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We report the first calculations of cross sections for the radiative capture reactitfasy)’Li and
3He(a, ) "Be below 2 MeV that use wave functions derived from realistic nucleon-nucleon interactions by the
variational Monte Carlo technique. After examining several small corrections to the dor&ihagerator, we
find energy dependences for the low-eneg&jfactors that agree reasonably with experimental measurements.
There is no contradiction with the previous theoretical understanding of these processes, but the zero-energy
derivative of the®H(a,y)"Li Sfactor is smaller than that in most models. While this method can, in principle,
predict cross section normalizations, the normalizations of our results are mostly too low.
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[. INTRODUCTION dependence and normalization for the experiment of Brune
et al.[20]), it is not clear that this is the final word because
Electromagnetic captures of alpha particles 8# and  the agreement with the data seems to be spoiled when the
3He are important processes in astrophysics. Together, theyodel space is expandéi,17.
are responsible for alfLi production in the standard big It was shown in the early work of Christy and Dufkl]
bang nucleosynthesis calculation. Because their cross sefttyat low-energy radiative captures on light nuclei may be
tions are also difficult to measure in the laboratory at thetreated to good approximation as external direct captures,
relevant energie€20-500 keV, they are the major sources that is, as one-step processes in which most of the matrix
of uncertainty in the calculated primordidLi abundance elements arise outside the nuclear interaction radius. It re-
[1,2]. *He(a,y)"Be is also important for predicting the pro- mains true in more detailed models that the largest contribu-
duction rate of®B and “Be neutrinos in the sun. Accurate tions to the matrix elements arise in regions well outside the
knowledge of its rate at solar energiesZ0 keV) is there- range of the internuclear forces. In principle then, the cross
fore important for studies of the solar neutrino probldidls  section energy dependence is given by convolutions of
Recent theoretical studies of these cross sections havgositive- and negative-energyCoulomb wave functions
used two closely related approaches. Potential mddel§]  with the current operator, while the normalization of the
treat alpha particles and tritorier *He nuclei—the isospin  Ccross section is determined by the asymptotic normalization
symmetry of these systems makes the two processes almadtthe bound state in the appropriate clusterization channel.
identica) as point particles and the final states as bound However, fine details are obviously missing from the ex-
states of these point particles. Authors of such models gerfernal direct-capture model, motivating application of more
erate wave functions from potentials that fit experimentaldetailed models that can predict both energy dependence
scattering phase shifts and bound-state propefbesling (which is relatively easy to measurend normalization
energies, electromagnetic moments, )etend then compute (which is not easy to measure, and which must be inserted by
the cross section as a direct capture. The resonating-grodrand in an external direct-capture calculation after determi-
method (RGM) [5,9-17 is fully microscopic, in that it nation by some other megnsSmall effects involving the
solves an explicitly seven-body problem with a nucleon-short-range €5 fm) behavior of the nuclear wave func-
nucleon potential, the parameters of which are adjusted ttions, both in the alpha-trinucleon channel and in other chan-
reproduce bound-state and resonance properties for the parels, can affect the cross sections by several percent. Such
ticular problem being solved. The name is derived from theeffects are probably behind the differences between models
choice of basis states for solving the Salirger equation, pointed out in Ref[17]. In principle, there are also small
which consists of one or more partitions of the particles intocorrections to the leading-order current operators. Because of
clusters with internal harmonic oscillator structure. The po-the astrophysical importance of determining these cross sec-
tential models now have a well-founded justification in thetions, and especially the need for low-energy extrapolation of
resonating-group work in the form of the microscopic poten-3He(«a,y)'Be for solar physics, it is important to apply new
tial model[18,19. Although the RGM models have appar- approaches to this problem as they become available and
ently been very successful in describing these reacfithes compare the results with past efforts.
calculation of Kajino[14] correctly predicted both energy In this context, recent developments in the physics of light
nuclei are particularly interesting. There now exist “realis-
tic” nucleon-nucleon potentials that describe tihe andpp
*Present address: MC 130-33 California Institute of Technology scattering data, as well as the deuteron, with high precision
Pasadena, CA 91125. (e.g., Ref[22]). Further interactions not describable by two-
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body potentials are described by three-nucleon potentialommute. The sums and products throughout this section are
which have been adjusted to reproduce residual effects in thaver all nucleons. FofHe, the Jastrow part takes a relatively
energy spectrum of light nuclei and properties of nucleasimple form,

matter[23]. Wave functions have been developed for these

pote_ntlals in systems with up to eight nucledrzsf]. Thl_s _ W)= H fiik. H f(rij)|®,(0000) 1539, (2)
provides an opportunity to approach the problem of radiative i<j<ks4 i<j<4

captures on light nuclel using realistic potentials and tr?(_:\‘/vheref(r”-) andf;; are pair and triplet functions of relative

computational techniques that have been developed to utillz&)Sition only, anddb,_(0000) is adeterminant in the spin-
them. L . isospin space of thg four particles. Jastrow wave functions
Conversely, astrophysical interest in these processes h@$y 3He and for the triton are constructed analogously, but
resulted in relatively precise measurements, which makeg,e parameters of thi(r;;) for these nuclei have been cho-
cross section calculations useful tests of the wave functiongaep, to minimize energy ]expectation values of the three-body
in addition to the reproduction of the static moments, elecyclei rather than of the alpha particle. The triton athte
tron scattering properties, and energy spectra to which theye identical in our calculation except for their isospin vec-
have been compared in the past. We have already reportegks. In cases where the distinction is unimportant, we refer
the application of these wave functions to a radiative-capturéo both nuclei as “the trinucleon,” and denote them both by
calculation in a paper on the processy, y) °Li [25]. 7 in subscripts that label clusters.
The remainder of this paper describes cross section calcu- For larger nuclei, spatial dependences must be introduced
lations for the reactionsH(a,y)’Li and ®He(a,y)'Be, us-  to place some particles in the shell. TheA=7 Jastrow
ing bound-state wave functions derived from realistic potenwave function is constructed from scalar correlations multi-
tials by the variational Monte Carlo method. It is organizedplying a shell model wave function,
as follows. In Sec. Il, we describe the wave functions used to
compute the cross sections. In Sec. Ill, we describe the elec- |w )= 4 11 fisjisl_[ 11
tromagnetic current operators and the methods used to com- i<j<ks4 ' n<4 5<m<7
pute their matrix elements. In Sec. IV, we describe the re-
sults for cross sections and branching ratios. In Sec. V, we X fom, 1T fss(rij)H
examine the implications of our results. m<p<7 j k<45

i<j<4
><fsp(rkn)fpp(r56)fpp(r57)fpp(r67)

