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The Salpeter plasma correction for solar fusion reactions
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Abstract. We describe five different ways of obtaining the Salpeter formula for the plasma corrections to fusion
rates; this formula is valid at the center of the sun with insignificant errors (∼percent). Several recent papers have
obtained a variety of answers in conflict with this result. We analyse the arguments of these papers, identifying
sources of the discrepancies in some cases, and pointing out internal inconsistencies in the arguments given in
other cases.
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1. Introduction

The plasma in the core of the sun is sufficiently dense
that non-ideal gas corrections to nuclear reaction rates
are significant. The plasma coupling parameter is given
by g = (e2/D)(1/kT ), in which T is the temperature of
the plasma and D is the Debye length defined by a sum
over all the plasma ions and electrons,

D−2 =
∑

a

4π e2
a na
kT

, (1)

where ea and na are the charge and density of the species
labeled by a. The parameter g is the ratio of the Coulomb
potential energy for two particles a Debye length apart to
the kinetic energy in the plasma. Near the center of the
sun, g ' 0.04.

Recently, there have been a number of papers (Carraro
et al. 1988; Shaviv & Shaviv 1996, 1997, 2000; Savchenko
1999, 2001; Tsytovich 2000; Opher & Opher 2000a, 2000b;
Lavagno & Quarati 2000; Weiss et al. 2001) suggesting
that the standard screening corrections, originally derived
by Salpeter (1954), need to be replaced by some other
plasma physics correction, and that moreover the changes
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could lead to substantial improvements in the standard
solar model and the predicted solar neutrino fluxes.

The motivation for many of these papers is to “solve
the solar neutrino problem” without invoking new weak
interaction physics, such as neutrino oscillations. However,
the results of solar neutrino experiments cannot be ac-
counted for in this manner even if one goes to the ex-
treme limit of treating the nuclear reaction rates as free
parameters (see, e.g., Bahcall et al. 1998; Hata et al. 1994;
Heeger & Robertson 1996). Some distortion of the energy
spectrum of electron type neutrinos is required.

The purpose of this paper is to highlight the com-
pelling evidence for the Salpeter screening formula under
the conditions that are relevant at the center of the sun,
i.e., in the limit of weak screening. A major goal is to
show that a necessary (but not sufficient) condition for
the validity of a screening calculation is that the calcula-
tion must yield the Salpeter result in the limit when g is
very small. We also point out errors in some of the recent
treatments of screening. The raison d’etre for our paper
is the requests that we have had from colleagues for a
written response to the numerous papers claiming large
new effects (all different) in the calculation of solar fusion
rates.

We summarize in Sect. 2 the results of five differ-
ent derivations that all yield the Salpeter formula for
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screening. In Sect. 3, we describe briefly the flaws that
lead to five different, non-Salpeter screening formulae. We
summarize our principal conclusions in Sect. 4.

2. Five derivations that yield the Salpeter formula

2.1. Salpeter electrostatic derivation

As shown by Salpeter (1954), fusion rates are enhanced
by electrostatic screening. Here is the physical plausibility
argument used by Salpeter.

If one of the fusing ions has charge Z1e, it creates an
electrostatic potential φ1 = (Z1e/r) exp(−r/D), where r
is the distance from the ion, and D is the Debye radius.
For r � D, φ1 = Z1e/r − Z1e/D is the Coulomb poten-
tial minus a constant potential drop. This potential drop
increases the concentration of ions Z2 in the neighbor-
hood of Z1 by the Boltzmann factor [∝ exp(−Z2eφ1/kT ),
where T is the plasma temperature]

f0 = exp
(
Z1Z2e

2

kTD

)
= exp (Z1Z2g) , (2)

Eq. (2) is the Salpeter formula. According to Salpeter,
the quantity f0 is the ratio of the true reaction rate to the
reaction rate calculated using the ideal gas formula.

Salpeter’s derivation makes physically clear that elec-
trostatic screening causes an enhancement in the density
of fusing partners by lowering the potential in the vicin-
ity of a fusing ion. We shall come back to this physical
argument in Sect. 3.6.

