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Outlook

I. A few words about DFT and selected challenges (non exhaustive)

II. First illustration: isovector properties and isovector effective mass

III. Second illustration: ill-defined Particle-Number Projected DFT

IV. Perspectives



From George Berstch and others...



Nuclear Density Functional Theory

I. Goal = describe for all nuclei but the lightest

♣ Ground-States properties: E, def., radii, s.p. energies (to some extent) drip-lines, pairing

♣ Low energy spectroscopy: I, vib., shape isomers, giant resonances

♣ Probability transitions: γ, β...

♣ EOS of (asymmetric) nuclear matter up to a few ρsat

II. Basic Ingredients

♣ Energy is a functional of one-body density (matrices) ρji = 〈Φ|a†
iaj|Φ〉 and κ∗

ij = 〈Φ|a†
ia

†
j|Φ〉

E [ρ, κ, κ∗] =
∑

ij

tijρji +
∑

ikjl

[

wρρ
ikjl ρjiρlk + wκκ

ikjl κ
∗
ikκjl

]

6=
〈Φ|H|Φ〉

〈Φ|Φ〉
= E

♣ |Φ〉 is a symmetry breaking product state (HFB functional)

♣ Underlying mean-field generated by a Skyrme/Gogny functional

♣ Pairing properties (n-n and p-p) generated by a specific part of the functional

♣ Direct extensions for excited states (cranking, QRPA)

♣ Projected-GCM DFT = Beyond mean-field extension to include long-range correlations

♣ Similar for Relativistic DFT



III. Recent milestones and limitations (for now. . . )

1995 Cranked DFT J (2), superdeformation, rotational alignment, Coriolis anti-pairing

2000 Global application of DFT Mass fits: r.m.s. σ ≈ 0.7 MeV ⇔ mic-mac models

2000 Spectroscopy by projected GCM Shape mixing, collective states, Qs, M(E0) and B(E2) values

2001 DFT at the limits of mass Predictions for superheavy nuclei: E, lifetimes

2003 Time-dependent DFT Heavy-ion reactions, low-energy strength functions

2004 Nuclear response in QRPA Self-consistent QRPA, dBλ(ω)/dω in exotic nuclei, β decay

2004 DFT for fission Systematics of static fission barriers

2005 Fission dynamics Mass and kinetic energy distributions in TDGCM-GOA

2005 Correlations in GCM-DFT Systematics of quadrupole correlations for even-even nuclei

X Properties over the known mass table

⋆ Predictive power in unknown regions =⇒ Witek: ”Property of asymptotic freedom of DFT”

⋆ More specific problems to be addressed but not less important



III. Selection of challenges and crucial inputs from RIA (X)

Improved phenomenology X Improving single-particle spectra is crucial

⇒ Incorrect spacings spoil low-energy spectroscopy

⇒ RIA = particle/hole states around 78Ni

X Tensor force could help (see Jacek’s talk on thursday)

X Data on superdeformed states, fission isomers/barriers of (exotic) nuclei

X Pairing: gradient versus density dependences (isovector, low-density)

⇒ ”All” functionals do the job between 104Sn and 132Sn

⇒ RIA = masses up to 146/150Sn or 81Ni with δE = 50 keV

⇒ RIA = reaction cross sections up to 85Ni / rn − rp = 0.5 fm

Connection to underlying methods ♠ Skyrme/Gogny functionals do not offer enough freedom ⋆

⇒ Need guidance beyond a fit on existing data

♠ Functional validated through well-defined benchmark ab-initio results⋆

♠ Constructive framework from EFT (coherent 2-body/3-body)

Grounding nuclear DFT ♠ No Hohenberg-Kohn theorem for projected-GCM DFT

⇒ Ad-hoc prescription to go from HFB to projected-GCM

♠ Ill-defined Particle-Number Projected DFT ⋆



Constraining the isovector effective mass m∗
v

T. Lesinski, B. Cochet, K. Bennaceur, T. D. and J. Meyer

I. Why ? Because m∗
s and m∗

v influence

♣ Masses and single-particle density of states

♣ Shell corrections in superheavy nuclei around the island of stability (N = 184, Z = 114/126)

♣ Static and dynamical correlations beyond the mean-field level (def., pairing, vibr./rot.)