=n<7

Il. WAVE FUNCTIONS
X > [BLgin| P72 (LLN]IMTT3) 1234564 {» (3)
A. Bound states LS[n]

We used ground states H, 3He, “He, Li, and ‘Be  whereA is an antisymmetrization operator over all partitions
that were found by the variational Monte CafMC) tech-  of the seven particles into groups of four and three. For the
nique for the Argonne ;5 two-nucleon potentialhereafter ~ central pair and triplet correlationf,,(r;;) andf{}*, thexyz
AV18) [22] and the Urbana IX three-nucleon potentidliX) denote whether the particles are in ther p shell. The shell
[23]. The radiative captures can go to either the ground statgodel wave functioj®,(LS[n]JIMTT;)) has orbital angu-
or the (bound first excited state in botfALi and “Be, so the lar momentuni, spinS, and spatial symmetiyn] coupled to
first excited states of these nuclei were also needed. Thedgtal angular momentund, projection M, isospin T, and
wave functions were generated by the same VMC method g@&harge statd’s, and is explicitly written as
the ground states. The bound—state wave functions have been |, (LSIMN]TTs)1234:56)
reported in Refs[26] (triton and “He) and[27] (modified
here as in Ref[25] to obtain ’Li and "Be bound states with
desired asymptotic properties

The VMC method proceeds by constructing wave func-
tions as products of pair and triplet correlations between Xd)LS[n](R )¢LS[n](R )
nucleons, and adjusting the free parameters in these correla- P a6’%p ol
tions to minimize energy expectation values that are com-
puted by a Monte Carlo integration. The bound-state wave ><[[Ylm,(Qas)Ylml/(Qaa)Ylm;’(Qw)]LML
functions are built from central and operator correlations be-
tween nucleons, acting on a Jastrow wave function, 1 ) (1 ) (1 )

5Ms| xe| 5 Mg | x7| 5 Mg

2 2 2 SMJ "
1 1 1
2l 51l 1

4
~ TT. >
whereU;; and U/} are two- and three-body correlation op-

erators that include spin and isospin dependence&isda  The Y| ,(2) are spherical harmonicg,(s,m,) are spinors,
symmetrization operator, needed because Whe do not  andv(t,t3) are spinors in isospin, while brackets with sub-

®,(0000) 123405 1" (R,.5)

X| X5

(W)=

1+ > O
i<j<k

Siﬂj (1+ Uij)}|‘1’J>, D)

X Vg
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scripts denote angular momentum and isospin coupling.  radial Schrdinger equation for a Woods-Saxon potential and
Particles 1-4 are placed in teeshell core with only spin-  unit angular momentum, with energy and Woods-Saxon pa-
isospin degrees of freedom, while particles 5—7 are placed irmmeters determined variationally. It is important for low-
p-wave orbitals¢,';S[”](Rak) that are functions of the dis- energy radiative captures that these functions reproduce
tance between the center of mass of the core and pakticle faithfully the large-separation behavior of the wave function,
Different amplitudesB, () in Eq. (3) are mixed to obtain an because the matrix elements receive large contributions at
optimal wave function; for thd™, T=3/2",1/2 ground state cluster separations greater than 10 fm. In fact, at 20 keV,
of "Be, thep shell can haved, (1,53}, B1(1/2)121] Biamypy, ~ More than 10% of the cross section fire(e, v) 'Be comes
Bazy21): and Ba(1/2)21) terms. By far the largest contribu- from clus_ter separations _beyond_ 20 f_m. At these dlstanpes,
tion from these terms, as expected and as derived by diagavell outside the nuclear interaction distance, the clusteriza-

nalization of the variational wave functions, [ 13- tion With the lowest cluster-separation energy should be the
This is true of all the mass-T,= 1/2 bound states, which are most important. We have therefore modified the bound-state
the final states of the radiative captures in question. wave functions for the capture calculation to enforce cluster-
The two-body correlation operattt;; is defined as like behavior, matching laboratory cluster separation ener-
gies, when the threg-shell nucleons are all far from the
s-shell core.
Uij :p;ﬁ qu:i[’j Fik (i T i) |up(riy)OF (5) In general, for lighip-shell nuclei with an asymptotic two-

cluster structure, such asl in °Li or at in Li, we want the
where theOf*°~z.7, oi-0y, o-0y7-7, S;, and large separation behavior to be
Sj7-7, and thefﬂk is an operator-independent three-body LSin]
correlation. The six radial functiorfg(r) andu,_,¢r) are [dp " (r—o0) ] e Wy(2y1)/T, 8
obtained from two-body Euler-Lagrange equations with
variational parameters as discussed in detail in R26). whereW,(2vr) is the Whittaker function for bound-state
They are taken to be the same in fhehell nuclei as ifHe, ~ wave functions in a Coulomb potentiedee below andn is
except that theu,_,«r) are forced to go to zero at large the number ofp-shell nucleons. We achieve this by solving

distance by multiplying with a cutoff factor the equation
[1+exd —Ry/ay]]/[1+exd (r—Ry)/a,]], #2 [ d2 1(1+1)
, o _ —5—| S|+ V(") +Ar) |res 3 (r)=0,
with R, anda,, as variational parameters. Thg, correlation 241\ dr? r?
is constructed to be similar ths for small separations, but 9)
goes smoothly to a constant of order unity at large distances
(r>5 fm), wherel =1, uy, is the reduced mass of one nucleon against
b four, and V(r) is a parametrized Woods-Saxon potential
_ sp with a Coulomb term,
o) =] B0 T exf (r—Repllaggl | "
% 2(z-2) €
+espfl—exd — (r/dsp) %1}, (6) V(r)= 0 ( ) TF(r). (10)

1+exd (r—Rp)/ag] * n

whereag,, bsp, etc., are additional variational parameters.
Thef,,(r) correlation in the mass-7 nuclei is the same as thédereVy, R,, anda, are variational parametersZ - 2)/n is
f(ri;) correlation in the trinucleon, so that when the threethe average charge ofmashell nucleon, andF(r) is a form
p-shell nucleons are all far from treshell core, they look factor obtained by foldingr and proton charge distributions
very much like a trinucleon. together. TheA (r) is a Lagrange multiplier that enforces the

These choices fofg, fsp, fpp, andu,_, ¢ guarantee that asymptotic behavior at large but is cut off at smalr by
when the threg-shell particles are all far from theshell ~means of a variational parameigy,
core, the overall wave function factorizes as