2.2. WKB derivation

The correction due to screening can be derived by cal-
culating the barrier penetration factor in the presence
of a plasma. Bahcall et al. (1998) evaluated the bar-
rier penetration for a Debye-Huckel plasma. They showed
that the usual Gamow penetration factor e−2πη, where
η = Z1Z2e

2/h̄vrel with vrel the relative velocity of the re-
acting ions, is replaced by

Γ(E) = e−2πηexπη . (3)

Here x = x(E) = Rc/D, where D is again the Debye-
Huckel radius, Rc is the classical turning-point radius de-
fined by

Vsc(Rc) =
Z1Z2e

2

Rc
e−Rc/D = E , (4)

and E is the relative energy of the reacting ions. Averaging
Γ(E) over a Maxwell-Boltzmann distribution, the effect
of exπη is just to multiply the total reaction rate by the
Salpeter correction f0.

The WKB has an advantage over the original Salpeter
derivation that it shows explicitly how the Coulomb wave
functions naturally lead to the Salpeter formula. This
derivation is more rigorous than the Salpeter formula-
tion, but is perhaps less transparent physically. The WKB

derivation shows that the Salpeter formula is valid in the
moderate density limit in which Debye-Huckel screening is
a good approximation to the charge density distribution.

2.3. Density matrix derivation

Gruzinov & Bahcall (1998) calculated the electron den-
sity in the vicinity of fusing nuclei using the partial dif-
ferential equation for the density matrix that is derived
in quantum statistical mechanics. This is the first calcu-
lation to describe properly the electron density close to
the fusing nuclei. Given the electron density, Gruzinov &
Bahcall then evaluated screening corrections in a mean
field approximation by solving numerically the Poisson-
Boltzmann equation for a mixture of electrons and ions.
The electron density distribution obtained from the den-
sity matrix calculation was included self-consistently and
iteratively in the mean field equation.

The mean-field calculation yields exactly the Salpeter
result f0 in the limit of low density. Higher order screening
corrections were evaluated and found to be of order 1% for
all of the important solar fusion reactions.

The density matrix formulation has the advantage over
the WKB method and the Salpeter original derivation
in that it is independent of assumptions about the orig-
inal basis functions, while at the same time allowing the
first proper calculation of the electron density distribution
close to the nuclei. In addition, the density matrix formu-
lation provides a formal procedure for evaluating correc-
tions to the Salpeter formula.

2.4. Free-energy calculation

Dewitt et al. (1973) gave a rigorous derivation of the fu-
sion rate corrections in the weak screening limit based on
the free energy of fusing ions. Stimulated by one of the
incorrect derivations of screening corrections, Bruggen &
Gough (1997) explained why the free energy is useful in
this context.

For a given relative position of the two ions, one con-
siders the electrostatic contribution to free energy from
the rest of the plasma. In fact, it is sufficient to calculate
the free energy correction for a single charge Z, δF (Z).
Then the rate enhancement factor is

f0 = exp
(
−δF (Z1 + Z2) + δF (Z1) + δF (Z2)

T

)
· (5)

In the limit of small plasma density – the weak screen-
ing limit – this free energy correction can be calculated
exactly. The result is the Salpeter formula.

Equation (5) has the physically obvious characteristics
that the enhancement is symmetric in Z1 and Z2 and goes
to zero in the limit of Z1 or Z2 going to zero. We shall
come back to these physically obvious characteristics in
Sect. 3.6.

The free-energy calculation is only as accurate as
the expression for the free-energy. The physics that is
contained in the approximation that has been used by
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Dewitt et al. and by Bruggen & Gough is not more accu-
rate than the physics contained in, for example, the den-
sity matrix derivation described in Sect. 2.3. An advantage
of the free energy derivation is that it represents a valid
derivation involving an independent technique.

2.5. Quantum field theory derivation

Brown & Sawyer (1997) have developed a rigorous, gen-
eral formulation for calculating the rate of fusion reactions
in plasmas. The Brown-Sawyer formalism can be used to
develop an unambiguous perturbation expansion in the
plasma coupling parameter g = e2/DkT . The general for-
mula derived in Brown & Sawyer (1997) reduces to the
Salpeter correction to first order in g. Since g = 0.04 at
the center of the sun, this correction should suffice for
solar model calculations.

