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In both the Sun and the early universe, the 3He(α,γ)7Be reaction plays a key role. The rate of this
reaction is the least certain nuclear input needed to calculate both the primordial 7Li abundance
in big bang nucleosynthesis (BBN) and the solar neutrino flux. Taking advantage of several recent
highly precise experiments, we analyse modern 3He(α,γ)7Be data using a robust and minimally
model dependent approach capable of handling discrepant data sets dominated by systematic rather
than statistical errors. We find S34(0) = 0.580 ± 0.043(0.054) keV b at the 68.3(95.4)% confidence
level.

PACS numbers: 25.70.De, 26.20.+f, 26.65.+t, 27.20.+n, 07.05.Kf

I. INTRODUCTION

As the nearest star, the Sun is the best studied. Models predict the neutrino fluxes produced by the radioactive
decay of 7Be and 8B in the solar core [1]. Over the last decade, various neutrino observatories have measured the
flux and flavour composition of the 8B neutrinos from the Sun [2, 3], allowing constraints to be placed on neutrino
mixing angles and mass-squared differences. New experiments sensitive to the 7Be flux [4] are ongoing. Both the 7Be
and 8B neutrino flux predictions are nearly directly proportional to the astrophysical S factor for the 3He(α, γ)7Be
reaction, S34, at a relative energy of ∼ 20 keV; in fact, φν(7Be) ∝ S34(0)0.86 and φν(8B) ∝ S34(0)0.81 [5, 6]. This
sensitivity allowed S34 to be constrained using the measured solar neutrino fluxes and laboratory measurements of
S17, the astrophysical S factor for the 7Be(p, γ)8B reaction [7]. The 3He(α,γ)7Be reaction is important not only in
determining the solar neutrino fluxes, but also in other astrophysical environs.

Primordial nucleosynthesis has been a robust prediction of hot big bang cosmology for over 40 years [8–12]. The
theory explains the large universal abundance of 4He as well as the origin of trace quantities of the light isotopes D,
3He, and 7Li. It is a theory with three free parameters, the cosmic baryon density, the neutron mean lifetime, and
the number of active light neutrino species. Via fits to the standard electroweak theory, measurements at the Large
Electron Positron Collider have determined the number of active light neutrino species to be Nν = 2.984± 0.008 [13],
justifying the choice Nν = 3. Many experiments have been performed to determine the mean lifetime of the neutron;
the current Particle Data Group recommendation is τn = 885.7 ± 0.8 sec [13]. The cosmic baryon density has been
determined by analysing anisotropies in the cosmic microwave background radiation; the latest WMAP satellite
results are Ωbh

2 = 0.02273 ± 0.00062 [14], where Ωb is the universal mean density of baryons expressed in units
of the critical density required to close the universe and the Hubble constant is 100h km sec−1 Mpc−1. Using the
Friedmann-Robertson-Walker cosmological model, the standard model of particle physics, and nuclear reaction rates
one can therefore predict the light element abundances very precisely and compare directly with primordial abundance
estimates based on observations of the oldest systems.

When observations of the Li abundances in the oldest stars in the Milky Way were compared with the predictions
of BBN, a 2-3σ discrepancy was found [15]. Several possibilities exist for resolving this discrepancy, including particle
physics beyond the standard model, improvements to the stellar models used to interpret astronomical observations,
better approximations of the matter distribution in relativistic cosmology [16, 17], modifications of gravitational
theory (e.g., [18]), and improved nuclear reaction rates. In this paper, we examine the last possibility. Lithium is
made as beryllium in the early universe via the 3He(α, γ)7Be reaction. Of course the rates of reactions that destroy
7Be must be known in addition to those that create it. Recent studies of the 7Be(d, p)2α reaction cross section suggest
that this reaction is not the source of the discrepancy [19, 20]. The primordial 7Li abundance prediction is nearly
directly proportional to the 3He(α, γ)7Be cross section at a relative energy of ∼ 300 keV; the primordial abundance
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ratio 7Li/H ∝ S0.96
34 [15]. On account of the obvious importance of this reaction for both solar neutrinos and BBN, it

has been subjected to extensive theoretical as well as experimental study.
Since the first potential model calculations [21, 22], many theoretical studies of the 3He(α, γ)7Be reaction have

