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Long range Coulomb force

Problem:

The plane wave Born approximation (one photon exchange)
may become inadequate for processes where heavy nuclei
are involved.

• Charged particles are subject to virtual radiative cor-
rections which are related to the long-range Coulomb
forces

→ exchange of many soft photons.

• The relevant expansion parameter αZ for perturba-
tion theory is not small (e.g. αZ ≃ 0.6 for lead,
where Z=82).

Example:
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Inelastic scattering on a heavy nucleus with charge Z.



Quasielastic (e,e’) scattering

Electron scattering is the main tool to explore the structure of

nuclei. Nucleon knockout reactions (e.g., (e,e’p)) provide a pow-

erful probe of several properties of the nucleons inside the nu-

cleus. The transparency of the nuclear volume with respect to

electrons makes it possible to study the entire nuclear volume.

e

e′

p, n (e.g.)

Inclusive (e,e’) scattering (where only the final electron is ob-
served) provides information about

• the nuclear Fermi momentum (width of the quasielastic
peak)

• the high-momentum components of nucleon wave func-
tions (tail of the quasielastic peak)

• modifications of the nucleon form factors inside a nucleus

• information about infinite nuclear matter by extrapolation
A → ∞.



Quasielastic peak

For electron scattering on a proton at rest, we obtain from four
momentum conservation

−Q2 = (ki − kf )2 = (pf − pi)
2 = 2m2

p − 2mpEf ,

and therefore

ω = (Ef − mp) =
Q2

2mp

.
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Quasielastic scattering on 208Pb with initial electron energy ǫi =
485 MeV, ωP eak = 100 MeV.

A. Zghiche et al., Nucl. Phys. A572 (1994) 513.



Knockout cross section

The differential cross section for nucleon knockout is given by

d4σ

dǫf dΩf dEf dΩf

=

4α2ǫ2f EF PF δ(ǫi + EA − ǫf − EF − EA−1)
X

|Wif |
2,

with the matrix element

Wif =

Z

d3x

Z

d3y

Z

d3q

(2π)2
je
µ(~x)

e−i~q(~x−~y)

q2
µ

J
µ
N (~y),

where J
µ
N (~y) is the nucleon current obtained from some suitable

model and q2
µ the virtuality of the exchanged photon.

In the plane wave Born approximation, the electron current is
given by

jµ(~x) = ūsf
(~kf )γµusi(

~ki)e
i~ki~r−i~kf ~r,

where the usi , usf
are the initial/final state plane wave electron

spinors corresponding to the initial/final electron momentum ki,f

and initial/final spin si,f .

However, the Coulomb potential of nuclei distorts the electron
wave functions such that the plane wave Born approximation
becomes inaccurate.



Distortion of the wave front:
eikonal approximation

Highly relativistic electron in a potential V with momentum ~k:

m ≪ V ≪ |~k|

~rb

z

Classical motivation: Highly energetic electron incident in z-

direction is moving along a straight line with impact parameter

b.

The momentum k = |~k| is enhanced due to the attractive nucleus

(E − V )2 = ~k2 + m2 → k = E − V for m ∼ 0.

The momentum change can be taken into account by modifying

the plane wave describing the electron by an eikonal phase χi(~r)

ei~ki~r → ei~ki~r+iχi(~r),

where

χi(~r) = −

z
Z

−∞

V (x, y, z′) dz′.

Reason:
∂z

i
ei~ki~r+iχi(~r) = (ki

z − V (~r ))ei~ki~r+iχi(~r)



Eikonal distorted wave Born approximation

~rb

z

b
′

z′
~ki

~kf

The final state wave function is modified analogously by replacing

ei~kf ~r
→ ei~kf ~r−iχf (~r),

where

χf (~r) = −

∞
Z

0

V (~r + k̂fs′)ds′.

In the eikonal distorted wave born approximation (EDWBA), the
electron current

jµ(~r, t) = ūsf
(~kf )γµusi(

~ki)e
i~ki~r−i~kf ~r−i(ǫi−ǫf )t

is replaced by an improved expression

jµ(~r, t) = ūsf
(~kf )γµusi(

~ki)e
i~ki~r−i~kf ~r−i(ǫi−ǫf )teiχ(~r),

where χ(~r) = χi(~r) + χf (~r).



