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Abstract 

The 3He(3He, 2p)4He and 3H(3H, 2n)4He reactions are studied in a microscopic cluster model. 
We search for resonances in the 3He+3He and 4He + p 4- p channels using methods that treat 
the two- and three-body resonance asymptotics correctly. Our results show that the existence of a 
low-energy resonance or virtual state, which could influence the 7Be and 8B solar neutrino fluxes, 
is rather unlikely. Our calculated 3He(3He, 2p)4He and 3H(~H,2n)4He cross sections are in a 
good general agreement with the experimental data. (~) 1999 Elsevier Science B.V. 

PACS: 21.45.+v; 25.10.+s; 21.60.Gx; 26.65.t; 27.20.+n 
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I. Introduct ion  

One way to test models of  the solar interior is by observing the neutrinos generated 

by the nuclear reaction network which is the solar energy source [ 1 ]. As a striking 

and exciting fact, all terrestrial solar neutrino experiments observe fewer neutrinos than 

predicted by standard solar models [2] .  The picture which emerges from the various 

experiments is [3] that the 8B flux is about half of  its predicted value (~b8 = 0.4~bssM), 

while the 7Be neutrinos appear to be completely missing (~b7 = 0).  Here SSM refers to 
the standard solar model of  Bahcall [2] .  The 7Be nuclei, which are the seeds of both 
the 7Be and 8B neutrinos, are produced in the 4He(3He,~/)7Be reaction. This reaction 

competes with the 3He(3He, 2p)4He process, which is the final step of  the first branch 

of  solar hydrogen burning (ppI chain) [4] .  If  the cross section of  the 3He(3He, 2p)aHe 
reaction were larger than believed then the probability of  the 4He(3He, y)7Be branch 
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would be smaller, and hence the ~b8 and ~b7 fluxes would be suppressed (without, 
however, significantly affecting the unexpected ~b7/~b8 ratio deduced from the neutrino 
experiments [5] ). To increase the 3He(3He, 2p)aHe reaction rate, a hypothetical reso- 
nance at low energies had been suggested [6] and looked for in various experiments 
(see Ref. [7] for the most recent work). 

The importance of the 3He(3He, 2p)aHe reaction has led to continued experimental 
efforts to measure the cross section down to solar energies. In the latest experiment [7] 
the LUNA collaboration measured the cross section down to Ecru = 20.76 keV, which is 
well within the region of the most effective solar energies (Gamow window). Although, 
they do not see any evidence of a possible resonance, the existence of such a state 
at still lower energies cannot be a pr ior i  ruled out yet. In the present work we study 
the 3He(3He, 2p)4He and the mirror 3H(3H, 2n)4He reactions in a microscopic cluster 
model. We search for signs of possible resonances and study the energy dependence of 
the reaction cross sections. 

2. Model 

The 3He(3He, 2p)4He and 3H(3H, 2n)4He reactions have already been studied pre- 

viously within microscopic cluster models [8,9]. We use the same model, but with 
extended and hence more realistic model spaces. Additionally we put special emphasis 
on the description of the few-body dynamics. Our model starts out with a resonating 
group model (RGM) wave function for the {4He + p + p, 3He + 3He} coupled system. 

S, I1,12 ,L 

S, I1,12 ,L 

+A { (p)]jM} (1) 

Here .4 is the intercluster antisymmetrizer, the @ cluster internal states are translationally 
invariant harmonic oscillator shell model states ( a  =4He and h =3He), the p vectors 

are the different intercluster Jacobi coordinates, 11 and 12 are the angular momenta of 
the two relative motions, L and S are the total orbital angular momentum and spin, 
respectively, J is the total angular momentum, ~ = (-1)/1+1~ = ( - 1 ) / 3  is the parity, 
and [ . . . ]  denotes angular momentum coupling. The sum over S, Ii, 12, and L includes 
all physically relevant angular momentum configurations. Using (1) as a trial function 
in the six-nucleon Schr6dinger equation, we arrive at an equation for the intercluster 
relative motion functions X. For the mirror {4He + n + n, 3H ÷ 3H} system we use a 
wave function similar to (1).  The harmonic oscillator size parameters of the internal 
cluster states are chosen to stabilize the cluster energies. We use the Minnesota (MN) 
effective interaction [ 10] in all calculations. It puts the threshold of the 3He + 3He and 
3H ÷ 3H thresholds at 17.11 MeV and 15.57 MeV energies, respectively relative to the 
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4He + N + N threshold. Like in the previous studies [8,9], these values are significantly 