W[ Fop(Fa 1 N (1 o) Pibath, (7)

where ¢, is the variational*He wave function,s, is the

variational trinucleon wave function, and,, denotes the

separation between the centers of mass of dhand tri- Mr)=

nucleon clusters. Provided th@tsp(rm)]12 goes to a con-

stant quickly enough and smoothly enough, the long-range

correlation  between  clusters is  proportional  towhereu, is directly related to the Whittaker functigsolu-

[d)'r;s[”](rm)]3. tion to the radial Schidinger equation for negative-energy
The single-particle functiong:%"(R,,) describe corre- states in a purely Coulomb potenjial

lations between the-shell core and the-shell nucleons, and

have been taken in previous wofR7] to be solutions of a ug It =[Wm(2yr)/r]*, (13

A(r)=N(n)[1-exp—(r/c)?)]. 11
The \(r) is given by

ﬁZ
2pa

1 d%u. 2

U, dr2 r2

2(z2-2) €?
r

@
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Here y?=2u4,B4, /%2, whereu,, andB,, are the appropri- TABLE I. Calculated VMC, GFMC, and experimentally mea-

ate two-cluster reduced mass and binding energy,  sured energies, point proton rms radii, and quadrupole moments of

—2(Z-2)e? 2 —L+i °H, ®He, *He and bound states dti and ‘Be. Numbers i -
2(Z—2)€%u4nlh%y andm=L+ 3. , “He, “He and bound states 6ti and 'Be. Numbers in paren

For the “Li ground state, the largest contribution has theses are Monte Carlo statistical errors.
B,3=2.47 MeV (binding energy of’Li relative to « andt
clusterg andL=1 corresponding to the asymptoficwave

Nucleus  Observable VM@, GFMC Experiment

of the Li ground state, or amplitud@y 12137 in EQ. (3). 34 E -8.151) -8.471) _8.48
None of the other possible amplitudgsg;,; correspond to (r2yv2 1.601) 1.591) 1.60
asymptoticat clusterizations. However, there is no reason P

for them not to be present in compact configurations of thes, E ~7.391) ~7.72
nucleons. Including such components in the wave functions <r§>1xz 1.731) 1.731) 1.77

improves the binding energies of the mass-7 bound states by
about 0.2 MeV. The asymptotic forms ef;"(r) in the He £ 26893  —28.344) 28.30
lower-symmetry channels are set to match the threshold for <r‘2)>1,2 1.481) 1.451)

"Li—5Li+n. Ana;logous descriptions hold fgr the other 1.48

bound statesthe ‘Li excited state and the twéBe bound - .

state$, with the appropriate thresholds substituted Bgg. L 2E 1 -31.268) -37.7814)  -39.24
The "Be ground and first excited state Jastrow functions (rp) 2.301) 2.331) 2.27

have been treated in a previous development of the varia- Q -3.12) —4.52) —4.06

tional Monte Carlo wave functionj27] as the isospin rota- ;

tions (T3=+1/2 instead of—1/2) of the correspondindLi Be 2'51/2 —20.588) -36.2314) —37.60

shell-model-like wave functions. In this work, thi.i and (ro) 2.411) 2.521)

"Be bound-state Jastrow functions also differ by the choices Q -5.93) —7.53)

of By, for the asymptotic cluster behavior of the wave func-_

tions, which match the cluster breakup thresholds as de’Li* E —-31.3718) -37.5315  -38.77

scribed above in each case. This choic@&gf has the result (riyv? 2.352) 2.352)

that in configurations where theshell nucleons are far from

the s-shell core, the energy is the sum of the Coulomb po-'Be* -29.748) —36.0115) -37.17

E
tential, the kinetic energy contributed by ti&%" , and the (rayv2 2.462) 2.542)
cluster binding energieéwvell reproduced because the core

resembles an alpha particle and thxshell has been con- o _
structed to resemble a trinucléonBecause theqSLS[”] but is significantly more expensive to construct because of

matches the laboratory binding energy for the knoSvn couthe numerical derivatives required for the spin-orbit correla-
ions. In the case of an energy calculation, the derivatives are

lomb potential, the local energies at large particle separationrsLO

match the known binding energies in the mass-7 nuclei. Thi€/S0 needed for the evaluation &fdependent terms in
agreement has been confirmed numerically. AV18, so the cost is only a factor of 2 in computation. How-

In Refs.[27,28) the f{;°three-body correlation of E¢3) ever, for the evalua.tlorézf %_tﬂer e_xpehctatlon values tEe rela-
was a valuable and computationally inexpensive improve:“Ve cost increase 1s=6A. Thus in the p_resent work we
choose to usel; for nonenergy evaluations; this proved

ment to the trial function, but ndi" or fiRP correlations ) . ; .
' jk ijk
could be found that were of any benefit. However, for thed'te adequa_lte_ in studies BLi fogm. factors[30] and of the
six-body radiative capturd(e«,y)°Li [25].

types of wave functions used here, it is found that the corre= The VMC energies and point proton rms radii obtained

lation with W are shown in Table | along with the results of es-
spp_— . ) — _ ) _ sentially exact Green’s function Monte CarllGFMC) cal-
oy = 1 Qul Pl )/ polry) — LJexil qZ(rmHnJ)](’M) culations[27,29,31 and the experimental values. We note
that the underbinding of tha=7 nuclei in the GFMC cal-
wherei,j are labels ofp-shell nucleons and, , are varia-  culation arises from the AV18/UIX model and not the many-
tional parameters, is very usef@s]. It effectively alters the body method; it can be improved by the introduction of more
central pair correlations between pairs phell nucleons sophisticated three-nucleon potentigdg].
from their trinucleonlike forms to be more like the pair cor-  Although the present variational trial functions with the
relations within thes shell when the two particles are close to imposed Coulomb asymptotic correlations produced a varia-
the core. This correlation improves the binding energy bytional improvement in the case dLi, they give approxi-
~0.25 MeV in "Li. mately the same energies as the older shell-model-like cor-
The authors of Refg.27,29 reported energies both for relations of Refs[27,29 for ’Li and 'Be. Unfortunately,
the trial functionW+ of Eq. (1), and for more sophisticated because the variational energies of A 7 bound states are
variational wave function¥,, that add two-body spin-orbit not below those of separated alpha and trinucleon clusters, it
and three-body spin- and isospin-dependent correlation ops possible to lower the energy significantly by making the
erators. Theb, gives improved binding compared H+ in wave functions more diffuse. Therefore, the variational pa-
both the mass-4 and the mass-7 wave functions considere@meters were constrained to give rms charge radii that agree
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10 L i L LULOHIRON, ] ]0 I 1 I 1 IO 1 I all N al 10 L 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
r,, (fm) 1, (fm) r,. (fm) r,. (fm)
FIG. 1. Monte Carlo samples of the radial two-clustérdistri- FIG. 2. Same as Fig. 1 but for radial two-clusteiHe distribu-

