Coulomb corrections in (e,e') using the eikonal expansion

Accuracy + insight

Steve Wallace University of Maryland

John Tjon
University of Utrecht

contents:

- Introduction
- Eikonal expansion: Klein-Gordon equation
- Eikonal expansion: Dirac equation
- Dirac lower components and helicity
- Current matrix elements
- Comparisons of focusing factors
- Effective momentum approximations
- Numerical calculations
- Summary

Introduction

- The goal is to measure nuclear response functions.
- Use θ_e dependence to separate σ_L and σ_T ?
- Electron distortion by Coulomb potential is a complication.
- How to remove the Coulomb effects in a reliable way?

What seems to be agreed upon?

- Remove radiation effects from experimental data.
- Compare with DWIA using Dirac-Coulomb waves for the electron.
- Use theoretical analysis as a guide to analysis of data.

The issues.

- Approximate methods that provide insight do not provide accuracy.
- Exact methods that provide accuracy do not provide insight.
- Nontrivial numerics:
 - Slowly converging partial wave expansions.
 - Multi-dimensional integrations.
- Different results from different groups.

What to do?

- Better approximations systematic and accurate ones.
- Agreement between different theoretical methods.
 - Insight and accuracy is the goal.

Cross checks of "black-box" results.

Analytical electron wave functions

K-G Eikonal approximation

Klein-Gordon equation

$$([E - V(r)]^2 - \mathbf{p}^2 - m^2)\psi(\mathbf{r}) = 0$$

$$\psi_{\mathbf{k}}^{(+)}(\mathbf{r}) \approx e^{ikz} e^{i\chi_0^{(+)}(\mathbf{r})},$$

$$\chi_0^{(+)}(\mathbf{r}) = -\frac{1}{v} \int_{-\infty}^z dz' V(r')$$

$$r' = \sqrt{z'^2 + b^2}$$

- How accurate?
- What about the "focusing factor"?

K-G Eikonal expansion

$$\psi_{\mathbf{k}}(\mathbf{r}) = e^{ikz} e^{i\chi^{(+)}} e^{-\omega^{(+)}},$$

$$\chi^{(+)} = \chi_0^{(+)} + \chi_1^{(+)} + \chi_2^{(+)} + \cdots$$

$$\omega^{(+)} = \omega_1^{(+)} + \omega_2^{(+)} + \cdots$$

$$\sim 1 \quad \sim \frac{V}{E} \quad \sim \frac{V^2}{E^2} \quad \sim \frac{V^3}{E^3}$$

- Asymptotic series.
- $V/E \approx 0.05$ for ^{208}Pb , E=500 MeV.
- Error \approx first term omitted \approx .00125.

Leading corrections to eikonal

$$\chi_{1}^{(+)}(\mathbf{r}) = -\frac{1}{2k} \int_{-\infty}^{z} dz' \Big([\nabla' \chi_{0}^{(+)}(\mathbf{r}')]^{2} - V^{2}(r') \Big)$$

$$\omega_{1}^{(+)}(\mathbf{r}) = \frac{1}{2k} \int_{-\infty}^{z} dz' \nabla'^{2} \chi_{0}^{(+)}(\mathbf{r}')$$

Analytical results for $V(r) = -Z\alpha/\sqrt{r^2 + R^2}$

Let
$$u = \sqrt{r^2 + R^2}$$
 and $w = \sqrt{b^2 + R^2}$, then

$$\chi_{\mathbf{0}}^{(+)}(\mathbf{r}) = \frac{\alpha Z}{v} ln \left(\frac{z+u}{w^2}\right)$$

$$\chi_{1}^{(+)}(\mathbf{r}) = -\frac{(Z\alpha)^2 b^2}{kv^2 w^4} \left(z+u+\frac{1}{2}wtan^{-1}\left(\frac{w}{z}\right)\right)$$

$$\omega_{1}^{(+)}(\mathbf{r}) = -\frac{Z\alpha R^2}{kvw^4} \left(z+u-\frac{w^2}{2u}\right)$$

K-G focusing factor

$$f_{KG}(\mathbf{r}) = e^{-\omega^{(+)}(\mathbf{r})}$$

ullet Enhanced ψ for ${\bf e}^-$ wave near nucleus.

$$\omega^{(+)}(\mathbf{0}) = \frac{V(0)}{2E}$$

$$f_{KG}(\mathbf{0}) \approx 1 - \frac{V(0)}{2E}$$

- Eikonal expansion required to get $f_{KG} \neq 1$.
- Dirac-Coulomb wave has different focusing factor.

Dirac-Coulomb Eikonal expansion

$$\psi(\mathbf{r}) = \begin{pmatrix} u(\mathbf{r}) \\ \ell(\mathbf{r}) \end{pmatrix}$$

Solve for upper-component spinor:

$$\left(E_1 - V - \sigma \cdot \mathbf{p} \frac{1}{E_2 - V} \sigma \cdot \mathbf{p}\right) u(\mathbf{r}).$$

$$E_1 = E - m \approx E$$
.