been performed [23–31]. Examining the potential models, a hard sphere potential yields S34(0) = 0.47 keV b and
S′(0)/S(0) = −0.60 MeV−1 [22], while a more physical potential yields S34(0) = 0.46 keV b and S′(0)/S(0) = −0.79
MeV−1 [31]. Though the zero-energy S factor values are in good agreement, the shapes as measured by the logarithmic
derivatives are quite different. Similarly, in the single channel resonating group method (RGM) calculations of Ref.
[25], S(0) varies widely with the nucleon-nucleon potential. The most commonly used fitting function for experimental
data is the microscopic cluster model calculation of Kajino [23, 25, 27]. Ref. [25] reports S34(0) = 0.50 ± 0.03 keV b
and S′(0)/S(0) = −0.548 ± 0.033 MeV−1. The estimated theoretical uncertainty of ±6% [25] on both of these
quantities must be considered when fitting this predicted shape to experimental data. The commonly cited potential
model and microscopic cluster model calculations are shown in Figure 1. Another RGM calculation that includes the
6Li+p configuration in addition to the 3He+α configuration [30] finds that the energy dependence of the astrophysical
S factor is not uniquely determined and yields a range of S′(0)/S(0) from −0.70 to −0.50 MeV−1. Analyses that
renormalize theoretically calculated S factors must include an additional systematic error in order to account for
uncertainties in the true shape of the S factor when extrapolating to zero energy. It would be desirable to use the
data themselves to determine the shape of the S factor.

In this paper, we evaluate the modern prompt capture γ ray and induced 7Be activity measurements of the
3He(α, γ)7Be cross section in a nearly model-independent way. We use well known physics to constrain the en-
ergy dependence of the low energy cross section and disuss the treatment of systematic errors and their propagation
into the final uncertainties, providing reliable values for S34 at energies relevant to solar neutrino production and
BBN with realistic uncertainties derived from Markov Chain Monte Carlo calculations.

II. MODERN DATA

In the past 50 years, there have been many experimental efforts to measure the 3He(α, γ)7Be cross section, including
those of Holmgren and Johnston [32], Parker and Kavanagh [33], Nagatani et al. [34], Kräwinkel et al. [35], Robertson
et al. [36], Volk et al. [37], Alexander et al. [38], Osborne et al [39], and Hilgemeier et al. [40]. With the exception of
Ref. [32], these measurements were all considered in the Adelberger et al. review [6], which recommended S34(0) =
0.53 ± 0.05 keV b. This review noted a 2.5σ discrepancy between the weighted averages of the measurements based
on prompt γ ray detection and those based on induced 7Be activity. At the time of this evaluation, we have the
benefit of several subsequent, independent 7Be activity measurements as well as two prompt γ ray detection studies.
These new measurements employed improved detectors, better background suppression, and underground accelerators.
Moreover, they were published almost two decades after the last of the measurements considered in Ref. [6]. We opt
therefore to restrict this analysis to modern experimental data, namely the recent measurements of Bemmerer et al.

[41], Brown et al. [42], Confortola et al. [43], Gyürky et al. [44], and Nara Singh et al. [45]. As the data of Ref. [41]
are included in the data of Ref. [44], we will refer henceforth only to the latter. The data considered here are shown
in Table I.

III. EVALUATION

Several papers have discussed the energy dependence of nonresonant low energy radiative capture cross sections
[21, 31, 46]. When reactions are dominated by external capture, the astrophysical S factor exhibits a subthreshold
pole of the form

S(E) ∝
1

E + Q
, (1)

where E is the relative energy and Q is the energy released by the reaction. This pole affects the convergence of the
usual Maclaurin series expansions and the shape of cross sections at low energy, resulting in an upturn as E → 0. If one
wants better convergence, this subthreshold pole must be taken into account, expanding the quantity (E + Q)S(E).

As shown in Ref. [47], a completely model independent approach such as a Maclaurin series expansion does not
work well when there are large discrepancies among data sets. In such cases one requires a physical constraint on
the shape of the S factor. Since there have been many studies of the 3He(α, γ)7Be reaction, we can constrain the
form of the fitting function beyond just a Maclaurin series using known physics. For instance, this radiative capture
is dominated by E1 transitions at low energies [22]. Therefore, given the spin of nuclei involved, only ℓ = 0 and ℓ = 2
incoming partial waves contribute significantly to the external capture.
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TABLE I: The modern data used in this evaluation. Shown are the S factors for capture into the ground (S0) and first excited
state (S1) individually, or the sum of the two contributions (Stot). Relative systematic errors for prompt measurements (δp),
activity measurements (δa), and those that are common to the two methods (δc) are shown separately.

