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Symmetry Energy

Bethe-Weizsacker (BW) formula:

Z2 (N - 2)?
A3 +ap A +A
Symmetry energy: change in nuclear energy associated with
changing neutron-proton asymmetry

E = —aVA+aSA2/3+aC

In nuclear matter:  E(pn, pp) = Eo(p) + E1(pn, pp)

Ei= £ Eo= S() (252)
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Introduction
oeo

Constraints for Symmetric Matter
Minimum at po ~ 0.16 fm~2 with Ey(po) ~ —16 MeV

Incompressibility from giant resonances: K ~ 235 MeV
Youngblood, Garg, Colo et al. '05

At high p, constraints on nuclear AAAMAANNARMes asaassness
2 symmetric matter -
pressure P = p= 0E/Jp from 100
flow in semicentral reactions <
PD,Lacey&Lynch Science298(02) E
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Introduction
ooe

Symmetry Energy Uncertainties

Compilation of symmetry
energies in literature

Eg+S
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In neutron matter:
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Empirical correlation
R P~1/* ~ const
Lattimer&Prakash ApJ550(01) @‘
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Symmetry Energy in Binding Formula

Standard formula: x A

Z2 (N — Z)

_ 2/3
E=—-ayA+aghA? tac gmtaa——— +0
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Symmetry Energy in Binding Formula
Standard formula: x A

z? (N—2Z)
AT AT

E=—ayA+asA?®+ac +0
_8s_

S
47 rg

Surface energy: Eg = agA?/® = % 4 12 A8 =
7
0
Es as .
—=g= tension — work per area
S 7 47 rg ( P )

— As nucleons at surface less bound, increasing surface
requires work.
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Symmetry Energy in Binding Formula

Standard formula: x A

Z? (N—Z)2
— 2/3
E_—aVA+a3A/ +aCA1/3+aA A

+9

as

S
47 r02

Surface energy: Eg = agA?/® = % 4 r2 A23 =
vy

0
Eg as .

= 5= tension — work per area
S 7 47 rg ( P )

— As nucleons at surface less bound, increasing surface
requires work.

Symmetry energy reduces the binding, so, as n-p asymmetry
increases, the work to create surface should drop (you cannot
subtract same thing twice from volume!)

o= LES AN (in the general definition of tension) E’)‘
0S8 NSCL
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From Tension to Surface n-p Excess

o as intensive should depend on an intensive quantity
characterizing neutron-proton (n-p) asymmetry — ua

0E 1
A = m = > (pn — Hp)
Since tension should drop no matter whether more neutrons or
protons — quadratic in chemical potential

o =00—5

Surface energy Es must then also depend on p4. ..
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From Tension to Surface n-p Excess

o as intensive should depend on an intensive quantity
characterizing neutron-proton (n-p) asymmetry — ua

0E 1
A = m = > (pn — Hp)
Since tension should drop no matter whether more neutrons or
protons — quadratic in chemical potential

0 =00~ 714
Surface energy Es must then also depend on p4. ..

Partial-derivative consistency for E [® = (N — 2) — E;
o®/oua = N — Z] then requires: Surface must contain n-p excess!

(Ns — Zs) o< pa
©
Surface energy must be quadratic in the excess and/or 1. @é
?How can surface hold particles?!
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Volume-Surface Separation a la Gibbs
Gibbs definition for surface f Actual
quantities - difference be- |
tween actual and idealized \
where volume contribution
only: Fs=F — Fy

result depends on surface
position R: As=A—Ay =0

R r

— = 2-component system: sur-
Pr N faces for neutrons and pro-
R r tons may be displaced.

Net surface position set de-

Po manding: Ag = 0. @
However, Ng — Zg # 0! NGCL

0 R r
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Symmetry Energy Modification

With derivative consistency resolved, o = o9 — v uf\ yields for
surface energy

1 (Ns—Zs)?
Es = 00S+71aS= Eg+@T
Ng — Z5)?
= Eg + aﬁ g (surface capacitor)

A2/3
(Ny — Zy)?
A
Net Energy & Asymmetry: E = Eg+Ey, N-Z = Ng—Zs+Ny—-2Zy

Volume similarly:  Ey = E)+aY (volume capacitor)
74 A

Minimization of E with respect to the asymmetry partition:
analogous to coupled capacitors, qx = Nx — Zx,
Ex = ES + q%/2Cx, with the result

2 _ 2
0, P o, N-2) |
E=E+,,=E +r+£§ ©) |
A aa
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Modified Binding Formula

n ay (N-2)?
A1+ ABaY/a A
aA(A)

Regular formula for ajj /a3 = 0 - i.e. surface not accepting the
asymmetry excess (a3 = o) - or for A — .
Modified formula: weakening of the symmetry term for low A.