bution functions in’Li ground state §"=3/2", left pane) and first  tion functions in’Be bound states.
excited state "= 1/2", right panel with error estimates. The solid
curve is the expected Whittaker-function asymptotic form of themonics, and the radial functior®(r,,) plotted in Figs. 1
overlap, normalized as in Table Il to match the distributions at and 2. At larger ., r,.R(r,,) should be proportional to a
7-10 fm. Whittaker function as described above. The proportionality
) ) ) . constant is the asymptotic normalization const&MNC), de-
refls?r(])]nably with experiment, as seen in Table |. Givergieqc,. We have extracte@, from the overlap functions
¢, the easiest way to constrain the rms radius in thgy 5 |east-squares procedure, matching them to the appropri-
variational procedure is to choose the parameters of {he  ate Whittaker functions. We find that for all the mass-7 wave
correlations betwees- and p-shell nucleons to adjust the fynctions considered her&, becomes asymptotic at,,
probability of finding thep-shell nucleons far from the 7_9 fm. In Table Il we present asymptotic normalization
s-shell core. There was considerable freedom in the specifigyefficients for theA=7 bound states, based on fitting over-
form of these correlations as long as asymptotic properties %ps in the region 7—10 fm as shown in Figs. 1 and 2.
the wave functions were not being tested because of the in-" o values ofC, for the mass-7 nuclei tend to be some-
sensitivity of energy expectation values to the tails of theyhat smaller than the values found in the literat[86,36].
wave functions. However, the form of the correlation in theOnIy in the case of théLi ground state are experimental
a7 channel depends dif}, as seen in Eq7), so the large-  geterminations of th€, of reasonable quality. Brunet al.
cluster-separation parts of the wave function are very sens'[35] find a “world average” of 3.550.27 fm Y2 relying
tive to the choice offs,. (The 12th power arises because mainly on theoretical mode[8,14] and giving less weight to
there are four particles in treshell and three in thp shell,  the partially experimentally based evaluations of Igamov
and thus 43=12 sp pairs. Prior to this work, VMC wave et a|.[36]. For the other states, we rely on the Iganenal.
functions had cluster distributions that dropped by an extraizg] extraction of ANCs from Kajino's RGM calculations
factor of 2 beyond 5 fm, relative to the drop expected on theyjth the MHN potential[14]. These calculations match the
basis of the clusterization arguments given above. The extrigdiative-capture data fotH(«, y)’Li very well in both en-
ization coefficientgsee below for two-cluster breakup were report “nuclear vertex constants,” which differ from ANCs
too small and so were the cross sections that we mmall;by prefactors whose definitions are ambiguous in the litera-
computed from them, by a factor of about 2. The presentyre: the numbers presented in the second row of Table II
wave functions perform more poorly than previous VMC should be used with caution. The present results for the
wave functions on the ordering of the mass-7 bound states ANCs are also subject to correlated uncertainties character-
perennial difficulty for both VMC and GFMC because of the jstic of the Monte Carlo integration method used to compute
close spacing of the stajedut they give larger asymptotic the overlaps, and the uncertainties are therefore difficult to
normalizations at a reasonable cost in binding energy. Thgstimate reliablyas discussed in more detail with regard to
relationship between nuclear sizas measured by quadru- matrix element densities in Sec. Ill A belpw
pole momentsand cross sections for direct radiative cap-  As noted in the Introduction, low-energy direct captures

tures has been noticed before and applied usefully both tgan pe treated to good approximation by considering only
these[14] and other reactions, most notablBe(p,y)®B

[33]. We note that ourS(0) and quadrupole moments for ~ TABLE Il. Asymptotic normalization coefficientéin fm~?)

both mass-7 systems fit the general trends shown in Refor the overlap between mass-7 bound states@ndlusterization,

[17]. computed from the VMC wave functions. Best available estimates
The asymptotic two-cluster behavior of the seven-bodyare presented for comparison on the lower line.

wave functions can be studied by computing the two-clustet

7 Ty 7% 7 TRa*
ar distribution functions{ Ay, 4" .1 .| ¢7) for “Li and its Li L Be Be
analogs for the other seven-body bound states we considermc 3.4+0.1 2.65:0.10 3.55:0.15 2.9:0.1
These functions are described in Rgg4]. They can be ex- Literature 3.55-0.27 3.14 4.79 4.03

pressed in terms of Clebsch-Gordan factors, spherical hat
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cluster separations beyond a few fm, and using only the 360
longer-range parts of the bound- and initial-state wave func-
tions to compute matrix elements. This approach requires the
provision of “spectroscopic factors,” or more precisely, the
ANCs discussed above. Because we have imposed the con-
dition that the large-cluster-separation part of the ground
state match its expected form, it is true that for our cross
section calculations, the VMC method provid€s. How-

ever, it also provides the inner few fm of the wave function,
which requires some model of what is going on inside the
nuclear interaction radius, and may be important for under-
standing differences in the logarithmic derivatives of the 200

Buck 88
Dubovichenko 95
—-— Buck 85

---- Kim A 81
——- KimB 81

330

300 |

S—wave phase shifts (degrees)

270

factor found in various theoretical studies. &

2190 |
B. Scattering states é

- . . 180

The initial-state wave functions are taken to be elastic- :

scattering states of the form i 170 L
a

. _ JL - L
|l//araLS‘JM>_'A{ ¢a7(raT)YLML(raT) 1600 2 4 6 3
E._ (MeV)
m
X H Gij ot S> ] J (19 FIG. 3. Phase shifts fax®*He scattering produced by the poten-
! LSIM tials used to generate th" . Data are taken from Ref§42,43; in

the lower panel,X denote&]”z%+ phase shiftsO denotesJ™

wher rly br indi ngular momentum j ; i
ere curly braces indicate angular momentum couplitg, :§+ phase shifts. Potentials are taken from Rpds-7].

