¼ (2� q)h1=RDHi�1; ð15Þ

a characteristic length of the system under inspection, which re-
duces toRDH in the q ! 1 limit, we obtain the following expression:

Vq(r) ¼
1

r

�
1� (1� q)

r

�q

�1=(1�q)

; ð16Þ

which for q ! 1 reduces to the standard D-H potential. We also
have the charge distribution,

�q(r) � � 1

(2� q)r� 2
q

�
1� (1� q)

r

�q

�1=(1�q)

; ð17Þ

which for q ! 1 reduces to �DH, the charge distribution in the
D-H approximation.

Therefore, by considering 1/RDH to be subject to fluctuations
described by a gamma distribution, the quantity rV(r) related
to the potential energy barrier is modified from the exponential
D-H expression to a power-like law, typical of the generalized
q < 1 distribution. If we can establish the functional relation
between density n and temperature kT, as, for instance, in a solar-
like star, where the quantity n/(kT )3 is constant along the star’s
profile (Ricci et al. 1995), by means of the relative variance we
can establish a link between the inverse D-H radius and tem-
perature fluctuations and the parameter q through

�(1=RDH)

1=RDH

¼ �
ffiffiffiffiffiffiffiffiffiffiffi
n=kT

p
ffiffiffiffiffiffiffiffiffiffiffi
n=kT

p ¼ �(kT )

kT
¼ (1� q)1=2: ð18Þ

Diffusion of matter between layers with different temperatures
induces local temperature fluctuations and density perturbations;
fluctuations around an equilibrium or a steady state matter pro-
file induce fluctuations of the quantity 1/RDH in the D-H sphere,
particularly in regions where the number of particles inside the
D-H sphere is small. Density and temperature fluctuations do not
alter the macroscopic plasma parameters andmust agree with the
requirements of the constraints imposed by the macroscopic
observations. For the solar interior, Gruzinov & Bahcall (1998)
have calculated the D-H radius to be about 2 ; 10�9 cm,
therefore containing a small number of particles with a corre-
spondingly nonnegligible particle fluctuation.

Let us now justify equations (16) and (17) by means of an-
other approach, which considers a generalized version of the
Poisson equation. In fact, in the standard case the D-H potential
can be obtained from the solution of a second-order differential
equation of the type

dy

dr
¼ ay or

d 2y

dr 2
¼ a2y ð19Þ
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with y � rV(r) = exp ar. We replace the above linear equation
with the following one:

dy

dr
¼ aqy

q or
d 2y

dr 2
¼ qa2

q y
2q�1 ð20Þ

with

y ¼ expqaqr � ½1� (1� q)aqr�1=(1�q); ð21Þ

where q is a real-number parameter and coincides with the Tsallis
parameter. For q ! 1, we obtain exp1 ar � exp ar.

To be explicit, for our case we generalize equation (1) to

d 2

dr2
½rVq(r)�¼

q

� 2q
½rVq(r)�2q�1; ð22Þ

which is a generalized Poisson equation whose solution coin-
cideswith equation (16).We report, for completeness, that by con-
sidering the Bernoulli equation introduced by Tsallis & Borges
(2003),

dy

dr
¼ a1yþ aqy

q or
d 2y

dr2
¼ a2

1 yþ (1þ q)a1aqy
q þ qa2

q y
2q�1;

ð23Þ

the solution is

y ¼
�
e(1�q)a1r þ aq

a1
(e(1�q)a1r � 1)

�1=(1�q)

: ð24Þ

By imposing y = rV(r), we obtain rV(r) = [1 þ (1 � q)aqr]
1/(1 � q)

when a1 = 0 and rV(r) = exp a1r when aq = 0.