E= —aVA+aSA2/3+aC

Whether one can replace as(A) by a for large A depends on
the ratio ajj /a3.

The ratio may be determined from surface asymmetry excess,

as surface-to-volume asymmetry ratio:
Ns—Zs Cs AP/az
Ny—2y Cy  A/ay
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Binding Formula
L 1)

Asymmetry Skins

Measuring n-p skin sizes difficult: 2 different probes needed.
E.g. electrons + protons, 7t + 7, protons + neutrons

Issues: 1. Data in terms of difference of n and p rms radii.
Conversion straightforward, if diffuseness similar for n and p.

2. For heavy nuclei, Coulomb competes with symmetry energy,
pushing protons out to surface and polarizing interior.

= minimize sum of 3 energies w/respect to asymmetry:

e 1/(3_, 1 5
E=Ey+Es+Ec Ec —Zy+2vZs+ 525

~ 4r¢o R\5 2
From the modified minimization, analytic difference of rms radii:
<I’2>:,/2 _ <r2>1p/2 _ A N_Z ac A5/3 % + A1/3 ai/aX
(r2y1/2 6NZ 14+ A1/3a35/ay 168ay N 1+ A/Baz/

ay
t | Coulomb i B
symme ry energy on y oulombDb correction @é
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Binding Formula
oce

Testing Macroscopic Theory

0.47\ T
Comparison of the ana- £ |
lytic formula (lines) with 5 3
a multitude of nonrel-
ativistic and relativistic = ;[ <
mean-field calculations == | °
by Typel and Brown =+
PRC64(01)027302 s M
(symbols) =
ool b L
0.0 0.1 0.2 0.3 0.4
<r2>[1‘/27<r2>;/2 (fm) for 1329n and '*Ba
Accuracy, in reproducing microscopic theory, of ~0.01 fm ?!
Other tests: Thomas-Fermi €
On

= next data
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Symmetry Coefficients
[ le]

Comparison to Skin Data

Systematic of n-p skin sizes for different Na isotopes by
Suzuki et al., PRL75(95)3241 + other data

0.6» T N T T N T T N T ] 0.6»! { T T T { TT T T T T T vvvv{va
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Symmetry Coefficients
oe

Global Fit to Skin Data

: T T T T { T T T T { T T T T { T T T T T T T T :
4= =
1-0 & 2-o limits on r ]
ay/az asafunction [ =
of ay < i :
(o] 2 j i
dependence on ay C ]
10— - —
due to Coulomb - Weizsacker ]
C / formula ]
o C 1 o 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ]
20 256 30 35 40 45

a, (MeV)

As A~'/3 aY /a3 never small, symmetry term not expandable; ©
Bethe-Weizs&cker not acceptable at the macroscopic level.
NSCL
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Symmetry Coefficients
[ leJele]

Charge Invariance

Conclusions on symmetry term details, following mass-formula
fits, are interrelated with conclusions on other terms:
isospin-dependent Coulomb, Wigner & pairing +
isospin-independent, due to (N — Z)/A - A correlations along
line of stability (PD NPA727(03)233)!
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Symmetry Coefficients
[ leJele]

Charge Invariance

Conclusions on symmetry term details, following mass-formula
fits, are interrelated with conclusions on other terms:
isospin-dependent Coulomb, Wigner & pairing +
isospin-independent, due to (N — Z)/A - A correlations along
line of stability (PD NPA727(03)233)!

Best would be to study the symmetry term in isolation from the
rest of mass formula! Absurd?!
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Symmetry Coefficients
[ leJele]

Charge Invariance

Conclusions on symmetry term details, following mass-formula
fits, are interrelated with conclusions on other terms:
isospin-dependent Coulomb, Wigner & pairing +
isospin-independent, due to (N — Z)/A - A correlations along
line of stability (PD NPA727(03)233)!