antisymmetrizes between clusterg, is the “He ground
mg - . . . . _ ) ) ) )
state, and)_® is the trinucleon ground state in spin orienta scattering, respectivelyas well as their analogs in 3He

tion ms. . _ . ) i i scattering. The other interesting feature in the scattering of
TheG;; are identity operators if the nucleonandj are in  {he odd partial waves is the apparent hard-sphere behavior of
the same cluster. Otherwise, they are a set of both central aRge phase shifts ifP-wave scattering. This comes about be-

noncentral pair correlation operators that introduce distorgayse the wave functions between the clusters must respect
tions in each cluster under the influence of individual nuclethe  pauli principle by allowing antisymmetrization of

ons from the other cluster. They are derived from solutions,,cleon wave functions between clusters. In Ehevaves,
for nucleon-nucleon correlations in nuclear maft&r], and  thjs takes the form of wave functions that have a single node
become the identity operator at pair separations beyonghose ocation is almost independent of scattering energy,
about 2 fm.(These correlations have been included in theanq it therefore gives rise to phase shifts that look like scat-
definition of the overlap functions shown in Figs. 1 and 2. tering from a hard sphef@8]. (See Figs. 1 and 2, where the
The correlations¢;; are derived phenomenologically. steep dips in absolute values of the cluster distributions at 2
The variational seven-body bound-state wave functions d@m correspond to nodedn the cluster-cluster potentials, this
not give the correct energies with respect to cluster breakupequires that the central term be large and negative so that
so we do not expect to be able to use the variational techthe ground-state wave function has one node. Of course, a
nique to solve for these correlations. Instead, we generate thfore tightly bound “forbidden” state with zero nodes exists
3 as solutions to Schidinger equations from cluster- for such a potential, but it does not allow antisymmetrization
cluster potentials that describe phase shiftsaefH and  of the nucleon wave functions. We note that the requirement
a-°He scattering as scattering of point particles. Because aff a particular nodal structure only models approximately the
the small amount of available laboratory data and the largeffects of the Pauli principle on the intercluster correlations.
amount of work that has already been put into generatingve did not use potentials that enforced the hard-sphere be-
potentials that reproduce them, we take cluster-cluster potemavior with repulsive short-range terrf9].
tials from the literaturé4—7,19. We now point out the main Because of the requirements of the Pauli principle, one
features of these potentials. also expects different potentials to describe the odd- and
We treat all of these models dand many have been even-parity scattering. The even-parity phase shifts are un-
explicitly constructed gsdescriptions of both thert and  fortunately lacking in details that models must matske
a®He systems with appropriate Coulomb potentials andFig. 3), beyond the apparent hard-sphere scattering in the
laboratory masses. Each of the potentials we use to genera®wvave data, corresponding to the Pauli required minimum
the ¢’- has a deep, attractive central term and a spin-orbiof two nodes in the wave functiofi38]. The measured
term. The spin-orbit terms are constrained mainly by theD-wave phase shifts are even worse, being consistent with
spacing between thigs, and P4/, bound states, and between zero(or 180°, with the knowledge that there must be at least
the resonances at 2.16 and 4.21 MeVFg, andFg, at  one node in the wave functipthroughout the region below
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8 MeV for both a-t and a-3He systemg§40-43. This lack Where Z; and Z, are the charges of the two initial-state

of features is particularly unfortunate, in that by far the mostuclei. _ . _ _
important reaction mechanisms for radiative capture in this The dominant reaction mechanism for creation of both the
system ar&1 captures frons andD-wave scattering states. €xcited state and the ground state iskzh (electric dipole
The most stringent tests of any of thewave potentials have transition from anSwave scattering state to a bound state.
been the comparison of their phase shifts with the results ofapture into the excited state is followed immediately by
more elaboratéRGM) theoretical models. electromagnetic decay to the ground state, so the total cross

Finally, we note the difficulty of reproducing the pub- Section of interest for_astrophysms is the sum of 'ghe Cross
lished models, which is due to omitted descriptions of detail$$€Ctions for captures into the two states. At energies above
of the potentials, particularly, handling of the Coulomb po-2about 500 keVE1 capture fromD waves becomes impor-
tential at short range. Rather than guess how to fix up eaclnt. We computed transitions originating from scattering
potential, we restrict attention to potentials that allow goodstates with orbital angular momentuin=0,1,2, and 3 via
descriptions of the low-energy scattering on the firstwith ~ M1M2,E1E2, andE3 transitions and found that up to the
no short-range cutoff in the LCoulomb term unless explic- 0-1% level, only E1 captures originating fromS- and
itly described by the potential's authorsRelatively small ~D-wave scattering states matter at energies below 1.5 MeV.
differences in the cluster-cluster potentials are directly con- With the exception of th&1 term, all RMEs were com-
nected to the size of the scattering wave function at energigduted in the standard long-wavelength approximation
less than 1 MeV and cluster separations less than 20 fr{LWA), keeping only the lowest-order term in photon wave-
resulting directly in differences in the normalization of our Number of the modified spherical Bessel functions appearing
computed capture cross sections from one potential to thé the RME integrals. The LWA is valid to reasonable accu-
next. However, it is possible to eliminate the worst potentialgacy because at the low energies under consideration (
on the basis of the low-energy phase shifts; potentials that1 MeV), the ratio of system size to photon wavelength is
underpredict the phase shifts also produce radiative captutess than 10 fm/200 fm0.05.
cross sections that are too low by as much as a factor of 2, In a previous study25], we developed code to examine
relative to those generated from other cluster-cluster poterthe isospin-forbidderE1 transition ind(«,y)®Li. We have
tials. Potentials that were created for use in orthogonal clusapplied this code to compute corrections to the LWA for the
ter modelsas opposed to simple cluster modeigre elimi-  E1 transitions under consideration here. An examination of
nated from application to our problem on this criterion. these corrections for the mass-7 system is, in principle, of
interest for the problem of extrapolating cross sections to low
energies. However, we find that all but one of them provide
contributions of less than 0.05% of the total cross section.

The cross sections were computed by a multipole expanSee Ref[25] for a list and detailed discussion of the cor-
sion of the electromagnetic current operdidd], rections we applied, which extend to the third orderjih

We do not actually compute the largest correction, which is

Ill. OPERATORS

87 « q 1513 ) the “center-of-energy” correction. This correction arises be-
o(Egm)= >, 23510 1ram [IE ™ (a)] cause potentials and kinetic energies should be included in
LS4l <t Urel 17 41My7 the definition of the center-of-momentum frame, but have
+|M:-S‘1Jf(q)|2], (16)  hot been(45]. The center-of-energy correction becomes im-

portant when the leading-order LWA operator vanishes, as in
d(a,y)®Li, but it should amount to only2.4% of theE1

a7 relative velocity,m- is the mass of the final state, and cross section in°H(a, y)"Li and +3.1% of theE1 cross
Y, m7 ’ section in *He(a,y)'Be. We did not compute center-of-

LSJ3J LSJ3J .

