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We cannot solve the full problem in the complete
Hilbert space, so we must truncate to a finite model

space



No Core Shell Model

Want to solve the A-body Schroédinger equation

H¥" = E,¥"

Ref: P. Navratil, J.P. Vary, B.R.B., PRC 62, 054311 (2000)



No-Core Shell-Model Approach
* Start with the purely intrinsic Hamiltonian

: There are 1o phenomenological s.p. energies

h space: Argonne V8’, AV18
Canuseany g Nijmegen |, I
NN potentials

- space: CD Bonn, EFT Idaho




No-Core Shell-Model Approach
* Next, add CM harmonic-oscillator Hamiltonian
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Defines a basis (i.e. HO) for evaluating




Effective Interaction

* Must truncate to a model space V. ==

* In general, i is an ~-body interaction

* We want to make an a-body cluster approximation




Two-body cluster approximation (a=2)
H~HD ; H®)
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Carry out a unitary transformation on H“(22

s —s(2) (2) D) - : "
Ho = e > Hsite® where S is anti Hermitian

Qe }HQ S9p, =0 where @ = Q,5?)p,




Two-body cluster approximation (a=2)

It is convenient to write S@in terms of another operator
ROREER 5(2) — orctanh (w—w") with QuwPs=w

Analogously, any arbitrary operator can be written in the
P space as

P> + Pow' @ O P2 + QowP?

\/ PE —l_ L'L':TL-L-: \/ P 2 —I— L,;_,..‘-‘T W




Let E; and|[k) be the eigensolutions of H},
HZ (k) =E | k)

Let |ap)and [ag) be HO states belonging to

the model space P and the excluded space Q,
respectively.

(gl ky= X {aglofos)(op] k)
0] f P

<ocQ|(:o|0cF,>:k§7< (oglk)<k|ap)




NCSM ROAD MAP

1. Choose a NN interaction (or NN + NNN interactions)

3. Calculate (ocg| o | ocE>: Y. {og| kn) (En| Op)
ke K

4. Determine H="and O¢" in the given model space

5. Diagonalize =" in the given model space, i.e.,
Nmax BQ = energy above the ground state

[) increasing N,.., and/or cluster level
ii) several values of 7#Q2
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H. Kamada, et al., Phys. Rev. C 64, 044001 (2001)
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Benchmark test calculation of a four-nucleon bound state

s a —

In the past, several efficient methods have been developed to solve the Schrodinger equation for four-
nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel

Gaussian-basis variational, the stochastic variational. the hyperspherical variational, the Green’s function
Monte Carlo. the no-core shell model, and the effective interaction hyperspherical harmonic methods. In this
article we compare the energy eigenvalue results and some wave function properties using the realistic AV’
NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to
calculate the four-nucleon bound state.
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Let E; and|[k) be the eigensolutions of H,
HS k)= E [k)

Let |ap)and [ag) be HO states belonging to

the model space P and the excluded space Q,
respectively.

(gl ky= X {aglofos)(op] k)
0] f P

<ocQ|(:o|0cF,>:k§7< (oglk)<k|ap)




A. Nogga, et al., NPA 737, 236 (2004)

NCSM - °Li T=0
Idaho N3LO




A. Nogga, et al., nucl-th/0511082 (2005)
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Figure 2. NCSM and GFMC NN pair density in




Renormalization of other physical operators




Nucleus

Observable

Model Space

Bare operator

Effective operator

Qo
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B(E2,2{0 — 0%0)
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Stetcu, Barrett, Navratil, Vary, Phys. Rev. C 71, 044325 (2005)

small model space: expect larger renormalization

large variation with the model space

three-body forces: might be important, but not the issue

a — A for fixed model space;

P — ~ for fixed cluster.




Range dependence
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Longitudinal-longitudinal distribution function
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Model space independence at high momentum transfer: good renormalization
at the two-body cluster level




Microscopic approach to nuclear reactions

Where is the challenge?

Full and consistent treatment of the FSI also beyond
the 3-body breakup threshold

Channels up to the m—production threshold

FSI @
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Lorentz integral transform 101
Efros, Leidemann, Orlandini, Phys. Lett. B338, 130 (1994).

Z| LD|O|tyx E Ep)

LIT approach: calculate the transform of R(E) and then invert:

O[R](c) = / R(E)K (o, E)dE

Lorentz kernel: .

(E —oRr)? —I—G‘?

K(o,E) =
b[R](o) = (

(H—ogr —io;)|o) = Oliy)




LIT convergence: 4He s PN
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The “He photoabsorption cross section

within and NCSM through LIT
(test calculation with semirealistic interaction)
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Bacca, Stetcu, Quaglioni et al.




Towards a unified decription of the nucleus

probe medium and heavy mass nuclei off the line of
stability

The goal of nuclear theory:
exact treatment of nuclei based on NN and NNN interactions

=) need to build a bridge between:

e & calculations: A < 24
» 07€Q Shell Model calculations: 16 < A <60
» Density Functional Theory calculations: A > 60




The NCSM and RIA

The NCSM provides a microscopic understanding of light
nuclei, based on the properties of the NN + NNN interactions.

By investigating the intersections between these theoretical
strategies, RIA will provide the experimental tool for developing
the unified description of the nucleus.

The NCSM builds the bridge to predictive power for these
approaches for heavier mass nuclei as well as tying the

microscopic theory to the basic hadron physics of the nuclear
Hamiltonian.