Best would be to study the symmetry term in isolation from the
rest of mass formula! Absurd?!

Charge invariance comes to rescue: lowest nuclear states
characterized by different isospin values (T, T),
T, = (Z — N)/2. Nuclear energy scalar in isospin space:

Ep = aa(A) (NAZ) =4ax(A) %
2 ES
— Ep=4ap(A) % =4 au(A) T(TAH) @é
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Symmetry Coefficients
[e] Tele]

A-Dependent Symmetry Energy from IAS Data

T+ 1
. Ea—4ax(A) g
In the ground state T takes on the lowest possible value
T = |T;| = |N — Z|/2. Through '+1’ most of the Wigner term absorbed.

Formula generalized to the lowest state of a given T. Pairing
term contributes depending on evenness of T.

?Lowest state of a given T: isobaric analogue state (IAS) of
some neighboring nucleus ground-state.

1176 144
1349

pusrvyn PR 7 Study of changes in the
! ; symmetry term possible
e .., ... NUCleus by nucleus

,L2.006:% 45
38207 980025

737754 2%y
answo#
5958 =

3368 2]

M
©

[20] . Fizao2i54 1o =1 lies) @‘
0 ’ S 07184 ol —s o~ o \S
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Symmetry Coefficients
[e]e] o]

IAS Data Analysis
In the same nucleus, when pairing drops out:
4a
Ea(To) — Ey(T) = — 7 {Ta(T2 + 1) = Ty(Ty + 1)}
4N\T? ?
—1 o -
% AN =27F ~
extracted inverse
symmetry
coefficient 0.07

—_
—

available IAS with & 006
largest energy - 005
differences used

(@n) "+ (az) TATE

0.08 ® JAS data

Thomas—Fermi fit

N

e § ©
Poor 2,

. ha
vhe'y

o \\‘\.\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\

0.04
Antony et al. 0.03 ©
ADNDT66(97)1 0 T i i PR (©)

A-1/3
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Symmetry Coefficients
[e]e]e] ]

Fit Combination

T T T T T T T T T T T T T T T T T T T T
a \ \ \ \ ]
r linear 20 B
4 IAS fit modified |
r mass fit ]
5l VI V4 ]
g | 14 .
=3 [ ) ]
E 7 E
= Thomas—Fermi 4
L TAS ]
1= Weizsacker ]
r ’/ mass fit ]
O L L L ‘ L L L L ‘ L L L L ‘ L L L L ‘ L L L L i
20 25 30 35 40 45
1 (MeV)

Conclusions: 30.0MeV < aY < 325MeV, 2.6 < af/a3 <3.0 E’))
NGCL

next: Symmetry-coeff ratio constraints low-p dependence of E,.
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Symmetry Coefficients
e0

Microscopic Background ,
In TF approx with E = Ey + [ d®r p S(p) (@) , Where S -
symmetry energy (S(po) = aAV), Gibbs prescription for

semiinfinite matter yields: iX 3 p(r) [ S(po) ]

— aY/a5 probes shape a3 o po | S(p(r))

of S(p)! Y LR A A R A

For S(p) = a}, a4 /a3 = 0! e

Surface capacitance emerges, YE er, R

because S drops with p. K Y ! 3

From 2.6 < aY/a5 < 3.0 N "L ]

for mean-field structure calcs 3 °© o[ ooe g

(Furnstahl, NPA706(02)85 - sk '0 o .’. ]

symbols), we deduce symme- T ] 5

tryenergyreductionatpo/z 04\\\\ 5
1 2 3 4 5

0.58 < S(po/2)/aY < 0.69 "
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Symmetry Coefficients
oe

Further Consequences
In S(p) ~ a4 (p/po)": v = (0.54 — 0.77).
Neutron Stars: Pressure estimate from S(p) +

Lattimer-Prakash scaling, R P'/* ~ const, yields
11.5km < R < 13.5km for an 1.4 M, star.

Density dependence too weak for the direct Urca cooling.