♣ Heavy ion collisions observable to learn about the nuclear OES ; Li et al. (2004)

II. How ?

♣ m∗
s (≈ 0.8) via the ISGQR in 208Pb ; Reinhard (1999) (consistent with BHF)

♣ Constraint on m∗
v (≈ 0.7 − 0.9) via the IVGDR is not strong enough

♣ Ab-initio predictions ∆m∗
n−p = m∗

n − m∗
p ≥ 0 ⇒ m∗

s ≥ m∗
v for I = (ρn − ρp)/ρ ≥ 0

BHF ∆m∗
n−p|I=1 ≈ 0.22 (with/without NNN force) ; Zuo et al. (1999)

DBHF ∆m∗
n−p|I=1 ≈ 0.13 ; Ma et al. (2004), van Dalen et al. (2005)

♣ Consistent with the energy dependence of the Lane potential; Li (2004)



In DFT

I. Current situation

♣ SLyX forces adjusted on the PNM EOS have ∆m∗
n−p < 0 ; Chabanat et al. (1995)

♣ SkM∗/SIII which have an incorrect PNM EOS have the right splitting ∆m∗
n−p > 0!

♣ Same with Gogny ”old” D1S pamareterization versus new ”FT65” ; Girod, private comm.

♣ Relativistic DFT always predict ∆m∗
n−p < 0 ; not trivial to correct for that

Improving global isovector quantities (OES/aI) seems to deteriorate state-dependent ones (m∗
v)

II. Can we have it all?

♣ Parameterizations (f3, f4, f5) with same fitting protocol (close to SLy5) but different m∗
v

♣ Two density terms ∝ ρ
1/3
0 ; ρ

2/3
0 + no spin-isospin instablities for ρ < 2ρsat and I = 0,1

ρsat E/Asat K∞ aI m∗ ∆m∗
n−p|I=1

SkM∗ 0.160 -15.770 217 30 0.79 0.356
SkP 0.162 -15.948 201 30 1.00 0.399

SLy5’ 0.161 -15.987 230 32 0.70 -0.182

f3 0.162 -16.029 230 32 0.70 -0.284
f4 0.162 -16.036 230 32 0.70 0.170
f5 0.162 -16.035 230 32 0.70 0.001



Results and lessons

I. Global isovector properties

♣ SNM/PNM EOS and aI versus ab-initio predictions
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♣ VCS calculations with NN/NNN forces ;

{

Akmal et al. (1998) for EOS

Lagaris and Pandharipande (1981) for aI

♣ Identical properties for (f3, f4, f5) and as good as SLy5’

♣ Is it a good enough test of the quality of isovector properties of the functional ?



♣ Potential energy per (S, T ) channel in SNM versus ab-initio predictions
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♣ BHF calculations with NN/NNN forces ; Baldo, private comm.

♣ (S, T ) = (0,1); (1,0) could be better ; saturation mechanism is not reproduced

♣ (S, T ) = (1,1); (0,0) are disastrous ⇔ density-independent P -wave term (∝ ~k′ · ~k)

♣ It mainly gets worse as ∆m∗
n−p|I=1 is improved !

⋆ Overall EOS is one thing but good (S, T ) properties require more ⇒ benchmark ab-initio results



II. Problems encountered

♣ Spin-isospin instability makes it difficult to ր m∗ to 0.8

♣ m∗ = 0.7 ⇒ difficult to lower m∗
v and get PNM OES ⇒ Two density terms ∝ ρ

1/3
0 ; ρ

2/3
0

♣ Finite-size isospin instability develops as

{

m∗
v ց

∆m∗
n−p ր

⇔







ρn and ρp split in finite nuclei

Related to C∇ρ
1

(

~∇ρ1

)2
in the functional

Already the case of SkP

♣ The latter is related to how the energy splits among the four (S, T ) channels

∆m∗
n−p|I=1 C∇ρ

1

SkP 0.399 -35.0

SLy5’ -0.182 -16.7

f3 -0.284 -5.4
f4 0.170 -29.4
f5 0.001 -21.4

♣ For the Skyrme force C∇ρ
1 is a decreasing function of ∆m∗

n−p|I=1

⋆ Need to be quantified in order to better control the fit/properties of the functional