larger than the experimental thresholds (12.86 MeV and 11.33 MeV, respectively). One 
might expect that the incorrect reproduction of the threshold energies will effect the 
relative weight of the 4He + N + N channels in the full wave function. We will briefly 
discuss this problem below. 

The relative motions are the most important degrees of freedom in the problem, 

so special care has to be taken in order to ensure that their dynamics are described 
properly. What makes the description of the 3He(3He, 2p)aHe and its mirror reaction 

difficult is the fact that there are three particles in the final state continuum. Currently 
we cannot treat the full three-body continuum problem properly, thus our model is only 
an approximate description of the reactions. However, the existence of a low-energy 
resonance in the 3He(3He,2p)4He reaction is a question which can be studied in a 

rigorous way. If such a resonance existed, it has to originate from either the 3He + 3He 

or the 4He ÷ p ÷ p channels. As we will show below, one can investigate the existence 
of such a resonance in both channels separately and properly. Although we can treat the 

scattering continuum only approximately, we will nevertheless calculate the low-energy 
reaction cross sections of the 3He(3He, 2p)4He and its mirror reaction. 

3. Searching for resonances in 4He + p + p and 3He + 3He 

In order to avoid any ambiguity in the recognition of a resonance in real-energy 

observables, we search for resonances on the complex energy plane. Resonances are 

defined as the complex-energy solutions of the Schr6dinger equation, which correspond 
to the singularities of the scattering matrix. Thus, we search for poles of both the 
3He + 3He and 4He + p + p S-matrices. 

Interestingly, the 4He + p + p case is easier to deal with, despite its three-body nature. 
The reason is that a low-energy resonance in the 3He + 3He channel corresponds to a 
high-lying narrow state in the 4He + p + p channel, which, if it exists, can be easily 

identified. In order to be able to describe three-body resonances, we apply the complex 
scaling method (CSM). This method has already been used previously to search for 
resonances in 6He, 6Li, and 6Be in an a + N + N model [ 11 ]. However, the search had 

been restricted to low-lying resonances below the 3He+3He threshold and therefore does 

not shed light on the problem at hand here. In the present search we concentrate on the 
high-energy region around the 3He + 3He channel threshold. In the CSM the complex 

scaling transformation is performed on the original Hamiltonian. This transformation 
acts in coordinate space on a function f ( r )  as 

~l( O) f ( r )  = e3iO/2 f ( r e i ° ) ,  (2) 

where 0 is the parameter of the transformation. For real 0 values the U (0) transformation 
results in a rotation into the complex coordinate plane. The spectrum of the complex- 
scaled Hamiltonian 
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Fig. 1. Energy-eigenvalues of the complex scaled Hamiltonian of the J~" = 0 + states in 4He + p + p. The dots 
are the points of the rotated discretized continuum, while the circle is the ground state resonance of 6Be. 

ho = 0 ( 0 ) , 0 0 - 1 ( 0 )  (3) 

is connected to the spectrum of the original H by the following theorem [12]: (i) 

the bound eigenstates of H are eigenstates of H0, for any value of 0 within 0 ~< 0 ~< 
7"r/2; (ii) the continuous spectrum of H is rotated by an angle 20; (iii) the complex 

generalized eigenvalues of H0, eres = Er - iF/2 (with Er, F > 0), belong to its proper 
spectrum, with square-integrable eigenfunctions, provided 20 > larg ere~[. These complex 

eigenvalues coincide with the S-matrix pole positions. 
We would like to emphasize that this method treats three-body resonances in a rigorous 

way. The only approximation we make in the present work is that we solve the complex- 

scaled Schr6dinger equation on a finite basis. Namely, we assume that X in ( 1 ) can be 
expanded in terms of products of Gaussian functions, like p/l~ e x p [ -  (Pl/Yi) 2] ~,m~ (,al)" 