3. PENETRATION PROBABILITY

We calculate the probability of penetrating through the repul-
sive barrier—one of the terms we need in order to evaluate the
fusion reaction rates—using the WKB approach and following
Bahcall et al. (1998). The fusion cross section of two isolated
reacting nuclei is written as

�(E ) ¼ S(E )

E
e�2�� (E ); ð25Þ

where S(E ) is the astrophysical factor, E is the center-of-mass
energy of the fusing nuclei, of charge Z1e and Z2e, colliding with
relative velocity v/c = [2E/(	c2)]1/2 and reduced mass 	, and

�(E ) ¼ 1

fc

Z1Z2e
2ffiffiffiffi

E
p

ffiffiffiffiffiffiffiffiffi
	c2

2

r
: ð26Þ

First of all we define the penetration factor for a pure Coulomb
electrostatic potential energy barrier V̂C(r) = Z1Z2e

2 6¼ r, that is,
when the reacting nuclei are isolated:

�C(E ) ¼ e�2�� (E )

¼ exp

�
� 2

fc

Z rC

0

f2	c2½V̂C(r)� E�g1=2dr
�
; ð27Þ

where rC is the classical turning point, whose value is fixed by
the relation V̂C(rC) = E.
Secondly, by using the standard D-H potential and still taking

the turning point rDH = rC, a relation that is valid only for E > D,
for small values of rC/RDH we have

�DH(E ) ¼ exp

�
��

�
2þ rC

RDH

�
�(E )

�
: ð28Þ

If we consider the rates instead of the cross sections, the factor
exp (���rC/RDH) can be evaluated at the most probable energy
E0 in such a way that the rate can be factorized as the product of
�C(E ) and a factor fixed at E = E0.
Finally, we consider the deformed D-H potential energy barrier

V̂q(r) ¼
D

r
�
1=RDH

�
�
1� (1� q)

r

�q

�1=(1�q)

ð29Þ

and the penetration factor

�q(E ) ¼ exp

�
� 2

fc

Z rq

0

f2	c2½V̂q(r)� E�g1=2dr
�
; ð30Þ

where rq must be derived from the relation V̂q(rq) = E. Because
we consider q < 1, the potential energy V̂q(r) has a cutoff, and as
a consequence, 0 < r < �q/(1 � q). We write equation (30) as

�q(E ) ¼ exp ½�2��(E )
q�; ð31Þ

where the function 
q, which depends on the quantity D/E, goes
to 1 for D/E ! 0.
The evaluation of rq and �q(E ) can be worked out only nu-

merically, although for small deformations (q � 1), the pene-
tration factor can be worked out analytically and is given as the
product of �C(E ) and a correction factor. However, we do not
report this expression here, for simplicity’s sake. In the case q = 0,
which represents the greatest deformation with respect to the ex-
ponential function, 
q has the simplest analytical solution,


q¼0 ¼
E

E þ D
: ð32Þ

In Figure 1, we plot the quantity rq/�q as a function of D/E for a
few values of q between zero and one. In Figure 2, the quantity
1 � 
q is plotted as a function of D/E.

Fig. 1.—Log-linear plot of the quantity rq /�q as a function of D/E for several
values of q (in the inset, the region 10�1 < D/E < 10 is expanded).
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Penetration of the potential energy barrier V̂q(r) at energy E is
equivalent to penetration of the pure Coulomb barrier at an ef-
fective energy E þ Uq, where

Uq ¼
D

rq
�
1=RDH

� � E ð33Þ

is a function of D/E. We have also calculated numerically the
equivalent energy Uq. The behavior of Uq/D, as a function of
D/E, for a few values of q is plotted in Figure 3. Finally, a quan-
titative comparison of the quantities rq/�q, Uq/D, and 1 � 
q,
corresponding to the values of q depicted in the figures, can be
obtained from Table 1.

For q = 0, the potential Vq¼0 is cut off at r = 2h1/RDHi�1, and
we haveUq = D for any value of energy the E. In the other cases
of 0 < q < 1, we have the following: At high energy, E > D, Uq

approaches D. At low energy, E < D, Uq approaches the value
(1� q)D, meaning that U1 (the D-H exponential potential) ap-
proaches zero. Therefore, when the electron distribution is a de-
formed or generalized distribution of the q-type, with a cutoff at
r = (2 � q)/[(1 � q)h1/RDHi], the penetration factor is enhanced
even at very low energies, except for the case q = 1. The enhance-
ment depends onUq, which is an energy proportional to 1/(kT )

1/2

and n1/2.
We have also interpolated the function Uq/D (for values 0 <

q < 0.8), which is well described by the following analytical
function:

Uq=D ¼ 1� qþ q½1� (1� q)a(D=E )b��c=(1�q); ð34Þ

where the parameters a(q), b(q), and c(q) are given by

a(q) ¼ 0:484012þ1:984961qþ 42:933001q8;

b(q) ¼ 0:958079� 0:129717q� 0:038993q5 þ 0:804107q6;

c(q) ¼ 0:760938� 1:272798qþ 0:493549q2: ð35Þ

The interpolating function allows us to find the value of Uq(E )
once we know the temperature and electron density, fixed at Z1,
Z2, and energy E for a certain value of q. In the range 0 < D/E �
102, for 0.8 < q < 1 this function (eq. [34]) still gives a good
approximation of Uq/D, but withmore complicated relationships
for a(q), b(q), and c(q). We omit the details.

Calculation of nuclear fusion rates (quantities weighted over
the distribution of reacting nuclei, which in many cases is a

generalized distribution with a proper ionic parameter qi close to 1)
requires the insertion into the average integral of the penetration
factor, which is a function of E. In the case of a pure Coulomb
barrier, the screening factor can be factorized. In our general case
this factorization is not possible, and the behavior of Uq as a
function of D/E must be considered with care, both for nonres-
onant and resonant reactions. The same consideration is valid if
instead of Uq we calculate the rates by use of the plotted and
tabulated function 
q(E ).

4. REPRESENTATIVE EXAMPLES
OF PENETRATION PROBABILITY

We report some representative examples of the evaluation of
the electronic screening factor for nonresonant and resonant fusion
reactions of interest in the solar core and in other dense astro-
physical plasmas. Resonant fusions are influenced, aside from
electron screening, by a resonance screening factor (Cussons et al.
2002). Furthermore, Maxwellian rates can be corrected by non-
standard ionic distributions. In this work we are interested in the
modified D-H potential, and here we limit the discussion to the
electron screening factor.

The enhancement of the penetration factor �q(E ) over the pure
Coulomb penetration�C(E ) can be expressed, using equations (27)
and (30), by the ratio

fq;C(E )¼
�q(E )

�C(E )

¼ exp

�
�2�

Z1Z2e
2

fc

ffiffiffiffiffiffiffiffi
	c2

2

r �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ Uq

p � 1ffiffiffiffi
E

p
��

;

ð36Þ

and the enhancement of �q(E ) over �DH(E ) � �q!1(E ) is given
by

fq;DH(E )¼
�q(E )

�DH(E )

¼ exp f�2��(E )½
q(E )� 
q!1(E )�g: ð37Þ

It is evident from Figure 2 and from Table 1 that an important
enhancement over the D-H potential comes from the energy range
E ’ 2 ; 10�4D to D, with a maximum at about E ’ D/15. The
most effective burning energy is atE0 = [EG(kT )

2/4]2/3, whereEG

is the Gamow energy.

Fig. 2.—Same as Fig. 1, but for the quantity 1 � 
q.
Fig. 3.—Log-linear plot, in arbitrary units, of Uq/D as a function of D/E for

several values of q.
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The first example concerns p-p fusion in the solar core. At
center-of-mass energies above E0 = 5.9 ; 10�3 MeV, Uq can be
taken to be constant and equal to D = 0.7 ; 10�4 MeV. The fac-
tor fq;C(E ) is of order a few percent above unity at high energies,
for ions with energy above E0 and belonging to the distribution
tail and having fusion probability greater than those belonging to
the head of distribution. However, at these high energies fq;DH(E )
is practically equal to 1 also with qT1. Therefore, the rate is not
modified significantly with respect to the standard value. At
energies below E0, the enhancement is not negligible and Uq,
which depends on E, goes to (1 � q)D as E ! 0. We have, for
instance, fq;DH(E = D) = 1.12 and fq;DH(E = 0.1D) = 1.65, when
q = 0.5. However, protons with these energies have a very small
probability of fusing, and the rate, in conclusion, cannot change
with respect to the standard evaluation by more than a few per-
cent, as also required by luminosity constraints. The above discus-
sion is valid for all the other reactions of the hydrogen burning cycle,
the effective burning energies being in the range E0 ’15Y30 keV
with D < E0.