III. Finite-size instabilities made quantitative : response function (RPA) in SNM

♣ Perturbation Q(α)(~q) =
∑

i
ei~q·~ri O(α)

i with O(ss) = 1 ;O(vs) = ~σ ;O(sv) = ~τ ;O(vv) = ~σ~τ

♣ Poles of χ(α)(ω, q) ⇒ ω(q) ; ω(q) = 0 at density ρc ⇔ Instability of wavelength λ = 2π/q
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♣ Spinodal instability for ρ0 ≤ ρss
c ≈ 0.1 fm−1 ⇒ matter is unstable / compression mode

♣ Spin-isospin instabilities (ρvv
c ) are more ”dangerous” at finite q than at q = 0

♣ At q ≈ 2.5fm−1 ρsv
c ց ρsat as ∆m∗

n−p ր

⋆ Functional is too constrained ; especially the density-independent P -wave term



Problem with PNP-HFB method I

T. D. and M. Bender

|ΨN〉 = 1
2π

∫ 2π

0
dϕ e−iϕN |Φ(ϕ)〉

EN =
∫ 2π

0
dϕ e−iϕN

2π DN
E [ϕ] I[ϕ]

PES: 18O

3D PNP-HFBLN (PAV)

SLy4+ULB

9 ϕ-integration points

XTypical of calculations performed so far

XResults look very reasonable and converged



Problem with PNP-HFB method II

|ΨN〉 = 1
2π

∫ 2π

0
dϕ e−iϕN |Φ(ϕ)〉

EN =
∫ 2π

0
dϕ e−iϕN

2π DN
E [ϕ] I[ϕ]

PES: 18O

3D PNP-HFBLN (PAV)

SLy4+ULB

9/99 ϕ-integration points

XDivergence when a pair of states crosses λ, Anguiano et al. (2001)

XOffset in the PES before and after the crossing, Dobaczewski et al. priv. comm.

XMore dramatic consequences for VAP calculations



Problem with PNP-HFB method II

|ΨN〉 = 1
2π

∫ 2π

0
dϕ e−iϕN |Φ(ϕ)〉

EN =
∫ 2π

0
dϕ e−iϕN

2π DN
E [ϕ] I[ϕ]

PES: 18O

3D PNP-HFBLN (PAV)

SLy4+ULB+Trans. Dens.

9/99 ϕ-integration points

λ crosses νd5/2 orbits



Problem with PNP-HFB method II

|ΨN〉 = 1
2π

∫ 2π

0
dϕ e−iϕN |Φ(ϕ)〉

EN =
∫ 2π

0
dϕ e−iϕN

2π DN
E [ϕ] I[ϕ]

PES: 18O

3D PNP-HFBLN (PAV)

SLy4+ULB

9/99 ϕ-integration points

XDivergence when a pair of states crosses λ, Anguiano et al. (2001)

XOffset in the PES before and after the crossing, Dobaczewski et al. priv. comm.

XMore dramatic consequences for VAP calculations



Substracting the HFB energy = gain from projection

PES: 18O

3D PNP-HFBLN (PAV)

SLy4+ULB+Trans. Dens.

9/99 ϕ-integration points

Depends on discretization

Divergences and steps



Origin: self-interaction and self-pairing in DFT

I. Self-interaction

A single nucleon in a state ϕµ cannot interact with itself

XApproximate functionals are usually not self-interaction free

XWell known issue in Kohn-Sham DFT, Perdew and Zunger (1981)

XViolation of the Pauli principle at the two-body level

XExists in Nuclear DFT (Skyrme, Gogny, RMF) but has never been addressed

II.