Brown et al. [42]

δp = 0.0387a δa = 0.030 δc = 0.027

Prompt

E = 0.3274 S
(p)
0 = 0.349 ± 0.012 S

(p)
1 = 0.143 ± 0.007

E = 0.4260 S
(p)
0 = 0.311 ± 0.004 S

(p)
1 = 0.126 ± 0.002

E = 0.5180 S
(p)
0 = 0.302 ± 0.005 S

(p)
1 = 0.119 ± 0.002

E = 0.5815 S
(p)
0 = 0.280 ± 0.007 S

(p)
1 = 0.118 ± 0.002

E = 0.7024 S
(p)
0 = 0.268 ± 0.005 S

(p)
1 = 0.114 ± 0.002

E = 0.7968 S
(p)
0 = 0.260 ± 0.002 S

(p)
1 = 0.111 ± 0.001

E = 1.2337 S
(p)
0 = 0.227 ± 0.002 S

(p)
1 = 0.100 ± 0.001

E = 1.2347 S
(p)
0 = 0.236 ± 0.002 S

(p)
1 = 0.104 ± 0.001

Activity

E = 0.3274 S
(a)
tot = 0.495 ± 0.015

E = 0.4260 S
(a)
tot = 0.458 ± 0.010

E = 0.5180 S
(a)
tot = 0.440 ± 0.010

E = 0.5815 S
(a)
tot = 0.400 ± 0.011

E = 0.7024 S
(a)
tot = 0.375 ± 0.010

E = 0.7968 S
(a)
tot = 0.363 ± 0.007

E = 1.2337 S
(a)
tot = 0.330 ± 0.006

E = 1.2347 S
(a)
tot = 0.324 ± 0.006

Confortola et al. [43]

δp = 0.038 δa = 0.032 δc = 0.023

Prompt

E = 0.0933 S
(p)
0 = 0.3819 ± 0.0170 S

(p)
1 = 0.1451 ± 0.0058

E = 0.1061 S
(p)
0 = 0.3661 ± 0.0132 S

(p)
1 = 0.1519 ± 0.0046

E = 0.1701 S
(p)
0 = 0.3599 ± 0.0076 S

(p)
1 = 0.1501 ± 0.0026

Activity

E = 0.0929 S
(a)
tot = 0.534 ± 0.016

E = 0.1057 S
(a)
tot = 0.493 ± 0.015

E = 0.1695 S
(a)
tot = 0.507 ± 0.010

Gyürky et al. [44]

δa = 0.031

Activity

E = 0.1056 S
(a)
tot = 0.516(1 ± 0.052)

E = 0.1265 S
(a)
tot = 0.514(1 ± 0.020)

E = 0.1477 S
(a)
tot = 0.499(1 ± 0.017)

E = 0.1689 S
(a)
tot = 0.482(1 ± 0.020)

Nara Singh et al. [45]

δa = 0.0363b

Activity

E = 0.4200 S
(a)
tot = 0.420 ± 0.014

E = 0.5060 S
(a)
tot = 0.379 ± 0.015

E = 0.6145 S
(a)
tot = 0.362 ± 0.010

E = 0.9500 S
(a)
tot = 0.316 ± 0.006

aThis combines the 3.5% systematic uncertainty with the 1% varying systematic and 1.3% energy uncertainties.
bThe effective systematic error is derived from the energy dependent systematic errors with δ−2

eff
=

P

i δ−2
i /N .
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FIG. 1: (Color online) (a) Theoretical S34 calculations of Tombrello and Parker [22] (solid) and of Kajino [27] (dashed) are
plotted relative to their values at E = 0. (b) The deviation relative to the Kajino calculation. In both plots, the dotted
lines delineate the uncertainty due to the ± 6% theoretical uncertainty in the zero-energy S factor and logarithmic derivative
estimated in Ref. [25].