Focusing

The attractive electrostatic potential of the nucleus leads to a
focusing of the electron wave in the nuclear vicinity.

Nucleus

b(b ,z)

db(b ,z)

0 0

db0
0

b

z

A classical calculation leads to the same approximate result as
an approximate quantum mechanical calculation for the focusing
in the center of the nucleus: The amplitude of the electron wave
(Ψ̄i,f γ0Ψi,f )1/2 in the nuclear center (r = 0) is enhanced by a
factor

ki,f
eff /k, ki,f

eff = ki,f
− V (0).

Example: An electron with initial energy/momentum 300 MeV(/c),
energy transfer ω = 100 Mev. Modification of the cross section
due to focusing by a Pb nucleus (V (0) ∼ 25 MeV)
∼ (325/300)2 × (225/200)2 = 1.49.
N.B. (319/300)2 × (219/200)2 = 1.36

Exact calculations show how the focusing is varying inside the

nuclear volume.



Electron wave functions in a central

electrostatic field

Dirac spinors describing states with definite angular momentum

and parity can be decomposed into a radial and an angular part

ψµ
κ =

„

gκ(r)χµ
κ(r̂)

ifκ(r)χµ
−κ(r̂)

«

where the angular dependence is given by sperical harmonics

χµ
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0
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where κ = ±1,±2, ... is related to j and l by

κ = l(l+ 1) − (j +
1

2
)2, j = |κ| −

1

2
, l = j +

1

2
sgn(κ).

The radial functions g and f fulfill the coupled differential equa-

tions
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Electron wave function in the
electrostatic potential of 208Pb
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Surface and color plot of (Ψ̄γ0Ψ)1/2 for an electron with energy

100 MeV incident on a point-like charge (Z = 82).



Electron wave function in the
electrostatic potential of 208Pb
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Visualization of the distortion of the wave front of the first

(largest) spinor component (Reψ1/|ψ1|) for an electron with

energy 100 MeV incident on a point-like charge (Z = 82).



Focusing of the wave function in the nuclear
center (Pb, V (0) = 25.7 MeV)
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The prediction of the effective momentum approximation (EMA)
that the amplitude of the electron wave function is enhanced by a
factor of (k−V (0))/k in the nuclear center, is very well fulfilled.

However, according to Lenz and Rosenfelder, we can expand

ψτ = e±iδ
1/2

k′

k
ei~k′~r[1+g(1)(a, b,~k′, ~r)+g(2)(a, b,~k′, ~r)+...]uτ ,

k′ = k +
3αZ

2R
, δ1/2 = αZ

„

4

3
− log 2kR

«

+ b,

a = −
αZ

6k′R3
, b = −

3αZ

4k′2R2
,

with ~k′ parallel to ~k. These values enter the first-order term
according to

g(1) = ar2 + iar2~k′~r ± ib[(~k′ × ~r)2 + 2i~k′~r − ~s(~k′ × ~r)].



Focusing of the wave function in longitudinal
direction
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g(1) = ar2 + iar2~k′~r ± ib[(~k′ × ~r)2 + 2i~k′~r − ~s(~k′ × ~r)].
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Focusing of the wave function in transverse
direction
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Wave lenght modification due to the
electrostatic potential
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In order to check the quality of the eikonal approximation which
modifies the (incoming) electron phase according to

χi(~r) = −

z
Z

−∞

V (x, y, z′)dz′ ,

one may calculate the phase of the first (large) component ψ1
1/2

from the exact electron spinor along the z-axis, and extract the
quantity χex

i by setting

eikiz+iχex

i
(z) = ψ1

1/2(z)/|ψ1
1/2(z)|.

If the eikonal approximation were exact, then the derivative d
dz
χex

i (z)
would be equal to the negative value of the electrostatic potential

d

dz
χex

i (z) = −V (z).



