Harmonic-Oscillator-Based Effective Theory

Review: Bloch-Horowitz solutions for effective interactions and
operators

Connections with contact-gradient expansions
¢ initial work with Luu on the running of the coefficients

o re-examination of individual matrix elements — deeply bound
vs. valence orbitals

Harmonic oscillator-based effective theory

¢ as expansion around g ~ 1/b: removing operator mixing
o T resummation and contract-gradient expansion

¢ implications for potentials, b, halo nuclei...

Fitting contact-gradient expansions to low-energy nuclear data



Review: Bloch-Horowitz generates Hermitian but
energy-dependent effective interactions and operators. We
explore a bare H of the form

A
(T3 +Vij)

NI*—*

i,j=1

where V represents a two-body potential like av18 and T is the
two-body (relative) kinetic energy

HYSf = H 4 H— OsuH
E—-QsuH

H W) = EWop)  [Won) = (1— Qsm)| W)

Solved self-consistently: E is the exact eigenvalue

Psyy = 1 — Qg is defined by Agy and b



Agyr: retention of a complete set of Agy i excitations produces
a separable space and a translation-invariant effective
Interaction

Results completely independent of parameter choices if the
effective theory is executed properly

P-space wave function is the restriction of the exact wave
function to P: wave function evolves simply

Thus a nontrivial normalization that approaches 1 as Agyy — «

Calculations done both by explicitly summing over Q (140 hw,
D; 70 7w, *He/*H: C.-L. Song) and by a momentum-space
integration over all excitations (T. Luu)

“Test data” for examining effective interaction, operator behavior



Evolution of *He av18 SM wave function with Agy,

amplitude

state Ohw 2hw 4hw 6/ 8 hw exact

(31.1%) | (57.4%) | (70.0%) | (79.8%) | (85.5%) | (100%)

0.5579 | 0.5579 | 0.5579 | 0.5579 | 0.5579 | 0.5579

0.0000 | 0.0463 | 0.0461 | 0.0462 | 0.0462 | 0.0463

0.0000 | -0.4825 | -0.4824 | -0.4824 | -0.4824 | -0.4826

0.0000 | 0.0000 | -0.0204 | -0.0204 | -0.0204 | -0.0205

0.0000 | 0.0000 | 0.1127 | 0.1127 | 0.1127 | 0.1129

)
)
)
2,3) | 0.0000 | 0.0073 | 0.0073 | 0.0073 | 0.0073 | 0.0073
)
)
)

0.0000 | 0.0000 | -0.0419 | -0.0420 | -0.0421 | -0.0423




Evolution of effective interaction m.e.s with Agy

2hw 4hw 6hw 8 hw
(0,1 |HT|2,1) | -4.874 | -3.165 | -0.449 | 1.279
(0,1 HY|2,5) | -0.897 | -1.590 | -1.893 | -2.208
(2,1 |HT|2,2) | 6.548 | -2.534 | -4.144 | -5.060




Evolution of observables: ground-state energies do not change
even with large changes in b (to accuracy of 1 or 10 keV, for d
or *He/*H)

Similarly, effective operators are defined

0%V =(1+HQ ! )O(1 + : OH)

Ef—HQ E;— OH

and must be evaluated between “SM” wave functions properly

normed
L= (W) = (WM |7/ s (1)

(also for [W3*))
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This work was intended as a check against a direct ET
treatment of interactions and operators (our goal): began to
look at this in 1999 (WH and Luu)

Wrote down the most general nonlocal interactions of the
contact-gradient form, e.g., the s-wave momentum expansion
LO: a?b@(r)

—2

NLO: a;o(Asy,b)(V 8(r)+8(r) V)

—4

o —2 —2 o 4
NNLO: a2 (Asy,b)V 8(r)V +aid (Asy,b)(V 8(xr)+8(r)V")

Encountered odd running of couplings, associated with
nonperturbative effects of T