Among the reactions of the CNO cycle, we consider
14N( p, �)15O. The astrophysical factor recentlymeasured (Runkle
et al. 2005; Imbriani et al. 2005) has important consequences for the
evolution of stars, estimates of the age of globular clusters, and,
of course, the evaluation of CNO neutrino flux (Liolios 2000;
Degl’Innocenti et al. 2004). At solar-core conditions, we have
that in the high-energy regionUq = DTE0 = 27.0 keV, and there-
fore �q(E ) � �DH(E ). At low energy Uq ! (1 � q)D, and for
E = D/15 = 0.04 MeV we obtain �q(E ) = 2.63 ; 10�4 with
fq;DH(E ) = 3.33 at E = 0.047 MeV and q = 0.5. Of course,
fq;DH(E ) ! 1 in the limit q ! 1, as we can expect from labo-
ratory experiments.

Fusion reactions, such as 7Li( p, � )� and 6Li(d, � )� , are of
particular interest for their implications in astrophysics. Exper-
imental measurements in the laboratory of the screening po-
tential (Engstler et al. 1992; Pizzone et al. 2003) have indicated a
value of 350Y400 eV, greater than the adiabatic theoretical one
of 186 eV. We should evaluate D at the experimental conditions

of target temperature and density. The quantity Uq is a fraction
of D, decreasing to (1 � q)D and not to zero as in the standard
D-H approach. Assuming q = 0.5, we needD = 800 eV to obtain
Uq ’ 400 eV. Unfortunately, we do not know the correct target
temperature and density to calculate D. This difficulty is a mo-
tivation to consider questionable the application of this approach
to laboratory experiments.
We consider now the important nonresonant reaction

12C(� , �)16O at a temperature of kT = 17.2 keV and density
� = 103.5 g cm�3 (as in the core plasma of helium-burning red
giant stars) with a mass fraction X(He) = 1

2
and X(C) = 1

2. We
have D = 0.573 keV. With q = 0.5, Uq goes from about Uq =
0.286 keVat very low energy toUq = 0.496 keVat E = D and to
Uq ’ D at high energy. The greatest value of fq;DH(E ) is at
E � 4 ; 10�2 keV. At such low energy, the screening factor
fq;DH(E ) � 1055, the Coulomb penetration factor being practi-
cally zero and �DH(E ) � 10�458.
Next we consider the example of 12C-12C fusion in laboratory

experiments and in massive stars (in the classical thermonuclear
regime, without considering, for simplicity’s sake, effects due
to the presence of resonances and degeneration; Cussons et al.
2002; Itoh et al. 2003; Ferro et al. 2004). In the experimental
study of 12C-12C fusion near the Gamow energy, the target tem-
perature is kT ’ 6 ; 10�8 MeVand the graphite density is � �
1.7 g cm�3 (Spillane et al. 2007), and therefore we have

TABLE 1

A Few Numerical Values of the Quantities rq/�q, Uq/D, and 1 � 
q in the Energy Range 0.1� D/E � 30 for Several Values of q

q = 0.25 q = 0.50 q = 0.75 q = 0.099

D/E rq/�q Uq/D 1 � 
q rq/�q Uq/D 1 � 
q rq/�q Uq/D 1 � 
q rq/�q Uq/D 1 � 
q

0.10...................... 0.091 0.988 0.046 0.091 0.977 0.045 0.091 0.966 0.045 0.091 0.956 0.045

0.20...................... 0.167 0.978 0.085 0.167 0.958 0.084 0.168 0.938 0.083 0.168 0.920 0.082

0.30...................... 0.232 0.969 0.120 0.233 0.941 0.118 0.235 0.915 0.116 0.236 0.891 0.114

0.40...................... 0.288 0.961 0.151 0.291 0.927 0.148 0.294 0.894 0.145 0.297 0.866 0.142

0.50...................... 0.338 0.955 0.178 0.343 0.914 0.174 0.347 0.877 0.170 0.351 0.844 0.166

0.60...................... 0.382 0.948 0.203 0.389 0.902 0.198 0.395 0.861 0.193 0.401 0.825 0.188

0.70...................... 0.421 0.942 0.226 0.430 0.892 0.220 0.439 0.846 0.214 0.447 0.807 0.208