12exp[-(p2/zi)2]Yt2m2('fi2), where Ii and 12 are the angular momenta in the two P2 
relative motions, respectively, and the widths y of the Gaussians are the parameters of 
the expansion. The expansion coefficients are determined from the projection equation 

A 

(61Po]Ho - el!g0) = 0. As the complex-scaled wave function of a resonance is square- 

integrable, our finite basis approximation works for resonances as well as for bound 

states. 
As an illustrative example of our results, Fig. 1 shows the spectrum of the complex- 

scaled Hamiltonian for the J'~ = 0 + state of 4He+p +p .  We choose a small rotation angle 
0 in order to avoid any numerical instability. One can see that the well-known ground 
state resonance of 6Be is reproduced. A low-energy resonance in the 3He(3He, 2p)4He 

system with small width (which would be relevant for the astrophysical problem), if 
existed, would be situated above Re(E)  ~ 10 MeV, close to the real energy axis. There 
is no such narrow state present in our model. We do not find such a state in other 
jrr partial waves either. Our results agree with other calculations performed in a three- 
body 4He + N + N model assuming structureless 4He [ 13]. As Refs. [ 13,14] show, all 
high-lying resonances in the 4He + N + N systems have large widths. 
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In the 3He + 3He channel we cannot use the complex scaling method. A very low- 

energy resonance would always be mixed up with the rotated continuum, making its 

unambiguous identification hopeless. Here we use a direct analytic continuation of  the 

S-matrix to complex energies [ 15]. We can use this method because, unlike in the case 

of  the three-body 4 H e + p  + p  system, the two-body scattering wave functions can easily 

be generated with the correct asymptotics. To calculate these scattering wave functions 

we use the Kohn-Hulth6n variational method of  Ref. [ 16]. Once again, our method 

treats resonances in a rigorous way. 

We have searched for low-energy narrow resonances in 3He + 3He and tbund none. 

We must note, however, that our 3He -/- 3He model may be too simple. In the J~" --- 0 ÷ 

state, which is the most likely candidate to have a narrow resonance, the singlet S-wave 

N - N interaction has a dominant effect because the Pauli principle forces the unpaired 
neutrons inside the 3He clusters to form a iS0 state between them. In the 3He + 2H 

system the role of  the triplet forces is known to be very strong, causing the existence 

of  the low-lying 3 /2  + resonance [ 17]. The triplet forces, which have negligible effects 

in our present model, could play a role if the small D-state admixture of 3He were 

to be considered. In such a case one can have a contribution from coupling between 

the { [ ( 1, 1/2)  1/2, 0] 1/2; [ ( 1, 1/2) 3/2,  2] 1/2} configurations in the 3He+3He system. 

Here the [ (Sa, Sp)S , l ] l  coupling scheme is used, with Sa and S t, being the deuteron 

and proton spins, respectively, S is the total intrinsic spin, 1 is the angular momentum 

between the deuteron and the proton, 1 is the total spin of  3He, and the brackets denote 

angular momentum coupling. Such a model would require a four-cluster description of 
3He + 3He = (d  + p )  + (d  + p) ,  which is beyond the scope of  the present work. The 

effects of  the internal D states in 3He on the 3He + 3He system will be studied in the 

future [ 18]. 
In many respects 3He + 3He is similar to the n + n system. We know that there is a 

virtual (antibound) state present in the n + n system, with the wave number k = --iy 

(y  > 0) and energy E = - E v  (Ev > 0) of the S-matrix pole, respectively. Such a 

state results in a cross section which is divergent at the unphysical negative pole energy 

and behaves as o- ,-~ 1 / ( E  + Ev) at positive energies. The effect of such a hypothetical 
state in 3He + 3He on the 3He(3He, 2p)4He cross section was discussed in Ref. [ 19]. 

It would lead to a cross section that increases with decreasing energy, mimicking the 

effect of  electron screening. A closer look at the problem shows that pure virtual states 

(with pure imaginary wave number) cannot be present in Coulombic systems [20].  