Mass Formula Performance: F|t re5|duals for Ilght asymmetrlc
nuclei, when either T ]
following the Bethe
-Weizséacker formula
(open symbols) or the :
modified formula with e 100~
ay/a; =2.8imposed = |

sF-

—Ey, (MeV)

‘ ~152 ©® _ -
(closed), i.e. the same Fo 0° IN-2|/4>02 Eo
20 o e b bbbl
parameter NO 20 30 50 70 lOO
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Conclusions
0

Conclusions
@ Macroscopic consistency puts surface symmetry energy
into binding formula, with volume and surface symmetry
energies combining as energies of coupled capacitors.
@ Extension implies surface asymmetry skins and weakening
of the symmetry term for light nuclei.
@ Skins restrict ratio of symmetry coefficients; charge
invariance allows to study symmetry term in one nucleus.
@ Skin/IAS fits: 30.0MeV < a} < 32.5MeV and
2.6 <ay/a; < 3.0.
@ Surface symmetry energy emerges due to weakening of
symmetry energy with density. aX /aﬁ ratio places S within
(0.58 — 0.69)ay at py/2. Consequences for neutron stars.
@ Description of giant dipole resonances improves with
inclusion of surface symmetry energy. Resonances more ©
of a GT type for light nuclei and of an SJ type for heavy. ©n
@ Next: Shell-correction for IAS S
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Conclusions
oce

Questions for RIA

@ Skin-size vs asymmetry (high-T low-A data)

@ High-T IAS

@ Dependence on asymmetry for central-collision
observables:

collective flow

yields (S(p > po))

stopping

asymmetry transport

low-velocity correlations
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extras

[ Jelele]e}

Asymmetry Oscillations
Movement of neutrons vs protons - giant resonances visible in
excitation cross sections
2 classical models of the simplest giant dipole resonance
(GDR)

GT SJ
Goldhaber-Teller (GT): n & p distributions oscillate against each

other as rigid entities:
g Egpr = hQ oc /A28 /A = A~1/®

Steinwedel-Jdensen (SJ): Standing wave of n-p in the interior
with vanishing flux at the surface
EGDR = hCa/)\ X A_1/3
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GDR Evolution with Mass

GT model: @} — oo SJ model: a5 — oo

Realistic model: SJ but asymmetry flux may flow in and out of

the surface. .. The boundary condition produces:
. 3aSA1S
qRji(qR) = Th (qR)
A
j1 - spherical Bessel func- T T

tion, typical for waves when 30:
spherical symmetry; q - 25 >y,
wavenumber, Egpr = hcaq '

20

As a; A'/3/a) changes, the
condition changes between [
that of open and close pipe 151
and the resonance evolves ~
between GT and SJ L bl o L

L

N

10 20 30 50 70 100 200 30 INE[UE
A

Egpr (MeV)
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Transition Densities
Local Amplitude = Transition Density
aX dp

Dy .
P1(f)—p711(qf) P(r)—w ar

Compared to microscopic calculations (Khamerdzhiev et al.,
NPA624(97)328) GSC, in- S A A AR A A
cluding 2p-2h excitations ¢
and ground-state correla- '
tions

0.03

P (fmga)

0.02

0.01
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Liquid Droplet Model
Liquid droplet model (Myers & Swiatecki '69)

_ 1 1 _
E — <—a1+J52—2K62+2M54> A

( 2 —1/3\ 22/3 LZ 1 -1/3
+la+ Q1+ az A A +C1A1/3 1+-7A

2
22 Z4/3
_C2ZZA1/3_037_C4W
where
T s =2 z2 3J - -
2
5 H‘%%W = a Z N-Z
12 LAs T 12J AR N+ Z

E©
Q= H/(1 — % P/J). Expansion in asymmetry yields results

consistent with current, but approach more complex. ..
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Liquid Drop Model
The current formula:
v (N— Z)2 1

72

E:—aVA+aSA2/3+aC + ay v
A 14 A

A

Al/3

Liquid drop model [LDM] (Myers & Swiatecki '66)

E = —ay (1 _,{V/2> A+as (1 — kg /2) A2/3
Z2 z?

with / = (N — Z)/A. LDM corresponds to the expansion in the
current formula:

1NaX<1_aXA_1/3>
2/3
Aﬁ_& A aﬁ

But that expansion only accurate for A = 1000, i.e. never!
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