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The mission: Explain the origin, evolution, and
structure of the baryonic matter of the Universe
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Three frontiers:

 Fundamental symmetries & neutrinos
* Nuclel and nuclear astrophysics
« QCD
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Fundamental Symmetries & Cosmic History
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Fundamental Symmetries & Cosmic History

Puzzles the Standard Model can’t solve

1. Origin of matter What are the symmetries

Unification & gravity (forces) of the early

Weak scale stability ;Jhnévseﬁg beyond those of
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What are the new fundamental symmetries?

 Why is there more matter than antimatter
In the present universe?

Electric dipole moment searches

e What are the unseen forces that

disappeared from view as the universe
cooled?

Precision electroweak: weak decays, scattering, LFV

e What are the masses of neutrinos and

how have they shaped the evolution of the
universe?

Neutrino oscillations, Ovgp-decay, by, ... L. report



What is the origin of baryonic matter ?
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What are the quantitative implications of new
EDM experiments for explaining the origin of
the baryonic component of the Universe ?
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What is the origin of baryonic matter?

Birth of the
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p Electroweak symmetry Baryogenesis: When?
Qu, breaking: Higgs ? SUSY? Neutrinos? CPV?

Weak scale baryogenesis
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EW Baryogenesis: Standard Model

Sakharov:
Weak Scale Baryogenesis Anomalous Processes
* Bviolation —— | -,,E A Y

e C & CP violation

e Nonequilibrium \ Lzl |/ A
dynamics ‘1 2 - B
iV

Sakharov, 1967

Different vacua: A(B+L)= AN.g

Kuzmin, Rubakov, Shaposhnikov Sphaleron Transitions
McLerran,...




EW Baryogenesis: Standard Model

Shaposhnikov

Weak Scale Baryogenesis
B violation

e C & CP violation

* Nonequilibrium \
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e CP-violation too weak
e EW PT too weak
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Baryogenesis: New Electroweak Physics

90’s: Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok

Weak Scale Baryogenesis Unbroken phase

* B violation Topological transitions ﬁ ______ . <¢(X)\/
e C & CP violation \

Broken phase /

* Nonequilibrium CP Violation
1st order phase transition
dynamics
gé?(ﬁarov, 1967
.'\ ¢new
\
e |s it viable? Voeo| PV ¥
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e Can experiment constrain it? | S

 How reliably can we compute it? e



EDM Probes of New CP Violation

CKM
~
f dSM dexp dfuture
e <10 <1.6x10“ — 107
n <107 < 6.3x107% —107%
“Hg <107 < 2.1x107°® — 107
U <107 <1.1x10"® — 102%

Also 22°Ra, 129Xe, d

If an EDM Is seen, can we identify the new physics?




EDM constraints & SUSY CPV

Lee et al
+ e

* EDMs of different systems provide
complementary probes: more
atomic experiments (RIA)

* Nuclear theory: reliable calc’s
of atomic EDM dependence

on ¢-p, and other new

. o y : I S Dren
physics parameters (RIA?) Qoo e ¢“ 00 \

/ H View|  NVWW ¥
* Nuclear theory: reliable calcs of Yy ‘o

Different choices for SUSY parameters e’
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k



Fundamental Symmetries & Cosmic History

Unseen Forces: Supersymmetry ?

1. Unification & gravity v 7,
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Weak decays & new physics CKM unitarity 7
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No long-lived LSP or SUSY DM



Weak decays B-decay
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Nuclear structure effects?



Weak decays & new physics Correlations
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Fundamental Symmetries & Cosmic History

Neutrinos ?
Are they their own antiparticles? LFV & LNV ?
Why are their masses so small? What is m ,?

Can they have magnetic moments?
Implications of m,, for neutrino interactions ?
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Ov BB - decay probes the charge conjugation
properties of the neutrino

| OVPP decay rates by various methods |

Light v, : Nuclear matrix
elements difficult to
compute

A(Z,N) A(Z-2,N +2)
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Ov BB - decay: heavy particle exchange

e e
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k ~ 50 MeV &

\\, - \\e u
How do we compute & separate d d //

heavy particle exchange effects?




LF and LN: symmetries of the early universe?