Following Ref. [48], we expand the remaining terms accounting for Coulomb and pole effects and find

S(E) =
Q

E + Q

[

s0(1 + aE + · · · )2 + s2(1 + 4π2E/EG)(1 + 16π2E/EG)(1 + cE + · · · )2
]

. (2)

Here, EG is the Gamow energy given numerically by EG = 0.97913Z2
1Z

2
2A MeV where Z1e and Z2e are the charges

of the reactants and A their reduced mass in atomic mass units. For S34, EG = 26.9437 MeV. s0 and s2 are the
amplitudes of the s and d wave E1 capture components respectively, whilst the terms with the coefficients a and c are



5

higher order contributions. At leading order (∝ E0) inside the square brackets, only s0 contributes, with s2, a, c ≡ 0.
At next-to-leading order (∝ E2), s2 and a are also finite. This ordering scheme does not preclude c from being finite,
but it does allow us systematic control over which terms to include given the data.

The 3He(α, γ)7Be reaction can proceed via capture into either of the spin-orbit partners, the 7Be ground state
(Q = 1.5861 MeV) and the first excited state at 429 keV (Q = 1.1570 MeV). When determining best fits and zero-
energy extrapolations, one must bear this in mind and use experiments sensitive to not only the total capture cross
section, but also the partial capture cross sections into the ground and first excited states. We are therefore left with
3 parameters for the S factor fits for each capture (i.e. ground or excited state).

In general, modern experiments are dominated by systematic errors. As such, standard statistical treatments used
to combine data from different, possibly discrepant experiments are not valid. The traditional method of scaling the
error in the mean by

√

χ2/ν, where ν is the number of degrees of freedom, has been shown to poorly estimate the
error when systematics dominate the error budget [15, 49, 50]. Such treatments lead to an underestimation of the
true uncertainties. We require a more reliable prescription for this analysis.

If one assumes that the dominant systematic error is the overall normalization error, several techniques can be used
to estimate the true uncertainty. It was shown in Ref. [15] that a simple robust measure of systematic uncertainty is
determined by the weighted dispersion of the fit. In another approach, d’Agostini [49] suggests floating the normaliza-
tions of individual experiments weighted by their uncertainties as a way of compensating for the shortcomings of the
standard statistical approach. This method works well, and agrees with the error estimate of Ref. [15]. In the modern
era, the size of systematic errors is often greater than or equal to the size of statistical errors. Hence systematic errors
must be treated properly in order to obtain a reliable central value and uncertainties .

We use a χ2 minimization procedure to determine the parameters of our calculated S34 that best fit the data. We
break up the χ2 into two components, χ2

data and χ2
norm, such that χ2 = χ2

data + χ2
norm. Thus for a single data set n,

χ2
data(n) =

∑

i

(

S(Ei) − αnSi

αnσi

)2

and (3)

χ2
norm(n) =

(

αn − 1

δn

)2

. (4)

Here, αn and δn are the floating renormalization factor and the normalization uncertainty of the dataset n, S(Ei) is
the theoretically calculated S factor at Ei, Si is the measured S factor at Ei, and σi is the standard deviation of the
measured S factor at Ei.

In the case where two experiments have correlated normalizations, χ2
norm is modified and becomes

χ2
norm(n1, n2) =

[

δ2
n2(αn1 − 1)2 − 2δ2

c (αn1 − 1)(αn2 − 1) + δ2
n1(αn2 − 1)2

]

[δ2
n1δ

2
n2 − δ4

c ]
(5)

where δn1 and δn2 are the total systematic errors of the data sets n1 and n2 and δc is the systematic error common
to both data sets. This equation is the result of inverting the covariance matrix.

We use a Markov Chain Monte Carlo (MCMC) approach to evaluate the data, following the two-step procedure
laid out by Ando et al. [51]. First, we find the best fit by varying the parameters randomly, with ever decreasing step
sizes until the results converge to a predetermined number of significant figures. Then, with step sizes determined by
∆χ2 = 1 variations, we start a random walk away from the best fit point using the Metropolis algorithm [52, 53].
Once the sample variance of each of the parameters converges within the specified resolution, we stop the MCMC.
We tested convergence with chains of length up to 108, finding convergence after about 106 steps. We use the 108

step chain for our final results.

