Normal Spin Asymmetries:

Resonance Region

Barbara Pasquini University of Pavia / INFN Pavia in collaboration with M. Vanderhaeghen College of William & Mary / JLab

Outline

Normal spin asymmetries related to T-odd effects in elastic electronnucleon scattering \longrightarrow direct measurement of the absorptive part of $2-\gamma$ exchange box diagram

Unitarity to relate the absorptive part of $2-\gamma$ **exchange amplitude to** pion electroproduction amplitudes

Estimates of resonance contribution to Beam and Target Normal asymmetries

Pasquini, Vanderhaeghen, Phys. Rev. C70 (2004)

Transverse beam spin asymmetry

$$A \sim 2 \operatorname{Im} \left(T_{f\,i}^* \operatorname{Abs} T_{f\,i} \right) - |\operatorname{Abs} T_{f\,i}|^2 = |T_{f\,i}|^2 - |T_{\tilde{f}\,\tilde{i}}|^2$$

 \blacksquare Perturbation theory in α_{em}

$$\implies \text{to } \mathcal{O}(\alpha_{em}^2) \quad |T_{f\,i}^{1\,\gamma}|^2 - |T_{\tilde{f}\,\tilde{i}}^{1\,\gamma}|^2 = 0$$

 $1\,\gamma$ exchange gives no contribution to spin asymmetries

 \rightarrow to $\mathcal{O}(\alpha_{em}^3)$

$$|T_{f\,i}|^2 - |T_{\tilde{f}\,\tilde{i}}|^2 = 2 \operatorname{Im} \left(T_{f\,i}^{*\,1\gamma} \operatorname{Abs} T_{f\,i}^{2\,\gamma} \right)$$

spin asymmetries arise from interference of 1γ exchange and absorptive part of 2γ exchange

Model for the hadronic tensor

Elastic contribution

on-shell nucleon intermediate states

Inelastic contribution

X= π **N**

resonant and non-resonant π N intermediate states calculated with MAID2000

MAID

Drechsel, Hanstein, Kamalov, Tiator, NPA645 (1999)

 M_{1+}, E_{1+}, L_{1+}

M₂₋, E₂₋, L₂₋

 M_{1-}, L_{1-}

 E_{0+}, L_{0+}

 E_{0+}, L_{0+}

 E_{0+}, L_{0+}

M₃₋, E₃₋, L₃₋

 M_{2-}, E_{2-}, L_{2-}

 M_{2+}, E_{2+}, L_{2+}

 M_{1+}, E_{1+}, L_{1+}

 $M_{3_{-}}, E_{3_{-}}, L_{3_{-}}$

M₃₊, E₃₊, L₃₊

 M_{1-}, L_{1-}

Kinematical limits

 $\begin{array}{l} \mathbf{Q^2}_1\simeq\mathbf{0},\ \mathbf{Q^2}_2\simeq\mathbf{0}\\ \\ \\ \mathbf{k}\\ \mathbf{k}_1=\mathbf{0},\ \mathbf{W}=\sqrt{\mathbf{s}}-\mathbf{m}_{\mathbf{e}} \end{array}$

Kinematical bounds for Q_1^2 and Q_2^2

Beam normal spin asymmetry: energy dependence at fixed θ_{cm} =120°

Beam normal spin asymmetry

Integrand : beam normal spin asymmetry Ee = 0.855 GeV

Beam normal spin asymmetry

Ee = 0.570 GeV

Target normal spin asymmetry

Integrand : target normal spin asymmetry

Target normal spin asymmetry Ee = 0.570 GeV

Conclusions

- TSA in elastic electron-nucleon scattering : unique new tool to access the imaginary part of 2γ exchange amplitudes
- Imaginary part of 2γ amplitude
 absorptive part of non-forward doubly VCS tensor
- Unitarity to relate the absorptive part of doubly VCS tensor to pion-electroproduction amplitudes
 TSA in the resonance region as a new tool to extract information on resonance transition form factors
- Outlook: to access the real part of the 2-γ exchange amplitudes through a dispersion relation formalism
 a precise knowledge of the imaginary part 2-γ exchange amplitudes
 - is a necessary prerequisite