QOsum defined by Agyhiw (translational invariance)

This is an energy cut, not a momentum cut

(¢)15 ~ 1/b: expansion about an intermediate scale
Combinations of high-energy configurations can be soft

The competition between V and T depends on the nuclear
binding energy relative to the first open channel, typically ~ 10
MeV — a sharp variation not represented in HO SM

This physics is generally many-body

Luu and WH studied, initially, the non-perturbative long-range
wave function

H.O. has long- and short-range problems, plane-wave
contact-gradient expansion can account for only the later
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Re-sum QT to all orders in H,s¢ = QH OH
edge states <«  deep states
(@7 +TQE—57OTIBY+ = (alT|B)+
<a\E_ETQvE_EQT B+ o (alVIp)+
e o ear @V VI

Deep states ~ plane-wave states: P < Q uncoupled by T
Edge states maximally couple: T ladder operator
QT summation — local operators acts on external legs

CM-preserving new operators, but suggestive of a basis
transformation too



That is, this can be rewritten
1

(alH|B) = (@ITIB) +(&|V +V z— - 0VIB)
where
. E
5) = g7l

For all nonedge states, |a) = |a)






Deuterium g.s. convergence with a bare interaction!
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The general case where two-body length scale not connected
with nuclear size explored in A=3

Q-space interaction decomposed into iterated two-body Fadeev
bubbles (two-body ladders)

these summed in momentum space to all orders in V

QT summation again carried out in closed form to all orders,
forming the three-body |&)

H,rr again converged as a perturbation in two-body ladders
(even though published work did not do this optimally)

If this works in three-body case, should work in general (if done
properly)
Contradicts old lore from early 1970s



HOBET revisited: the old problem illustrated more clearly

HOBET: are there simple, accurate contact-gradient
expansions in HO-based effective theory?

If so, what is their structure, how can they be determined?
Edge -deep states = compare behavior of (a|H.¢¢|B)

o explore simple example, deuteron with Agy, = 8

o move down in Q-space from infinity to A > Agy, in steps

o represent physics above A by a;0, anio, avnio--., fit tO av18
H,.rr m.e.s for deep(est) states

¢ do LO, NLO, NNLO interactions improve systematically?

o on reaching A = Agy, does an accurate H +H£§Z}’L0 exist?
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Deviation of Residuals in MeV

3]|||||||||||||||r|||r||||||

|
_i- =
| _
I LOb’ x O(r) interaction, fit to 0-0
- for H(A=00)-H"(A)

T Agy=38 3S| Matrix Element Deviation
= dashed - one end state; dash-dotted - both end states
|

10 20 30 40 50 60 70 80 90 100 110 120 130 140
A



Deviation of Residuals in MeV
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Deviation of Residuals in MeV
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Deviation of Residuals in MeV
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Deviation of Residuals in MeV
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Step #1 in HOBET formulation: recast as expansion in 1/b

Standard EFT approaches are expansions around k=0

—n

V expik-F=0,n=1,2,....

By analogy demand in HOBET
V(b)) =0,n=1,2,...

These leads to the HOBET form of EFT operators, e.g.,

ally o (A, b)erz/z(vza(r) L)V e/

"*2 r2 55,40

sS r2 2 —4 —54
ase? (A,b)e" /257 S(r)V e 24ass) e P(AD)(V 8(r)+d(r)V

)er2/2



Acts on polynomials < short-range behavior

Removes all operator mixing: e.g., a;o fixed in LO to
n =1+ n=1, not affected by higher orders

The expansion is in nodal quantum numbers, e.g.,

—2 —4

V ~(n—1) V ~(n—1)(n—-2)

so that matrix elements become trivial to evaluate to any order

Leading order in n contribution agrees with plane-wave result
(plane wave results recovered as b — x)