The Salpeter effect is formally of order e3. The first
correction terms to it, which are formally of order e4, are
also examined in Brown & Sawyer (1997). The largest
correction at this order comes from the fact that the
electrons are slightly degenerate, so that the first-order
effects of Fermi statistics must be retained. This small
effect is explicitly computed in Brown & Sawyer (1997).
The remaining terms of the formal e4 order are of rela-
tive order `/D to the basic Salpeter correction, where ` is
either a ionic thermal wavelength λ or the Coulomb classi-
cal turning point Rc of the fusing ionic motion. An upper
bound shows that these are negligible contributions. These
higher-order calculations provide evidence, which goes be-
yond the qualitative statement that the plasma is “weakly
coupled”, that the Brown-Sawyer perturbation expansion
is applicable in the solar domain.

This method contains all of the physics described in the
previous four derivations and provides a formal validation
of the other techniques for obtaining the Salpeter formula.

3. Papers claiming that Salpeter formula does
not work

3.1. Dynamic screening

“Dynamic screening” (Carraro et al. 1988) is a generic
name for attempts to rectify the following perceived defect
in the Salpeter argument: approximately one-half of the
squared Debye wave number D−2 comes from screening by
electrons in the plasma and one-half from ions. As the two
nuclei that are to fuse approach each other, the electron
speeds are fast enough for the electronic cloud to adjust
to the positions of the nuclei. But the by-standing ions in
the plasma may be thought to have a problem making the
adjustment, since their speeds are of order of the speeds
of the ions that are to fuse. Thus it could appear that the
effects of the ionic screening could be less than those in
the Salpeter result, with a consequent reduction in fusion
rates.

However, Gruzinov (1998, 1999) gave a general argu-
ment showing that in an equilibrium plasma there is no

such reduction. For the Gibbs distribution (probability of
a state being occupied proportional to exp(−energy/kT )),
momentum and configuration probabilities are indepen-
dent, and velocities of fusing particles have no effect on
screening.

Moreover, in the most straightforward model for “dy-
namical” screening, the model advocated by Carraro et al.
(1988), one can see how the “dynamical” part of the cor-
rection terms get canceled. The paper calculates a modi-
fied potential function for the fusing ions by following the
motion of test bodies with positive charge approaching
one another in a plasma characterized by the standard
dynamic plasma dielectric constant. This modified poten-
tial produces corrections in fusion rates that are pertur-
batively of order e3 times the uncorrected rates, as are the
Salpeter effects when expanded. However, in Appendix D
of Brown & Sawyer (1997) it is shown that resulting mod-
ifications of the Salpeter result are exactly canceled (to
order e3) when processes are included in which the plasma
has been excited or de-excited in a Coulomb interaction
with one of the incoming ions. This is the reason that a
calculation based only on a modified potential for elastic
scattering fails.

To summarize, “dynamical screening” results, both in
their simple realization in Carraro et al. (1988), and in
any calculation that implements the qualitative argument
given above, are refuted both by the general argument
regarding the factorizability of the distribution function
and by explicit calculation.

3.2. Dynamic effect of Shaviv & Shiviv

Shaviv & Shaviv (1997, 2000) state that a significant dy-
namic effect on screening does exist. We have not been
able to extract from their work a single definitive analytic
formula to compare with the Salpeter result, or with the
various results of the rest of the heterodox “screening”
literature. We can comment on some of their qualitative
statements, with the caveat that we are not always sure
how they have been implemented. The statements that
we discuss below come from a recent summary “Why the
Salpeter screening formula cannot be applied in the Sun”,
Shaviv (2000).