Average focusing and average momentum

One is naturally lead to the idea to calculate an average focusing
factor f̄ defined by

f̄ 2 =

R

d3rψ̄τ (~r)γ0ψτ (~r)ρ(r)
R

d3rρ(r)
,

where ρ(r) is the nuclear matter density distribution (∼ charge
density profile of the nucleus for sufficiently large mass numbers
A > 20).

For a typical electron energy of 400 MeV, one obtains
f̄ = 1.050 for 208Pb, corresponding to an effective potential
value of −20.07 MeV (with a central potential depth of V0 =
−25.7 MeV).
For 40Ca one obtains −7.76 /− 10.4 MeV.

Defining an effective potential value V̄ by

V̄ =

R

d3rψ̄τ (~r)γ0ψτ (~r)ρ(r)V (r)
R

d3rψ̄τ (~r)γ0ψτ (~r)ρ(r)
,

leads to the very similar values V̄ = −20.12 MeV for 208Pb and
V̄ = −7.78 MeV for 40Ca.

This observation is a strong argument that both the focusing and
the modification of the electron momentum inside the nucleus are
well described by effective momenta corresponding to an effective
potential ∼ 3V0/4 . . . 4V0/5.



Transition charge density
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Effective momentum approximation

The basic idea of the effective momentum approximation is to
replace the plane wave part of the electron wave functions by

ei~ki,f ~r →
k′

i,f

ki,f

ei~k′

i,f ~r.

The quasielastic scattering cross section is calculated by using
the effective momenta ~k′

i,f instead of ~ki,f .

The cross section is multiplied additionally by a factor (k′

i/ki)
2

which accounts for the focusing of the incoming electron wave
in the nuclear center. The cross section is not multiplied by
(k′

f /kf )2, because this factor is already contained in the artifi-

cially enhanced phase space factor of the outgoing electron.

The cross section for inclusive quasielastic electron scattering can
also be written by the help of the total response function Stotal

as
d2σ

P W BA

dΩfdǫf

= σMott × Stotal(|~q |, ω,Θe), (1)

where the Mott cross section is given by

σMott = 4α2 cos2(Θe/2)ǫ2f /q4

µ. (2)

The Mott cross section remains unchanged when it gets multi-
plied by the EMA focusing factors and the momentum transfer
q4
µ is replaced by its corresponding effective value. Therefore, the

EMA cross section can also be obtained from (1) by leaving the
Mott cross section unchanged and by replacing Stotal(|~q |, ω, Θe)

by the effective value Stotal(|~k
′

i −
~k′

f |, ω, Θe).



Simplification of the scattering matrix element

The DWBA transition amplitude for one-photon exchange in real
space

Z

d3red3rN

n

ρe(~re)ρif (~rN ) −~je(~re) ~Jif (~rN )
o eiωr

|~re − ~rN |

can be simplified according to Jörn Knoll (Nucl. Phys. A223,
1974, 462-476) by the help of an operator S

S = ei~q~r
X

n=0

 

2i~q ~∇ + ∆

~q 2 − ω2

!n

e−i~q~r, ~q = ~ki − ~kf ,

such that the transition amplitude can be expanded in a more
convenient local form (Q2 = ~q 2 − ω2)

Tif =
4π

Q2

Z

d3r
h

ρif (~r)Sρe(~r) − ~Jif S~je(~r)
i

.

The single integral is limited to the region of the nucleus, where

the nuclear current is relevant. The transition amplitude can be

calculated therefore by numerical integration on a three-dimensional

grid.



Focusing versus enhanced momentum transfer

Considering terms up to second order in the derivatives only one
obtains for the operator S

S ≈ ei~q~r

"

1 +
2i~q ~∇ + ∆

Q2
−

4(~q ~∇)2

(Q2)2

#

e−i~q~r

The gradient operator ~∇ in probes mainly the distortion of the
electron current due to the nuclear Coulomb potential.
A short calculation shows that (ǫi,f ≫ m)

Q′2

Q2
=

k′

ik
′

f

kikf

, (1)

where Q′2 = (~k′

i −
~k′

f
)2 − ω2 is the effective four-momentum

transfer squared. When cross sections are calculated using the
EMA, the enhanced photon propagator appearing in the matrix
element cancels exactly the focusing effect of the initial and final
state wave function.