The Coulomb interaction creates two poles from the one virtual-state pole and moves 

them away from the imaginary k-axis to k = ±K - iy (y  > O, K < y) .  Such states can 

still have observable effects, like in the p + p system, because these conjugate poles 
are roughly at the same distance from the physical energies. We have searched for such 

states in 3He + 3He, and found no unambiguous evidence for their existence close to the 

imaginary k axis. 
In summary, we do not find any S-matrix poles in either 4He + p + p or 3He + :~He 

that could cause strong observable effects in the 3He(3He,2p)4He cross section. For 
4He + p + p our result is probably the best, one can currently achieve. Further studies of  
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3He + 3He in a (d + p) + (d + p) model or in a full six-body dynamical model would 

be interesting. 

4. The 3He(3He,2p)4He and 3H(3H,2n)4He reaction cross sections 

3He(3He,2p)4He is the only solar nuclear reaction whose cross section has been 

measured within the solar Gamow window (around ~ 20 keV). At such low energies 
the cross section, measured in the laboratory, is enhanced due to screening effects by the 
electrons present in the target atoms [21]. This electron screening effect has definitely 
been identified in the latest LUNA data for 3He(3He, 2p)aHe. For applications in the 
solar models the electron screening enhancement has to be subtracted from the data. 

Currently the 3He(d,p)aHe reaction is the one for which the enhancement of the 
low-energy fusion cross section due to electron screening is studied best. In agreement 
between experiment [22] and theory [23-25 ] it appears that the screening enhancement 
for this reaction, in which deuterons collide with an atomic 3He gas target, is well 
described in the adiabatic limit. In this case the electron screening can be represented 
by a constant shift of the collision energy by the screening energy Lie which is given 
by the difference of the electronic binding energy of the united atom and the sum of 
the asymptotic fragments. Applied to the 3He + 3He reaction, the screening energy in 
the adiabatic limit is Ue = 240 eV. We will use this value in the following, but we note 
that fits to the LUNA data might indicate a somewhat larger screening potential [7,33]. 
These fits had to make assumptions about the energy dependence of the bare-nuclear 
3He(3He,2p)aHe S-factor. This has motivated us to perform calculations for the bare 
reaction cross sections of 3He(3He, 2p)4He and the mirror reaction 3H(3H, 2n)4He. 

As we mentioned, a microscopic description of 3He(3He, 2p)4He, which handles the 

full three-body final state rigorously, is currently not feasible. Here we use a simplified 
version of the continuum-discretized coupled channel method [26] to describe 4He + 
N + N. In this method the total energy available for 4He + N + N is divided between the 
4He-N and (4He, N)-N relative motions in the (4He, N)N configuration, and between 
the N-N and (N,N)-4He  motions in the (N,N)4He configuration. Within the two- 
cluster subsystems, (4He, N) or (N, N), the continuum energy is discretized, and the 
remaining energy appears as the scattering energy in the (4He, N)-N and (N, N)-4He 
two-body systems. The system of coupled channels is built up from the (4He, N)-N and 
(N, N)-4He channels containing the various discretized-energy states in the two-cluster 
subsystems. 

Generally, the discretization of the continuum in the two-body subsystems is done 
in equidistant k bins, and proper continuum states are used. Here we adopt a sim- 
pler approach. We discretize the continuum on a finite square-integrable basis. Thus, 
our discretized states are pseudo-bound states with square-integrable wave functions 
and positive energy. The discretization is performed by choosing Nd basis states with 
ranges that increase following a geometric progression. By varying the total range of 
the basis and Nd one can achieve very different discretization patterns, e.g., dense or 
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Fig. 2. Astrophysical S-factors for (a) the 3He(3He,2p)4He and (b) the 3H(3H,2n)4He reactions. The 
experimental data are taken from (a) Ref. I71 (filled circle, and filled triangle), Ref. 1271 (open circle). 
Ref. 1281 (open triangle) and (b)Ref. I291 (filled circle), Ref. I30l (cross), Ref. 1311 (square), and 
Ref. 132] (triangle). The solid curves are our results. 