X

X



Origin: self-interaction and self-pairing in DFT

I. Self-interaction

A single nucleon in a state ϕµ cannot interact with itself

XApproximate functionals are usually not self-interaction free

XWell known issue in Kohn-Sham DFT, Perdew and Zunger (1981)

XViolation of the Pauli principle at the two-body level

XExists in Nuclear DFT (Skyrme, Gogny, RMF) but has never been addressed

II. Self-pairing

Two fermions in a pair of conjugated states (ϕµ, ϕµ̄) cannot get additional
binding through a pairing process by scattering onto themselves

XExists at the level of HFB ⇒ spurious contributions to the energy

XPair additive problem

Both are responsible for the dramatic problems at the level of PNP-HFB



Spurious contribution to EN in realistic PNP-HFB

EN
spu. =

∑

µ>0

[(

wρρ
µµµµ + wρρ

µ̄µ̄µ̄µ̄ + wρρ
µµ̄µµ̄ + wρρ

µ̄µµ̄µ

)

− 4wκκ
µµ̄µµ̄

]

u2
µv4

µ̄

∫ 2π

0

dϕ
e−iϕN

2π DN

e2iϕ
(

e2iϕ − 1
)

(

u2
µ + v2

µ̄ e2iϕ
)2

∏

ν>0

(u2
ν+v2

ν̄ e2iϕ)

XRemoves the spurious contribution to EN = divergences and steps

XDoes not modify the HFB functional (= functional at ϕ = 0)

XCorrect ”only” the most dramatic self-interaction/-pairing effects



Removing divergences

XS-shape corrections right when neutrons/protons levels cross λ

XAdd up to reproduce the profile of spurious divergences

XEliminate perfectly the divergences (numerically stable)



Removing divergences AND steps

XThe projected PES is significantly modified when removing the spurious poles

XEN
corr. is independent on the number of integration points on a scale of 1 keV

XSign of the correction can change ; sum rule
∑

N DN EN
spu. = 0



Conclusions and perspectives

I. Skyrme phenomenology

XNeed to select and reproduce more benchmark ab-initio results.

Ex: potential energy in (S, T ) channels. Need to be validated as a benchmark

XNeed to understand over-constraints from covariant analysis of parameters

XNeed to go beyond the standard Skyrme functional

II. Particle Number Projected DFT

XSolution to the problem of divergences and jumps in Particle Number Projected DFT

XSolution exists for higher-order density dependences

XWorks for Relativistic DFT, T. Niksic, D. Vretenar, P. Ring, priv. comm.

XMore systematic study: order of magnitude, stability, impact on GCM mixing . . .

XSelf-interaction and self-pairing processes must be corrected for systematically in DFT

XProjected DFT needs to be properly motivated/constructed



Improved phenomenology X Improving single-particle spectra is crucial

X Tensor force could help (see Jacek’s talk on thursday)

X Data on superdeformed states, fission isomers/barriers of (exotic) nuclei

X Constrain time-odd terms (odd nuclei? high-spin states? spin modes?)

X Pairing: gradient versus density dependences (isovector, low-density)

Connection to underlying methods ♠ Skyrme/Gogny functionals do not offer enough freedom ⋆

⇒ Need guidance beyond a fit on existing data

♠ Functional validated through well-defined benchmark ab-initio results ⋆

♠ Constructive framework from EFT (coherent 2-body/3-body)

♠ EFT + renormalization group ≡ Vlowk+ MBPT

♠ Gradient versus density dependences through DME

Long term strategy ♠ Avoid a ”re-invent the wheel” approach

♠ Perdew in Coulomb DFT: ”Jacob’s ladder” of DFT

♠ Covariant analysis of parameters ; error estimate ; relevance of new data

♠ Improved fitting schemes

Grounding nuclear DFT ♠ No Hohenberg-Kohn theorem for projected-GCM DFT

⇒ Ad-hoc prescription to go from HFB to projected-GCM

♠ Ill-defined Particle-Number Projected DFT ⋆

♠ Study spurious self-interaction/-pairing processes and correct for them ⋆

Multidimensional projected GCM ♠ Breaking more spatial symmetries

♠ Combine quadrupole, octupole, and pairing vibrations

♠ Approximate schemes to reduce computional cost

♠ Inclusion of correlations in the fit of the functional



Constraining the isovector effective mass m∗
v

T. Lesinski, B. Cochet, K. Bennaceur, T. D. and J. Meyer

I. Why ? Because m∗
s and m∗

v influence

♣ Masses and single-particle density of states
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