A numerical analysis of the effect of the Knoll operator on the

electron current shows that this is indeed also true for the DWBA

to a relatively high degree of accuracy. However, this does not

mean that effects are absent in the full calculation of transi-

tion matrix elements which lead to deviations between EMA and

DWBA.



Knoll operator
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Eikonal and EMA calculations revisited
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Old eikonal approximation calculation with overestimated focus-
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Coupling to nuclear current

Preliminary calculations with

• harmonic oscillator wave functions for bound
nucleon states and

• plane waves for final nucleon states

confirm the validity of an EMA-like description.

Bound states are characterized by

• quantum numbers (n, l, m)

• associated binding energies
EB = V0 − (N + 3

2
)~ωo, N = 2n + l − 2,

~ωo ∼ 41 MeVA−1/3

• the rms radius given by the equation
〈nl|r2|nl〉 = x2

o(N + 3

2
), x2

o = ~/mnωo.

EMA-like behavior can be observed even for inclusive (e,e’) scat-
tering on filled shells (i.e. after summing over magnetic quan-
tum numbers m = −l...l for given energy and angular mo-
mentum ∼ N, l) for initial electron energy > 400 MeV and
Q2 > (400 MeV)2.

Exact match of DWBA and EMA can often be reached with

‘optimized’ effective potential Veff < 20 MeV for individual

shells. The difference between DWBA and EMA cross sections

(for Veff = 20 MeV) is typically in the range of 0... ± 8%, and

becomes smaller for growing momentum transfer and electron

energies.



However:

Harmonic wave functions or plane waves provide a very poor
description of the nucleon wave functions. Coulomb corrections
may depend strongly on the nuclear model.

But:

Using plane waves for nucleons with ‘wrong’ energy, i.e. vary-
ing the energy of the outgoing nucleons by ±20 MeV does not
change the situation significantly: Absolute inclusive cross sec-
tions are changed, but the DWBA results still show an EMA-like
behavior.

Filled shells (spherically symmetric configurations) still show an
EMA-like behavior.

Therefore, one may conclude that the exact structure of the nu-

clear current is relevant for the calculation of absolute cross sec-

tions, but an EMA-like description can be found independently

of the model used for the nucleus. Calculations with more real-

istic nucleon wave functions will follow in the forthcoming weeks

in oder to clarify how the discrepancy between EMA and exact

(DWBA) results can be described.



Conclusions

• The strong Coulomb field of heavy nuclei acts as a
kind of lens on electrons. The effect of the lens is
twofold:

– Focusing of the electron wave function

– Change of the electron momentum

in the nuclear interior.

• Both the average momentum and the average focus-
ing inside the nucleus can be described quite accu-
rately by a common parameter (effective potential).
The photon propagator cancels nearly exactly the fo-
cusing effect in the electron current (at least at high
energies).

• The effective momentum approximation works very
well for initial electron energies above 400 MeV and
Q2 > (400 MeV)2 in quasielastic (e,e’) scattering.
EMA probably slightly underestimates the cross sec-
tions, but this mismatch will be investigated in the
forthcoming weeks. Surprises at lower energies are
possible.

• There is a Rosenbluth-like procedure based on de-
tailed comparisons with DWBA calculations that in-
sures an extraction of the longitudinal and transverse
response functions even in heavy-weight nuclei like
208Pb.



Additional comments and explanations

Slide 3 (Long range Coulomb force):
Since αZ is large, a first order correction in αZ for observables
like e.g. scattering cross sections are not reliable.

Slide 4 (Quasielastic (e,e’) scattering):
For large momentum transfer (photon virtuality), e.g. Q2 >
(400 MeV)2, the typical length scale for the virtual photon is of
the order of 0.5 fm. When inclusive (e,e’) scattering is modeled
as knockout process of individual nucleons, the electron really has
to get ‘close’ to the nucleon in order to knock it (out). Therefore,
the knockout process has a quasilocal character and the photon
line in the picture should be ’much shorter’.