sparse discretization, discretizations including only low energies or allowing high off- 

the-energy-shell states also, etc. This way one can test the sensitivity of  the calculated 

reaction cross section on the continuum discretization, and see if this approximation is 

reasonable or not. We typically use Nd = 5-10  and solve the coupled-channel scattering 

problem by using the method of  Ref. [ 16]. 
Fig. 2 shows our results for 3He(3He,2p)aHe and 3H(3H, 2n)aHe together with the 

available experimental data. In order to get rid of the trivial exponential dropping of  

the cross sections caused by the Coulomb penetration, we use the astrophysical S-factor 

parametrization 

I.zZ! Z2e 2 
S ( E )  = o - ( E ) E e x p  [2~-r / (E)] ,  r / (E)  - kh  2 (4) 

Our curves in Fig. 2 come from a continuum discretization that proved to be the most 

stable at the (4He, N) - N and (N, N) - 4He two-body scattering level. We also tried 

other discretization patterns and found that the absolute normalization of the cross section 

curves depend somewhat (10-20%)  on the chosen discretization, but the shapes of  the 

curves remain very similar. Our results are close to those of  Ref. [9] ,  where a similar 

model was used. Our full model space is roughly 5-10 times bigger than in Ref. [9] ,  

which allows us to use much more flexible continuum discretizations. Nevertheless, all 

our results seem to be similar to Ref. [9] ,  e.g., we also find that the channels involving 

the 4He + N states with J "  = 1 / 2 -  have a dominant role. 

Fig. 3 shows the effect of  electron screening on our calculated 3He(3He,2p)4He 

S-factor with Ue = 240 eV screening potential. A nice agreement is observed with the 
low-energy LUNA data. 

The overall agreement between our results and the experimental data is considered 
to be good. We see, however, a marked disagreement with the 3H(3H, 2n)aHe data at 

very low energies. The energy dependence of  our calculated S-factor is different from 

the precise Los Alamos data. One possible explanation of  this discrepancy could be our 
approximate treatment of  the three-body final state. However, this is not supported by our 
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Fig. 3. The same as Fig. 2a, except that the effect of electron screening on our low-energy theoretical curve 
is shown by the dashed line. The adiabatic screening potential, Ue = 240 eV, is used. 

finding that the shape of the S(E) curve is rather insensitive to the way the discretization 
is done. Nevertheless, an improved model with the full three-body treatment of the final 
state would be desirable. As we mentioned, the thresholds of the 4 H e + n + n  and 3H+3H 

channels are too far from each other in our model. In order to see if this may affect 

the energy dependence of the S-factor, we made some test calculations. We artificially 

modified the energies of the 3H clusters to reproduce the experimental threshold energy 
difference. This changed the absolute normalization of the S-factor (as the 3 / 2 -  and 
especially the 1 /2 -  discretized states moved closer to the 3H + 3H threshold) but not 

its shape. 

5. Conclusion 

We have studied the 3 He ( 3 He, 2p ) 4He and 3 H (3 H, 2n) 4He reactions within the micro- 

scopic cluster model using significantly larger model spaces than previously employed. 
Our motivation and results have been twofold. 

We searched for signs of possible low-energy resonances in 3He(3He, 2p)4He, which 
could have important effects on the 7Be and 8B solar neutrino fluxes. The 3He + 3He 
and 4He + p + p  channels were studied separately, which allowed us to use methods that 
can treat the two- and three-body asymptotics in a rigorous way. We extended the two- 
and three-body scattering matrices to complex energies and searched for their poles. We 
have not found any indication for the existence of a low-energy resonance or virtual 
state that could cause observable effects in the cross section. Thus, it is unlikely that a 
yet unobserved resonance around the threshold energy in the 3He(3He,2p)aHe reaction 
might affect this important solar reaction cross section. 

We calculated the cross sections of the 3He(3He,2p)4He and 3H(3H, 2n)4He re- 

actions in the continuum-discretized coupled channel approximation. Our results are 
in a good general agreement with available data, except for the very low-energy 
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3H(3H, 2n)4He cross section, where we observe a systematic deviation from the most 
precise measurement. Our test calculations show that the energy dependence of the cross 
sections is hardly influenced by the details of the continuum discretization, but might be 
caused by the approximate treatment of the three-body continuum. Here improvements 
are certainly warranted. 
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