E; V() and M '(4) are the reduced matrix elements g o4y correctiongor include an estimate of them in the
(RMEs) of the electric and magnetic multipole operatorsesyits presented belgvbecause of the extra computation
with multipolarity | connecting the scat_tering states in Chan'necessary to find energies during the capture calculation.
nelLSJ to bound states ofLi or "Be with angular momen- Their omission is not serious becauds their effect is to

tum J. The center-of-mass energy of the emitted photon ighange the normalization, not the energy dependence of the
given by E1 cross section(2) our model calculation is only accurate

to about 5-10% at best, arid) the above estimates of the

wherea is the fine structure constank & e?/%.c), v, is the

\/ size of the effect should be quite accurate, being based only
q=my =1+ 1+ m—7(mT+ My =My +Ecm) on the differences between using nuclear masses and using
integer multiples of the mean nucleon mass in the factor
=mM,+tm,—m;+Ecm, 17 [(Z,m;—Z;m,)/(m;+m,)]? in the LWA cross section.

wherem_, m,, andm; are the rest masses of the trinucleon, ] ] )
“He, and the appropriatéLi or "Be state, respectively. The A. Matrix element integration
astrophysicak factor is then related to the cross section via  Actual computation of the matrix elements was performed
with a modified version of the code described in R&5],
S(Ecm) =Ecm 0(Ecm) €Xp(2Z1Zymalv,), (18 which is itself a modified version of a code developed to
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compute energies and other properties of light nU@#] for ~ samples at fixed cluster separation. In the mass-6 problem, it
variational calculations. The method used to integrate ovewas straightforward to run the Monte Carlo integration of the
nucleon configurations is the Metropolis Monte Carlo algo-RMEs until the densities had “converged” to the expected
rithm, with a weight function proportional to the bound-stateasymptotic forms at large cluster separation. This required
wave function involved in the computed transition. As dis-about 2x 1(° total configurations for a given RME. AA
cussed below, this weight function was chosen to reflect in=7, the spin-isospin space is larger so the code is slower by
general detail the form of the matrix element integrands, anc factor of about 10, and it was only practical to obtaiff 10
to obtain significant numbers of Monte Carlo samples over aamples for each RME with available computing resources.
broad range of cluster separations. The final calculation corHowever, since the configuration space gains three dimen-
sisted of 16 samples for each transition. sions with the addition of a particle, 4Gamples do not
We have applied the approach of splitting the calculatiorprovide as thorough a sample of the configuration space at
into energy-dependent and energy-independent parts, as imass 7 as at mass 6. The result is at best a few-percent
Ref.[46], so that the reduced matrix elements of Ef) are  measure of the asymptotic normalization at 7-10 fm. Many

written samples are obtained at larger cluster separation with the
new weighting scheme, but the samples beyond 15 fm ap-
LSy = V2Jit1 (19 Pear to have correlated noise. This is presumably because the
' (JiM;,IN|Ism;) samples in question correspond to only a few excursions of

the sampling Markov chain into the region of large cluster
separation, and are therefore not very independent of each
Th(g)A other. They tend to be either mostly high or mostly low
relative to the asymptotic forms explicitly built into the wave
functions. See Fig. 4 for an illustration of these difficulties. A
zpaszS>} much larger sampléy a factor of 1) would be expected to
LSIM; exhibit much less of this sort of correlated noise, but is pro-
hibited by the large amount of computer time it would re-
(20 quire.

The matrix elements were therefore integrated out to 7 fm
and computed using photon polarizatios + 1 for the mul-  using the Monte Carlo results for the integrand of Etf);
tipole operatorsT;,(q). The & function is applied by accu- integration beyond 7 fm was carried out using the known
mulating the Monte Carlo integral in radial bins of thicknessasymptotic forms of the matrix element densities, normalized
0.25 fm. The final integration overis performed by insert- to the Monte Carlo output by least-squares fitting at 7—-10
ing the appropriate dependences on photon energy in eadf. This range was arrived at by comparing results for the
term (since the LWA expansion is in powers of energy, thisANC of the “Li ground state arising from two different
dependence may be taken out of the integeaid computing  weighting schemes and varying the numbers of samples.
¢.- at each energy. This allows the time-consuming MonteReasonably consistent agreement was found by fitting at
Carlo integration to be performed only once for each partiai’—10 fm in all cases. The accuracy in the cross section then
wave and operator, so that computation of RMEs for manydeépends on how accurately the ANCs can be determined in
energies is relatively inexpensive in computer time. Afterthis region.
initially setting up the code and checking that selection rules
were satisfied, we did not explicitty compute RMEs for IV. CROSS SECTIONS
parity-forbidden operators. 3 _

At cluster separations beyond about 10 fm, the RME den- A “Hla,)'Li
sities were subject to considerable noise in the Monte Carlo The computeds factor for *H(«,y)’Li is shown broken
sampling. This is because while Monte Carlo weightingdown into contributions from various terms of E@.6) in
schemes based on the ground state give good sampling alofgg. 5, and in comparison with laboratory data in Fig. 6. The
directions other than the cluster separation in thedominant processes are obvioudhl captures with large
3A-dimensional configuration space, they provide smallcontributions from captures into both the ground and excited
numbers of samples at largg, (due to exponential decay of states. Contributions from other partial waves and multipole
the wave function at large distange®/ MC work usually  operators are not present above the 1% level. Contributions
uses weighting based on the inner product in spin-isospifrom higher-order LWA corrections to thEl operator are
space of a simplified bound state with itself. Such weightingess than 0.02%. Our calculations are therefore limited in
is good for minimizing Monte Carlo variance of integrands accuracy only by(1) the accuracy of the(bound- and
that resemble the bound-state probability density closelyscattering-stajewave functions and2) Monte Carlo statis-
such as energies, but it does not provide enough samples fits.
the asymptotic region of the wave function to do low-energy The present calculation is the result of sampling® 10
direct-capture calculations. Our previous pa#5] used the points in the seven-particle configuration space. Formal error
square root of the usual weight function, extending theestimation on the resulting cross sections is difficult because
Monte Carlo sampling out to large cluster separations, but all 35 partitions of the seven nucleons into alpha and triton
the expense of greater sampling noise for a fixed number aflusters were computed for each configuration. This saves

< dxx2¢g;;<x><

x[ax—rafw[“(?m)l} Gy
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oo = .y * I FIG. 4. Ratios of the computed
- x o x . . .
£ x Y x radial overlap functions of Figs. 1
0 P = B "’%,,:‘ and 2 to their imposed asymptotic
forms based on fOparticle con-
o . . A ) ) ) figurations. These ratios should be

equal to the asymptotic normaliza-
tion constant for the appropriate
wave function beyond about 7 fm.
Superimposed on the ratios for the
Li excited state is the corre-
sponding distribution of Monte

Carlo samples, essentially identi-
cal for all four overlap functions.