IV. RESULTS

To test the validity of the adopted three parameter S34 model, we found the best fits for both two and four
parameter models as well, fixing a = 0 for the two parameter fit and letting both a and c vary for the four parameter
fit. We find best fits with χ2

tot = 85, 63, 61 or χ2
tot/d.o.f. = 2.74, 2.17, 2.26 for the two, three, and four parameter fits,

respectively, where the number of degrees of freedom d.o.f. = 31, 29, 27. One can see readily that given the modern
data considered here, we can not adequately determine more than 3 parameters. Also, the two parameter fit is clearly
unrepresentative of the data, whilst the quality of the four parameter fit is no better than that of the three parameter
fit. Hence including a fourth parameter is unwarranted. The uniqueness of the solution was tested by starting the
minimization procedure from different parameter values, finding the same minimum.
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Parameter Mode Mean ± Std. Dev. Norm. Error

αp(Brown) 0.95 0.95 ± 0.02 0.0387

αa(Brown) 0.95 0.95 ± 0.02 0.030

αp(Confortola) 0.99 0.99 ± 0.02 0.038

αa(Confortola) 1.01 1.01 ± 0.02 0.032

αa(Gyürky) 1.02 1.02 ± 0.02 0.031

αa(Nara Singh) 1.04 1.04 ± 0.02 0.0363

s0(gs) 0.406 0.406 ± 0.009

s2(gs) 0.007 0.007 ± 0.001

a(gs) -0.207 -0.203 ± 0.038

s0(ex) 0.163 0.163 ± 0.004

s2(ex) 0.004 0.004 ± 0.001

a(ex) -0.134 -0.127 ± 0.055

χ2
norm 4.83 6.48 ± 2.02 Nnorm = 6

χ2
data 58.38 69.06 ± 4.70 Ndata = 41

χ2
tot 63.21 75.54 ± 4.95 Npar = 6

TABLE II: Results of the Markov Chain Monte Carlo parameter estimation.

After the best fit is found by minimizing χ2 and the MCMC has converged, we find the limits of central
confidence intervals by determining parameter values that obey the relation P (ν/2, ∆χ2/2) = CL [54]. Here
P (a, x) = γ(a, x)/Γ(a) = 1 − Γ(a, x)/Γ(a) is the regularized incomplete gamma function [55], ν = Npar + Nnorm

is the total number of varied parameters and normalizations, ∆χ2 = χ2 − χ2
min, and CL is the desired confidence

level.
The results of this analysis are presented in Table II and Figure 2. We find a mode (most likely value) and central

68.3% CL interval of S34(0) = 0.580± 0.043 keV b (∆S34(0)/S34(0) = 7.4%). We find a mean and standard deviation
of S34(0) = 0.580 ± 0.013 keV b (∆S34(0)/S34(0) = 2.2%). The small size of the interval given by the mean ± the
standard deviation compared to the central 68.3% CL results from marginalizing over all parameter distributions.
The standard deviation here corresponds to defining errors with ∆χ2 = 1, known to underestimate uncertainties when
there is more than one fitted parameter [13, 54]. The central 95.4% confidence interval is S34(0) = 0.580 ± 0.054
keV b. The size of this relative uncertainty is slightly smaller than that given in the evaluation of Adelberger et al. [6],
which was a 1σ error. Hence the modern data considered here permit a considerably more precise recommendation
for S34(0), even when allowing the shape of the S factor to be determined by the data rather than a theoretical model
and when fitting the branching ratio as well as the total S factor.

To test the robustness of our procedure, we compare the uncertainty determined here to the discrepancy and
normalization errors defined in Reference [15]. Using the definitions

δ2
disc =

∑

n χ2
n

∑

n f2
n

and (6)

δ2
norm =

∑

n
Nn

χ2
n

δ2
n

∑

n
Nn

χ2
n

, (7)

where χ2
n = χ2

data(n) with renormalization αn = 1, f2
n =

∑

in

(S
(in)
tot /σin

)2, Nn and δn are the number of data points

in and total normalization error of set n, we find a discrepancy error of 5.3% and a normalization error of 3.5%,
yielding a total systematic uncertainty of 6.4%. When added in quadrature to the 2.2% statistical error, we find a
total uncertainty of 6.8%, in very good agreement with the present 7.4% MCMC results. The difference between the
two arises because the former takes into account neither discrepancies in the branching ratio S1/S0 nor correlated
normalization errors, as the MCMC method does. The MCMC results for the branching ratio are shown in Figure 3.
The s- and d-wave contributions to the ground and excited state transitions determined in the MCMC analysis are
shown in Figure 4.