Lepton flavor: “accidental” yeak sym e
symmetry of the SM 1g: Higgs | H

LFV initimately connected
with LNV in most models
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LF and LN: symmetries of the early universe?

Electroweak sy
-L-D- hraalzinn: Hinng Ovﬁﬁdecay
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Logarithmic enhancements of R Heavy particle exchange ?

Low scale LFV: R~0O(1) GUT scale LFV:R~O(a) -



Ov BB - decay: heavy particle exchange

How do we compute & separate

heavy particle exchange effects? e o
e e - v )
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e e
d d 0
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4 quark operator, as in hadronic PV



Ov BB - decay: effective field theory

We have a clear separation of scales

A >>>A >> K

a4

L-violating Non-perturbative

; Nuclear dynamics
new physics QCD Y



Ov Bf - decay In effective field theory

Operator classification

Lge) ! LzNe)
H=Myeax H=Mp
\ 7

Spacetime & chiral
transformation properties




Ov Bf - decay In effective field theory

Operator classification M= Myeac

GZ 14 .
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Ov pBp -decay: a=b=+



Ov Bf - decay In effective field theory

Operator classification M= Myeac

Oﬁ) :qu/#TaqL qR?ﬂijQR

Chiral transformations: SU(2), x SU(2)x

g —»>Lg L (R 7 j A
0z > R ‘exp('ﬁkipt a’e B, %)
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Parity transformations: q, $ qr

Ov BB - decay: a=h =+ O & O



Ov Bf - decay In effective field theory

I‘<NNNN po

O(p™) for (A)f;+ O(p°) for (A):L+

Enhanced effects for
some models ?




An open guestion

Is the power counting of operators sufficient to
understand weak matrix elements in nuclei ?
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An open guestion

Is the power counting of operators sufficient to
understand weak matrix elements in nuclei ?

_ L r_
L=0K ,9 O3, 55 L'=0K ,5
naive M i po L=L'=0 écl;v:ﬂ%
M, ~ p?> L=2L=0 O 2
M, ~ p?>  L=0L=2 O 2
M, ~ p* L=4L=0 O



An open guestion

Complications:

e Bound state wavefunctions (e.g., h.0.) don’t
obey simple power counting

« Configuration mixing is important in heavy
nuclel

Is the power counting of operators sufficient to
understand weak matrix elements in nuclei ?

» More theoretical study required (RIA)

 Hadronic PV may provide an empirical test
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weak gqg interaction?
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The weak gq force is short range

\

Meson-exchange model

Az ~0002Mk R, 5

Seven PV meson-
nucleon couplings

Use parity-violation to filter
out EM & strong interactions

1 01,2 01 1’
ht, h°42 hot hi

Desplanques, Donoghue,
&Holstein (DDH)



Is the weak NN force short range ?

T=0 force

Long range: ~exchange?

T=1 force



Is the weak NN force short range ?

T=1 force

0",0
0,1

17,0

18F
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Analog 2-body

matrix elements

Model
Independent




Is the weak NN force short range ?

O force

T

133CS Anapole
moment

Boulder, atomic PV

T=1 force h,~10g,



Is the weak NN force short range ?

e Problem with expt’s

e Problem with nuc th'y

ﬁroblem with model >
* No problem (1)

T=1 force EET




Hadronic PV: Effective Field Theory

PV Potential

Long Range
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A program of few-body measurements

Pionless theory Ab initio few-body calcs
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A program of few-body measurements

Complete determination of PV NN &
yNN interactions through O (p)

i

Attempt to understand
the Al, h_etc. from
QCD

Are the PV LEC's
“natural”?

N\

Attempt to understand
nuclear PV observables
systematically

Does EFT power
counting work in nuclei ?

Hadronic PV in n-rich nuclei ?



Hadronic PV as a probe

» Determine V,,, through O(p)
from PV low-energy few-body
studies where power counting
works

O(p)  Re-analyze nuclear PV
observables using this V;,,




Conclusions

* Nuclei provide unique and powerful laboratories
In which to probe the fundamental symmetries
of the early universe

* RIA will provide opportunities to carry out new and
complementary experiments whose impact can
live on well into the LHC era

* A number of theoretical challenges remain to be
addressed at the level of field theory, QCD, and
nuclear structure

* New experimental and theoretical efforts in nuclear
structure physics are a key component of this quest
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