Operator coefficients are a generalization of Talmi integrals

58,22 —r? 2 2
e.8., a1 o ™ / / UV (ri,r)r5e” 2r1r2dr1dr2



Step #2: resum QT and evaluate consequences for interaction

Recall that
edge states <«  deep states
(@I +TQ— 0TI+ = (alTIp)+
e id: EQT|/3>+ o (avip)+
e o ear® @V VI

Summations over QT easily performed: raising/lowering
operator

Leads to a series of continued fractions g;(2E /fiw,{o;},{Bi}),
where a; = 2n+2i+1—-1/2)/2, Bi=+/(n+i)(n+i+1+1/2)/2




For any operator O (0 =V, V ;=5 0V, etc.)

E_,_E
E-TQ E—-OT

(n'l' nl) = % &;(n',1)gi(n,1){n' + j 1|Oln+il)

i,j=0
Thus it VGV < anr,anr0, ..., One finds an analytic

renormalization governed by E /hw, e.g.,

ajo — alLO =daro X E gj(nlal/)gi(nal)
=

r(”’+]+1/2)r(n+i+l/2)]1/2[ (W' —1)!(n—1)! 1/2
['(n+1/2)L(n+1/2) W +j—Dl(nti—1)!

No new parameters have been introduced

Can be generalized for A=3,4,5,...



This is a general result for the shell model, a consequence of
the strong P — Q coupling driven by QT

Plane-wave (e.g., Kuo-Brown g-matrix, V-low-k): T diagonal, so
VGV «— deep states: similar renormalization required

Very physical: in extreme-halo-nucleus limit, a correct HOBET
allows the valence nucleon to decouple from V

Isolates and evaluates the entire Bloch-Horowitz energy
dependence has been identified: VGV ~ energy-independent

With E,, ~ few-10 MeV, very sensitive to excited-state energies:
arp/aro ~0.25—0.50 at 2.22 MeV

In Lee-Suzuki beyond A=37?

o if may be that this explains the “drifting” of b in no-core shell
model
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Deviation of Residuals in MeV
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Deviation of Residuals in MeV
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Deviation of Residuals in MeV
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A(MeV)

10 - H(A=00)-H"(A) for
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Deviation of Residuals in MeV
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Deviation of Residuals in MeV
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Summary: Formulating HOBET and relating it to the SM

The HO SM’s energy-based Q leads to high-momentum P — Q
coupling responsible for nonperturbative behavior in two-body G

These effects can be removed by a resummation of QT

The same effects confuse an association of the short-range
operator VGV with the standard plane-wave contact-gradient
expansion

This can be addressed by a redefining of the contact-gradient
expansion to remove operator mixing

¢ VGV then can be isolated in the deep SM states

o for a system with enough bound states, the coefficients of the
contract-gradient expansion could be fully determined -
removing the hard core



From the SM perspective (true HO states) this instructs one to
renormalize the contact-gradient expansion in a defined way for
edge states

¢ generic result, e.g., required for V —low — k

. o 1
Physics governed by G, = E— o (4. +i2_))

& very physical: extended Jacobi coordinate for “halo” states

o effectively isolates all E-dependence in BH

¢ has implications for Lee-Suzuki done at cluster level: the
extended Jacobi coordinate is generally not present



Discussion done from SM viewpoint; from ET viewpoint,
corresponds to the choice of a new P-space, soft and
CM-invariant

Ry= 3 1n)(n — P(E) = 3 |3)

0

normalized so the the {|#) } basis remains orthonormal

1
E—QoT |n>

) = S
(=g 77 1)

P’ is asymptotically correct

A well-behaved Heff = H —FHﬁQ,H



Intriguing question: analytically continuing into continuum

<~ Would allow one to go directly from scattering data to the
HOBET appropriate for a given Agy, b

¢ e.g., for deuteron, all we can do now, independent of av18, is
to determine a;

o with av18, our computed VGV matrix elements “encoded” NN
phase shifts in the m.e.'s we studied

& can we avoid all of this work?