N
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computation time and enforces antisymmetry of the initialThis last uncertainty amounts to about 3% in the cross
state exactly; it also introduces correlations between valuesection.
of the operator densitigsntegrands of Eq(19)] at different We take the best indications of the Monte Carlo uncer-
cluster separations. The uncertainties in different transitiongainty to be the formal uncertainties on the asymptotic nor-
and partial waves are also correlated because they are baswdlizations of the Monte Carlo matrix element densities,
on the same random walk of particle configurations. There isvhich we used to compute matrix element contributions be-
also an uncertainty from the wave function normalizationsyond cluster separations of 7 fm. The asymptotic forms of
because they are also derived from Monte Carlo integrationghe matrix element densities are the Whittaker-function
asymptotic forms discussed above, multiplied by the radial

107 p———— : . .
S ’ 0.1
10
10 0.08 [
s s
> 10 ©
2 > 0.06
4 10° 4
& =
71 g 0.04 | 1
107 i’
107 0.02 1
10" LA 0 - : - : .
0 0.2 04 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
E_,(MeV) E,. (MeV)
FIG. 5. Low-energysS factor for *H(a, ) Li (thick solid ling FIG. 6. Same as Fig. 5, but showing only tofffactors for

and its breakdown into contributions from various partial strengthsseveral different potentials used to generate cluster correlation func-
computed using potentigh of Kim et al. [5]. Transitions to the tions q&fﬁ: dot-dashed and dotted, potenti&isand B, respectively
ground state are shown as solid lines and transitions to the excitesf Kim et al. [5]; short-dashed, from Dubovichenko and
state as dashed lines. Labels indicate the initial state and additionBlzhazairov-Kakhramanovy4]; solid, from Buck et al. [6]; and

symbols indicate multipole operator: no symbgll; O, E2; X, long-dashed, from Buck and Merchant]. Data are from Brune
M1; O, M2; and A, order q3 spin correction toE1 operator et al.[20] and share a common 6% normalization uncertaintyt
(LWAZ2 of Ref. [25)). shown.
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dependences of the electromagnetic multipole operators. The 0.6
normalizations were fitted to the matrix element densities at

cluster separations of 7-10 fm. Using fitted asymptotic ¢ 4 )
forms amounts to treating a large part of the matrix element :
as an external direct capture and it fixes two problems. First,
it removes the need for large numbers of Monte Carlo
samples in the remote tails of the wave function. Second, the
asymptotic normalizations are found by a weighted least-
squares procedure and formal error estimates on these nor-

j=1
'S
)
i
-
-
-
-
-
-
-
°
-
-
s

t(c,y)'Li branching ratio
o
o

malizations are possible. In practice, the correlations be- o

tween matrix element densities produce reducgd,

significantly less than unity. A common approach when con- 0 ; ; ; . i
fronted with such a problem in experimental data is to as- 0 0204 06 08 1 12

sume that uncertainties have been overestimated and to re- Een MeV)

dt?ce formal un_certa'm'es ac_co_rdlngly. We _have not dor_‘e FIG. 7. Computed ratio of the cross section for capture into the
this, and we arrive at uncertainties of approximately 10% ineycited state to that for capture into the ground state for
the cross section based on the formal error estim@t®se- (4, ,)7Li. Symbols are the same as in Fig. 6 and the data share
sponding closely to the sizes of ANC errors in Tablg Il 5 normalization uncertainty of 4%not shown.

More detailed analysis is problematic and is not called for

because the 10% estimate is already larger than any Othg&amined. After normalizing the computed cross section

contribution to the error budget. . . (with cluster correlations computed from poten#abf Kim
The results themselves are best characterized in threéaT al.[5]) to match the Brune data, we obtainyaof 38.7 for

ways. 16 degrees of freedom. A significantly better fit results if the

(1) Normalization. Our results are lower than the data ofh. : .
. ighest three points in energyhere D-wave capture be-
— 0, -
Bruneet al.[20] by 0—20 %, depending on the cluster poten comes importantare excluded. The residuals 6f1.8% to

tial. Although other data exigt7—51), those of Bruneet al. +8.5% compare favorably with other theoretical calcula-

are much more precise and permit the best test of our resultﬁbns but the energy dependence of the calculation is sys-

0 e '
Those data.sha.re a common 6% n_ormfahzatlon ur]CertalmxfematicalIy shallower than that of the data at the highest-
not shown in Fig 6. The systematic discrepancy betwee nergy points. Our calculation of the factor gives a

some of our results a_nd the data is probably small enough tfc))garithmic derivative aE=0 of —0.972 MeV '—about
ascribe to the combined uncertainties of the Monte Carlo

. . : : ~ =, equal to that found by Mohet al.[8], but half of that found
integration and of the data. Taking the branching ratio tcnm other theoretical studief?,14,17 and about 2/3 of that
have its experimental value d®=0.453, the compute® o

factors for transitions to the ground state match the measuret ggested in a recent compilation of astrophysical reaction

low-energySfactors, while those for the excited state do not." tes[52].

The normalization is affected significantly by the choice of

potential used to generate the intercluster correlatigbﬂ[s

for the scattering states. By applying five different potentials The low-energyS factor computed from the Kim A

from the literature as described above, we obtain a variatiosluster-cluster potential fotHe(«,y) 'Be is shown in Fig. 8,

of =5% in the S(0) (total range for the five potentials

about a mean of 0.90 keV b—a full range equal in size to the 10°

Monte Carlo uncertainty. Summarizing our results, we obtain

using the intercluster potentialof Kim et al.[5] (the best fit 10"

to the Swave phase shifis S(0)=0.095 keV b, similar to

other estimates found in the literature. 107 L
(2) Branching ratio. The branching rati® defined as the

ratio of the cross section for capture into the excited state to

that for the ground state, is shown in comparison with the

B. *He(a,y)'Be

F——¢—
e

*—7

S(E) (keV b)
S

Brune data in Fig. 7. A weighted least-squares normalization (7% Lassesmtpesmemndioonane e c e ]
of the calculation to the laboratory data shows that our cal-

culation of R is lower than the data by 15%, which can be 10° |

combined with the results above to infer that the excited-

state ANC is low by 8% within the range of the Monte Carlo 10° L : : eSS =
sampling error. The energy dependence of the branching ra- 0 03 IE (Me\})'s 2 23

tio matches the data with g2 of 26.0 for 15 degrees of
freedom, about as well as the straight line fits of Brenal. FIG. 8. Low-energys factor for 3He(a, y) "Be (thick solid line