We have calculated the product of the Avogadro constant and the thermally averaged rate of the 3He(α,γ)7Be
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Parameter Low Adopted High

a0 15.531721 15.609867 15.679639

n1 -0.100208 -0.020478 0.037757

n2 0.235187 0.211995 0.196645

d1 0.114322 0.255059 0.353050

d2 0.373802 0.338573 0.316019

TABLE III: Shown are the fit parameters for the product of the Avogadro constant and the recommended thermal rate NA〈σv〉
and its central 68.3% confidence level limits, with a2 = −12.82707707, a6 = −2/3, and a0 = ln [1.03762 × 107S34(0)keV−1b−1]
fixed.

reaction per particle pair and fit it using the form

NA〈σv〉 = exp
[

a0 + a2/T
1/3
9 + a6 lnT9

]

(

1 + n1T
2/3
9 + n2T

4/3
9

)

(

1 + d1T
2/3
9 + d2T

4/3
9

) cm3 mol−1 s−1. (8)

The fit parameters are shown in Table III. This functional form provides a better fit to the reaction rate than the
fitting functions of Caughlan and Fowler [56] and REACLIB [57, 58] and agrees with the numerically calculated rate
within 0.5%.

Figure 5 compares the energy dependence of S34 determined here from a nearly model-independent analysis of
modern data with that calculated by Kajino et al. [27]. It is apparent that in the energy range of principal interest
below 500 keV, the shapes of the two curves differ substantially. Extrapolation using the RGM model of Kajino from
the energy range important for BBN to that of interest in the Sun would differ by some 5% from extrapolation based
on the S factor determined here. This is quite consistent with the estimates of the theoretical error given in Ref. [25].

V. CONCLUSIONS

We have performed a minimally model dependent analysis of modern 3He(α,γ)7Be data. This analysis properly takes
into account the systematic errors of potentially discrepant data and yields reliable central values and uncertainties.
At the 68.3% confidence level, we find S34(0) = 0.580± 0.043 keV b and S′(0)/S(0) = −0.92± 0.18 MeV−1. We have
used this value of S34(0) to compute the thermally averaged rate of the 3He(α,γ)7Be reaction per particle pair, and
have fit this rate with an analytical form accurate within 0.5%.

This reaction rate is about 9% higher than the recommendation of [6], but is quite consistent with it. It is also
perfectly consistent with the recommendations of References [59, 60]. Moreover, access to precise modern data has
allowed us to minimize the uncertainties associated with extrapolation and arrive at a more precise and better founded
value that does not depend on nuclear structure models.

Our recommended reaction rate implies that the predicted 7Be and 8B solar neutrino fluxes should both be increased
by 8% compared with predictions based on the S34(0) value from Ref. [6]. Similarly, the present analysis implies that
the value of S34 in the energy range relevant to big bang nucleosynthesis is 17% larger than the value adopted in Ref.
[15], resulting in a 17% increase in the predicted primordial 7Li abundance. The uncertainties found here reduce the
total error in the 7Li abundance prediction by a factor of ∼ 2. The discrepancy between the predicted and observed
primordial 7Li abundances increases from ∼ 3σ to ∼ 5σ [61], implying a rather serious disagreement that must be
resolved.

In order to improve our knowledge of the rate of the 3He(α,γ)7Be reaction, future experiments should collect data
at at least six different energies. No modern data exist in the Gamow window for big bang nucleosynthesis, so this
would be of primary interest. Information on capture into the ground and first excited states would also be useful,
arguing in favour of prompt γ ray measurements rather than those based on induced 7Be activity. Finally, precise
measurements from 1 - 3 MeV would allow better constraints on the shape of the S factor at the low energies of
astrophysical interest.
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FIG. 2: (Color online) The best fit S factor for the 3He(α,γ)7Be reaction (solid curve). Also shown are the central 68.3%
confidence level limits (dashed curves). The experimental data and their total uncertainties are plotted (Activity-open points,
Prompt-solid points).
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