“Kinetic equations must be used to solve the screen-
ing problem.” “Some reactions are enhanced and others
suppressed depending on... Gamow energy...” In reality,
kinetic effects are negligibly small in the Sun (because
the classical turning radius at Gamow energies is much
smaller than the mean particle separation or Debye ra-
dius). One should use equilibrium statistical mechanics
to find initial conditions for binary collisions that lead to
fusion. “All treatments of the screening... are based on
the mean field approximation.” This is not correct. The
quantum field treatment, described in Sect. 2.5, makes no
use of a “mean field” approximation superimposed on the
equations, only a straightforward perturbation expansion
of these equations.
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3.3. Unconventional interpretation of the Gibbs
distribution

Opher & Opher (2000b) propose, in order to support their
version of dynamic screening, a different interpretation of
the Gibbs probability distribution than is given in any
standard treatments of statistical mechanics. In a discus-
sion using classical (i.e., non-quantum mechanical) con-
cepts, they argue that the Gibbs distribution may not be
decomposable into uncoupled position and velocity fac-
tors; rather that the momentum variables must be re-
garded as position dependent. This assumption appears
to confuse the concept of a trajectory with that of a prob-
ability distribution.

This assumption contradicts one of the foundations of
statistical mechanics, as can be seen by consulting any
of the standard expositions of the subject. For example,
Landau & Lifshitz (1996) stress: “...the probabilities for
momenta and coordinates are independent, in the sense
that any particular values of the momenta do not influence
the probabilities of the various values of the coordinates,
and vice versa”.

The idea that coordinates and their conjugate mo-
menta are independent statistical variables is familiar from
elementary quantum mechanics where one calculates the
phase space for a free particle as proportional to d3xd3p,
the product of the differential volume in space and the
differential volume in momentum.

3.4. Cloud-cloud interaction

Shaviv & Shaviv (1996) claimed that the screening energy
Z1Z2e

2/D which appears in the exponent of Salpeter’s
formula should be multiplied by a factor of 3/2. They
argued that a proper inclusion of the electrostatic interac-
tions involving the screening clouds surrounding both fus-
ing ions should lead to a modification of the Salpeter for-
mula. Bruggen & Gough (1997) have analyzed this claim
in detail, and conclude that the result comes from the
use of an incorrect interpretation of the thermodynam-
ics, leading to an incorrect potential in the Schrödinger
equation used for the system1.

3.5. Unconventional statistics

There are claims in the literature (see e.g., Savchenko
1999, 2001; Lavagno & Quarati 2000) that the usual
Salpeter expression does not apply because standard sta-
tistical mechanics (Gibbs distribution) is not valid; dif-
ferent statistical distributions are proposed. There are at
least three reasons why these (and other authors) suppose
that the Gibbs distribution is not valid in the sun. These
three reasons are: 1) perhaps there is not enough time for

1 Although Bruggen & Gough (1997) reach the right con-
clusion on this one point, their statement that the “dynamic
screening” of Carraro et al. (1988) is needed when the react-
ing ions are fast in comparison with the screening particles is
wrong, as we have emphasized in Sect. 3.1.

statistical equilibrium to be established; 2) perhaps there
are interactions which distort the phase space distribution;
and 3) perhaps the Gibbs distribution is not the correct
equilibrium distribution. We discuss these three possibili-
ties in the following subsections.

3.5.1. There is not enough time

Some of the suggested distributions seem to be based upon
the assumption that the core of the Sun is not in ther-
modynamic equilibrium, and that there exist deviations
from the Gibbs distribution. Both analytic calculations
and Monte Carlo simulations show that the energy dis-
tribution of ions in a plasma rapidly approaches a Gibbs
distribution on the time scale for the exchange of a major
fraction of the typical particle energy among the interact-
ing ions (see, e.g., MacDonald et al. 1957).

There is a slight departure from statistical equilibrium
in the energy distribution of ions in the solar core, but the
magnitude of the effect is too small to be of significance
for any measurable quantity. The burning of nuclei in the
sun is a non-equilibrium process, which causes a depar-
ture from the ideal Gibbs distribution. The magnitude of
the deviation, δ, is of order the Coulomb collision time
τCoulomb over the nuclear burning time τnuclear, Bahcall
(1989). For the solar core,

δ =
τCoulomb

τnuclear
= 10−28

[(
τnuclear

1010 yr

)
×
(

20 keV
E

)3/2(
ρ

150 g cm−3

)]−1

· (6)

The characteristic times for the most important solar fu-
sion rates range from 102 yr to 1010 yr. Thus the number in
the square brackets above is not significant in comparison
to the overall factor of 10−28. For purposes of calculating
solar fusion rates, the solar interior is in almost perfect
thermodynamic equilibrium.