0.80...................... 0.457 0.937 0.246 0.468 0.882 0.239 0.479 0.834 0.232 0.489 0.792 0.226

0.90...................... 0.489 0.932 0.265 0.503 0.874 0.257 0.517 0.822 0.250 0.529 0.778 0.243

1.00...................... 0.518 0.928 0.283 0.535 0.866 0.274 0.552 0.811 0.266 0.566 0.765 0.258

2.00...................... 0.716 0.896 0.407 0.763 0.809 0.393 0.809 0.735 0.380 0.850 0.675 0.367

3.00...................... 0.826 0.876 0.482 0.902 0.774 0.465 0.977 0.689 0.449 1.047 0.621 0.434

4.00...................... 0.898 0.863 0.534 1.000 0.750 0.516 1.102 0.657 0.498 1.198 0.584 0.482

5.00...................... 0.949 0.852 0.572 1.073 0.731 0.554 1.200 0.633 0.535 1.321 0.556 0.518

6.00...................... 0.988 0.844 0.603 1.131 0.717 0.583 1.281 0.613 0.564 1.426 0.534 0.546

7.00...................... 1.019 0.838 0.627 1.179 0.705 0.608 1.349 0.598 0.588 1.517 0.516 0.570

8.00...................... 1.043 0.832 0.648 1.219 0.695 0.628 1.408 0.584 0.608 1.597 0.500 0.590

9.00...................... 1.064 0.828 0.665 1.253 0.686 0.646 1.461 0.573 0.626 1.670 0.487 0.607

10.00.................... 1.081 0.824 0.680 1.283 0.679 0.661 1.507 0.563 0.641 1.735 0.476 0.622

15.00.................... 1.140 0.810 0.733 1.390 0.652 0.715 1.684 0.526 0.695 1.996 0.434 0.676

20.00.................... 1.174 0.801 0.766 1.459 0.635 0.749 1.806 0.503 0.730 2.188 0.406 0.711

TABLE 2

Penetration Factors for
12
C-

12
C Fusion in Laboratory

Experiments with a Graphite Target

E

(MeV) �C(E ) �DH(E ) �q¼0:50(E ) �q¼0:99(E )

0.0059...... 8.16 ; 10�494 2.16 ; 10�349 5.20 ; 10�285 1.75 ; 10�303

0.0590...... 1.18 ; 10�156 2.13 ; 10�149 9.70 ; 10�141 2.16 ; 10�141

0.5900...... 4.91 ; 10�50 8.63 ; 10�50 2.00 ; 10�49 1.97 ; 10�49

2.2000...... 2.92 ; 10�26 3.16 ; 10�26 3.56 ; 10�26 3.16 ; 10�26
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approximately RDH ’ 0.31 ; 104 fm and D’ 0.0168 MeV. From
Assenbaum et al. (1987), we haveUe=5900 eV, Ra=0.88;104 fm,

�C(E) = exp (�87.21/
ffiffiffi
E

p
), and �DH(E) = exp [�87.21/(EþUe)1/2].

We assume q = 0.5, representing an average deformation of the
electron distribution. While Ue is fixed, Uq depends on the en-
ergyE. The ratios �DH(E )/�C(E ) coincide with those of Spillane
et al. (2007). In Table 2, we report the values of �C(E ), �DH(E ),
�q¼0:50(E), and�q¼0:99(E). Our value�q!1(E) differs from�DH(E)
because the first factor is calculated usingUq!1(E ) and the second
is calculated with Ue held fixed.

In massive stars (Gasques et al. 2005), the strong screening
effect in a dense plasma can be simulated by assuming q = 0.25, a
value that represents a large electron deformation. At kT = 30 ;
10�3 MeV and � ’ 109 g cm�3, we have RDH ’ 0.5 ; 102 fm
andD ’ 1.04 MeV. Enhancement of �q¼0:25(E ) over �q¼0:99(E )
is very evident; at E = 2.2MeV, the enhancement is by a factor of
about 2.5. In Table 3 we report, for several energies, �q¼0:25(E )
and �q¼0:99(E ).