Slide 5 (Quasielastic peak):
Naive calculation of the position of the quasielastic peak leads to
ωP eak ∼ 100 MeV for the kinematics/data shown on the slide.
However, there is an additional shift of the peak due to the
(average) binding energy of the nucleons (∼ 25 MeV) AND due
to the Coulomb distortion of the electron (additional 10 MeV).

One must point out that so-called ‘exact’ calculations of Coulomb
corrections using a single particle shell model for the nucleus fail
to reproduce the cross section for large energy transfer (where
e.g. pion production sets in). It is therefore desirable to find
a general strategy which allows to analyse the effect of the
Coulomb distortion in experimental data (an EMA-like proce-
dure). This procedure might then depend not too strongly on
the details of the nuclear model.

Slide 7 (Eikonal approximation):
In an early attempt to calculate Coulomb corrections in inclusive
(e,e’) scattering, I used the eikonal approximation in conjunction



with a focusing factor (slide 9) given basically by the central fo-
cusing value which is too large. This has a non-negligible impact
on the size of the Coulomb corrections (see ‘N.B.’ on slide 9 and
slide 22).

Slides 10/11 (Electron wave functions...):
Details how electron scattering states are constructed from the
radial wave functions (which are obtained e.g. by numerical in-
tegration of the coupled differential equations) can be found in
the literature. Slide 11 shows the enhanced electron amplitude
inside a 208Pb nucleus (with a radius of about ∼ 7 fm) on a
plane which contains the nuclear center. The circle in the lower
picture depicts the nuclear radius of 7 fm.

Slides 13/14/15 (Focusing):
The focusing in the center of the nucleus is indeed very well ap-
proximated by (k − V (0))/k for high electron energies, but the
average focusing is smaller (mainly due to the transverse decay
of the focusing, slide 15). It can be calculated from an effec-
tive potential value Veff ∼ 20 MeV, whereas V (0) ∼ 25 MeV.
Also the average momentum of the electron in the nuclear region
is well described by this effective value. The first order correc-
tion in αZ to the electron wave function (for a homogeneously
charged sphere) provides indeed an inadequate description of the
Coulomb distortion (mainly in transverse direction). Slides 14/15
show the focusing along straight lines through the center of the
nucleus in direction of the electron momentum, and in transverse
direction, respectively.

Slide 16 (Wave length modification):
For electron energies larger than 300 MeV, the eikonal approx-
imation provides a very good description of the phase of the



electron wave function in the nuclear region.

Slide 17 (Average focusing):
The average focusing description works also for charge and cur-
rent densities constructed from different in- and out states (for
high enough electron energies). Slide 18 gives a visualization
of the transition charge density of an electron scattered by 60o,
with positive helicity in the initial and final state.

Slide 22 (Knoll operator):
The first picture shows the effective electron charge density in
the nuclear region for plane waves. The focusing of the electron
waves leads to an enhanced charge density (second picture). Ap-
plying the Knoll operator to the electron charge density leads to
the charge density shown in the third picture - the profile looks
asymmetric, however the total charge is again nearly exactly the
same as in the plane wave case. The effective momentum trans-
fer (photon propagator) cancels (approximately) the focusing ef-
fect this way.

Slide 23 (Eikonal and EMA):
The eikonal calculations published in Nucl. Phys. A were per-
formed using the central focusing factor which is too large. The
EMA calculations were also performed by using the central value
for lead (25 MeV). The upper plot shows the ratio of cross sec-
tions calculated in plane wave Born approximation for electrons
with the Coulomb corrected results in different approaches. Cor-
recting the EMA calculations by naive linear interpolation corre-
sponding to an effective potential value of 18.5 MeV towards the
PWBA result and reducing the eikonal result by using a smaller
focusing factor leads to the second plot: The EMA and improved
eikonal results show now a very similar behavior. The plot hints



at the possibility that EMA slightly underestimates the cross sec-
tions by about 4% (Kinematics: initial electron energy 485 MeV,
scattering angle 60o).