3.5.2. Phase space distortion

The rate R for a binary nuclear reaction can be written
symbolically as

R ∝
∫ ∫

d3p1 d3p2 exp(−E/kT ) |〈f |H|i〉|2. (7)

The term d3p1d3p2 in Eq. (7) represents the free-particle
density of states calculated when the particles are very
far separated. The Gibbs distribution is represented by
the exponential, and the interactions are described by the
matrix element of the Hamiltonian between initial and
final states, |〈f |H|i〉|2.

The basic error made by some authors (see e.g.
Savchenko 1999) is to confuse the role of the density of
states, which can be calculated when the particles are at
very large separations (d3p1d3p2), with the role of the in-
teractions (|〈f |H|i〉|2), which occur when the particles are
very close together.
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3.5.3. The Gibbs distribution is not the correct
equilibrium distribution

Many areas of modern physics, including large branches of
condensed matter physics, as well as many classical sub-
jects are successfully described by conventional statistical
mechanics. There is no convincing evidence for any phe-
nomena that lie outside the domain of standard statistical
theory, which is described in the classical works of, e.g.,
Tolman (1938), Feynman (1972), and Landau & Lifshitz
(1996).

3.6. Tsytovich suppression

Tsytovich (2000) suggests that plasma effects lead to sup-
pression rather than enhancement of fusion rates. Even
though one point of the present note is to emphasize the
need for careful analytic formulation in preference to plau-
sible “physical” arguments, it is hard to differ with the
qualitative result, in the original Salpeter discussion, sum-
marized in Sect. 2.1, that screening enhances the reaction
rate by lowering the potential in the vicinity of the fus-
ing ions. Unfortunately, we do not understand the details
of the elaborate treatment of Tsytovich well enough to
pinpoint the difficulty.

However, since the treatment of Tsytovich is intended
to be very general, one may consider a limiting case
in which very large impurities of charges ±Q are intro-
duced into a plasma undergoing p−p fusion. The impurity
charges are hypothesized to be so large that they dominate
over electrons and protons in the electrostatic interactions.
In these circumstances protons will preferentially clump
around negative charges −Q. Locally, the proton density
will increase and fusion will proceed faster. In this case,
just as in the general case discussed by Salpeter, electro-
static screening enhances rather than suppresses fusion.

The result of Tsytovich (2000) also does not pass an
even more basic check. In the weak screening limit, the
Salpeter formula can be written as

f0(Salpeter) = 1 + gZ1Z2 (8)

where g does not depend on the charges of the reacting
particles Z1, Z2. In the limit when one of the reacting par-
ticles has a vanishingly small charge, the Salpeter screen-
ing effect goes to zero, that is the screening enhancement
f0 = 1. The Tsytovich formula has a different structure,

f(Tsytovich) = 1 − g1Z
2
1 − g2Z

2
2 , (9)

which is a compact and revealing way to write Eq. (11) of
Tsytovich (2000). Thus, f(Tsytovich) 6= 1 if one of the
particles is neutral, which is obviously incorrect.

4. Summary and discussion

All of the five ways of obtaining the Salpeter formula that
are described in Sect. 2 are valid in the limit of a weakly
coupled plasma. The different arguments are complimen-
tary in this limit. The advantage of multiple derivations

that use different physical concepts is that various au-
thors or readers come to the subject of plasma corrections
to fusion reactions with very different backgrounds and
perspectives. Therefore, different individuals will find dif-
ferent arguments simpler or clearer.

In recent years, a number of authors have given alter-
native expressions, each different from all the others, for
the weak field screening limit. We have described briefly in
Sect. 3 some of the mistakes that seem to have been made
in the papers that propose replacements of the Salpeter
formulae.

As particularly emphasized in Sect. 2.5, the Salpeter
result is the first term in a power series expansion in the
plasma coupling parameter g. Near the center of the sun,
g ' 0.04. Hence workers who claim that the Salpeter result
is not valid for the sun must show that (a) their result ap-
proaches that of Salpeter when g becomes arbitrarily small
and (b) explain why their result significantly modifies that
of Salpeter even though the perturbative parameter g is
much less than one.
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