(3) Energy dependence. The energy dependence of thgnd its breakdown into contributions from various partial strengths,
3H(a,y) Li Sfactor at low energy is almost completely in- computed using potential of Kim et al.[5]. Symbols are as in Fig.
dependent of cluster-cluster potential for the five potentials.
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0.7 TABLE lll. Comparison of energy dependence of calculagd
factors with laboratory data after renormalizing the compuged
06 r factor to minimizey?. v denotes number of degrees of freedom and
an estimate of systematic normalization uncertainty was subtracted
05 T 44 from the error estimates of the pointas discussed in Refl])
2 04 before performing this analysis.
&
3 03 Data set Xl v
wn
05 Krawinkel et al. [54] 0.364 37
Parker and Kavanadlb6] 0.917 37
0.1 Hilgemeieret al. [53] 0.698 8
Nagataniet al. [55] 0.450 6
0 ; ; ; : ;
0 0.5 1 1.5 9) 2.5

E,, McV)
scattering data, we obtain a small variationSf0) about a

FIG. 9. Same as Fig. 8 but showing only totalfactors for  mean 0fS(0)=0.40 keVb. Using the potential that best
several different potentials used to generate cluster correlation fungnatches the low-energ§wave scatteringpotential A of
tions ¢,x with symbols as in Fig. 6. Data are from Ref§3-58.  kim et al. [5]), we obtainS(0)=0.40 keV b. Although this
Symbols for the data are the same as in [R&fwith the exception is closer to matching the lower numbers found in capture
of Refs.[55] (L) and[57] (©) . photon experiments than the delayed activity experiments, it

is not a close match in normalization to any of the experi-
along with the contributions of individual terms of E46).  mental results. Our results are therefore not useful for ad-
Total Sfactors from five cluster-cluster potentials are showndressing possible systematic problems in the data.
along with the laboratory data in Fig. 9. The computed (2) Branching ratio. It is seen from the branching ratios in
branching ratios are shown along with the correspondingrig. 10 that our calculation is in reasonable agreement with
data in Fig. 10. The discussions of small contributions to thehe laboratory data with regard to relative strengths of tran-
S factor and of the precision of the results fiff(a,y)’Li  sitions to the ground and first excited states’&e. This
above also apply here, again with a Monte Carlo error estisuggests that the ANCs of the VMC wave functions for both
mate of about 10% inSfactor normalization. We again states are too small, and by about the same factor in each
break down the results fofHe(a, ) 'Be into normalization, case. Using the results f@&factor normalization above, we
branching ratio, and energy dependence. conclude that this factor is in the range 5—-25 %.

(1) Normalization. OuiSfactors are more than 10% lower (3) Energy dependence. We renormalized our results to
than the lowest data séafter applying the renormalization best fit each of the larger data sets separately and computed
of the Krawinkel et al. data sef54] recommended by Hilge- 2 statistics in each case to determine the goodness of fit.
meier et al. [53]) and nearly a factor of 2 lower than the The results are shown in Table IIl and indicate general agree-
highest data setfnote that this includes the data of Volk ment. For the logarithmic derivative &(E) at E=0, we
et al. [59], which are not shown because their results wereyhtain —0.57 MeV ™! in reasonable agreement with other
published only as extrapolate®(0) valued. By applying  estimates in the literatur§7,14,17,52, where published
five different phenomenological cluster-cluster potentialsmodels fall in the range-0.50 to—0.72. It is about equal to
that are not in disagreement with the low-energy elasticthe value presently used in solar neutrino wpk

cesses’H(a,y)'Li and 3He(«, y) "Be that agree reasonably
well with experiment.

This work indicates no serious problems in the reaction
rates presently used in astrophysical models. In fact, the most
important implication of these results for astrophysics is
probably that the previous understanding of these reactions
remains essentially unchallenged. For example, using the

FIG. 10. Computed ratio of the cross section for capture into thédresent calculation to extrapolate the Robertsbal. activ-
excited state to that for capture into the ground state fority measuremenf57] of the S factor from 0.9 MeV to O
%He(a, y)'Be. Symbols are the same as in Fig. 9. MeV, we obtain essentially the same result as with the en-

=
%)

0.6 - ? T T g y V. DISCUSSION

05 | { ] We have carried out the calculation of low-eneigfac-
2 *‘Jw H& * * J tors for the processe¥H(«,y)’Li and *He(a, v) ‘Be based
204l » } Hvl l +H_ ___‘_lj___’_”_,__‘_ on realistic nucleon-nucleon potentials. Seven-body wave
'%E) H T ' ' 'T functions for these potentials, constructed by the VMC
§043 1 { method and constrained to have the correct asymptotic
A forms, produceSfactor energy dependences for the pro-
3
A

o
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ergy dependence currently used in the standard solar modg\e of the *H(«,y)’Li Sfactor at zero energy.
[3]. For big-bang nucleosynthesis, there is no low-energy Regarding the present calculation as an application of re-
extrapolation problem. The most useful result that a theoretalistic potentials to radiative capture at mass 7, it has been
ical study could provide for cosmology would therefore besuccessful and has taught important lessons about the role of
tighter constraints on cross section normalizations than thﬁhefsp correlations that were not apparent in previous VMC
current body of experimental data provides. The present caktudies. This work clears the way for more refined models of
culations have not achieved that goal but future firstthese radiative captures based on realistic potentials. Specific
principles calculations based on realistic nucleon-nucleon inimprovements that will be possible in the near future include
teractions might. the use of improved three-body potentials now in develop-
The only serious problem with the results presented hergnent[32] and the use of essentially exact wave functions
is the low normalization of theS factors and its principal derived by the Green’s function Monte Carlo technique for
cause is probably easy to identify. Because most of the crogse seven-body bound states. We note that the application of
section arises at largex10 fm) cluster separations, the low GFMC will require new wave functions, starting from VMC
normalizations most likely arise from the form of the seven-wave functions of the type used here to get the asymptotic
body bound states at large separations of#is@ell nucleons  forms correct. In the more distant future, it should be pos-
from thes-shell core. Part of the discrepancy may arise fromsible to perform the whole calculation self-consistently, con-
the correlatiorf,. The correlation betweem and clusters  structing scattering wave functions from the potentials in a
in the bound states is proportional to the 12th powefr,gso  way similar to that used for the bound-state wave functions.
that the long-range correlation between clusters is very sen/MC-based work would also profit by a more systematic
sitive to the choice ofs,. However, it is hard to see how the effort to produce a Monte Carlo weighting scheme well-
fsp used in this study could affect the wave function beyondsuited to computing the sorts of matrix elements encountered
about 5 fm cluster separation. In the case®df{a,y)’Li, a  in direct-capture calculations. Prospects for significant im-
more likely explanation is that the Monte Carlo uncertaintyprovement on this initial investigation are very good.
has been underestimated, an@eohibitively) long integra-
tion would “converge” on values in better agreement with ACKNOWLEDGMENTS
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