Finally, Type Ia supernova environmental conditions give
kT = 5 ; 10�3 MeV, a central density � = 3 ; 109 g cm�3, and
X(C) = 1

3
. Therefore, D = 1.5 MeV, the greatest deviation is at

E = 0.1 MeV, and consequently we have at this energy �C =
7.9 ; 10�125, �DH = 6.5 ; 10�78, and �q¼0:5 = 4.5 ; 10�73 with
fq;DH = 6.9 ; 104.
Of course, in all the above examples q is an arbitrary param-

eter whose value should be determined a priori. Rates of fusion
reactions will be evaluated using the parametric expression of
Uq(E ) given in equation (34).

5. CONCLUSIONS

We have shown that in those systems where, in space coor-
dinates, stationary electron distributions deviate from the standard
exponential one, the shielded electrostatic Coulomb potential is
modified with respect to the standard D-H potential derived using
linear conditions and constraints. We have used two different ap-
proaches, which produce the same results. One consists of asso-
ciating a Poisson equation having an unknown electron density
distribution with a Bernoulli equation for the quantity rVq(r),

whose solution is asymptotically a power law. This result can
also be obtained, and justified, by means of the superstatistics
approach recently developed within generalized statistical me-
chanics by considering 1/RDH, the inverse D-H radius, as a fluc-
tuating intensive parameter with relative variance! and parameter
q, given by the relation q = 1þ !, characterizing the fluctuation.

The q-modified D-H potential has asymptotic power-law be-
havior, and we have discussed its meaning for the case q < 1,
which holds when the electrostatic potential has a depleted and
cut-off tail. Fluctuations of the inverse D-H radius may be due to
temperature and density fluctuations of the electrons surround-
ing the reacting nuclei in astrophysical plasmas.

Exact evaluation of the penetration factor has to be carried out
numerically. However, in the case of small deformations one can
calculate �(E ) as the pure Coulomb penetration factor �C(E )
times a correction that maymeaningfully differ from the standard
D-H correction. We have presented detailed plots and numerical
tables of several useful quantities that allow the evaluation of the
penetration factor and the reaction rates, which, being weighted
integrals, depend meaningfully on the behavior of the penetration
factor as a function of E.

The penetration factor �q(E ) can be given as the pure Coulomb
penetration factor at an equivalent energy E þ Uq. The energy
Uq is not a constant and can be evaluated only numerically. We
have given a useful fit for it. Uq is a function of energy D, char-
acteristic of reacting nuclei, their density, and fusion tempera-
ture, the constant of proportionality depending on q and varying
withD/E.Uq is proportional to 1/(kT )1/2 and to n1/2, as observed
experimentally in fusion reactions in metal matrices. The com-
plete and correct expression for the penetration factor or for Uq

or 1 � 
q reported in this paper is necessary to evaluate the
fusion rates at any energy. In fact, a possibly deformed ion
distribution, together with a deformed electron distribution, may
meaningfully affect the values of the rates. In the evaluations
of the rates of fusion reactions, such as in the examples of p-p,
14N( p, �)15O, 7Li( p, � )� and 6Li(d, � )� , 12C(� , �)16O, and
12C-12C fusion, mentioned in the previous section, important en-
hancements may occur, in addition to possible enhancements
or decrements due to non-Maxwellian energy-momentum ion dis-
tributions, if the electron clouds surrounding the reacting nuclei
are spatially modified by an assumed q < 1 distribution. Specific
applications of our approach are in progress; they are compre-
hensive of discussions of the recent experimental results of the
LUNA collaboration (Spillane et al. 2007; Imbriani et al. 2005;
Gyurky 2007) to derive astrophysical factors in the stellar energy
range and will be the topic of a further work. We are confident
that our approach and the numerical tables presented here will be
used to study astrophysical processes where temperature and den-
sity fluctuations cannot be neglected to evaluate theD-H shielding
effect on reaction rates.
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Carraro, C., Schäfer, A., & Koonin, S. E. 1988, ApJ, 331, 565
Castellani, V., Degl’Innocenti, S., Fiorentini, G., Lissia, M., & Ricci, B. 1997,
Phys. Rep., 281, 309

Chevallier, L. 2002, in Scientific Highlights 2001: Rencontres de la Société
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