Then get lower component spinor:

$$\ell(\mathbf{r}) = \frac{1}{E_2 - V} \ \sigma \cdot \mathbf{p} \ u(\mathbf{r}).$$

$$E_2 = E + m \approx E$$
.

Upper component solution

$$\mathbf{u}_{\lambda}^{(+)}(\mathbf{r}) = \mathbf{f}_{\mathbf{D}}(\mathbf{r}) \quad \mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{z}} \quad \mathbf{e}^{\mathbf{i}\chi^{(+)}(\mathbf{r})} \quad \mathbf{e}^{\mathbf{i}\sigma_{\mathbf{e}}\bar{\gamma}^{(+)}(\mathbf{r})} \quad \xi_{\lambda}$$

$$\sigma_{\mathbf{e}} = \sigma \cdot \hat{\mathbf{b}} \times \hat{\mathbf{z}}$$

$$\mathbf{f_D}(\mathbf{r}) = \left(\mathbf{1} - rac{\mathbf{V}}{\mathbf{E_2}}
ight)^{1/2} \mathbf{e}^{-\omega^{(+)}(\mathbf{r})}$$

•
$$\chi^{(+)} = \chi_0^{(+)} + \chi_1^{(+)} + \chi_2^{(+)} + \cdots$$

•
$$\omega^{(+)} = \omega_1^{(+)} + \omega_2^{(+)} + \cdots$$

- Same $\chi_0^{(+)}, \chi_1^{(+)}, \omega_1^{(+)}$ as for K-G.
- $\bar{\gamma}^{(+)} = \frac{1}{2E} \left(\frac{\partial \chi^{(+)}}{\partial b} + i \frac{\partial \omega^{(+)}}{\partial b} \right)$.

Lower component for $m_e = 0$

$$\ell_{\lambda}(\mathbf{r}) = 2\lambda u_{\lambda}(\mathbf{r})$$

$$\lambda = \pm \frac{1}{2}.$$

Proof

$$\tilde{u}_{\lambda} = \sqrt{E - V} u_{\lambda}$$

$$\tilde{\ell}_{\lambda} = \sqrt{E - V} \ell_{\lambda}$$

$$h = \frac{1}{\sqrt{E - V}} \sigma \cdot \mathbf{p} \frac{1}{\sqrt{E - V}}$$

$$\tilde{u}_{\lambda}(\mathbf{r}) = h\tilde{\ell}_{\lambda} \quad \tilde{\ell}_{\lambda}(\mathbf{r}) = h\tilde{u}_{\lambda}(\mathbf{r})$$

$$\rightarrow h^{2}\tilde{u}_{\lambda} = \tilde{u}_{\lambda}$$

Eigenvalues: $h = 2\lambda = \pm 1$.

Error $\approx 10^{-5}$.

Current matrix element

$$J_{fi}^{\mu} = \int d^3r \bar{\Psi}_{\mathbf{k}_f \lambda_f}^{(-)}(\mathbf{r}) \gamma^{\mu} \Psi_{\mathbf{k}_i \lambda_i}^{(+)}(\mathbf{r}),$$

$$\Psi_{\mathbf{k}_{i}\lambda_{i}}^{(+)}(\mathbf{r}) = \frac{1}{\sqrt{2}} \begin{pmatrix} u_{\lambda_{i}}^{(+)}(\mathbf{r}) \\ 2\lambda_{i} \ u_{\lambda_{i}}^{(+)}(\mathbf{r}) \end{pmatrix},$$

Helicity is conserved.

$$J_{fi}^{\mu} = \delta_{\lambda_f \lambda_i} \int d^3 r e^{i(\mathbf{Q} - \mathbf{q}) \cdot \mathbf{r}} f_i(\mathbf{r}) f_f(\mathbf{r}) e^{i\chi(\mathbf{r})} j_e^{\mu}(\mathbf{r})$$

$$\chi(\mathbf{r}) = \chi_f^{(-)}(\mathbf{r}) + \chi^{(+)}(\mathbf{r})$$

$$f_i(\mathbf{0})f_f(\mathbf{0}) \approx \left(1 - \frac{V(0)}{\epsilon_f}\right) \left(1 - \frac{V(0)}{\epsilon_i}\right)$$

Helicity matrix elements

 θ_e is electron scattering angle.

$$j_{e}^{0} = \cos \frac{1}{2} \theta_{e} + \sin \frac{1}{2} \theta_{e} \left(X_{i} + X_{f} \right)$$

$$j_{e}^{T_{1}} = \sin \frac{1}{2} \theta_{e} \frac{k_{i} + k_{f}}{|\mathbf{Q}|} + \cos \frac{1}{2} \theta_{e} \frac{\omega}{|\mathbf{Q}|} \left(X_{i} - X_{f} \right)$$

$$j_{e}^{T_{2}} = \left(2i\lambda_{i} \right) \left[\sin \frac{1}{2} \theta_{e} - \cos \frac{1}{2} \theta_{e} \left(X_{i} + X_{f} \right) \right]$$

$$j_{e}^{L} = \cos \frac{1}{2} \theta_{e} \frac{\omega}{|\mathbf{Q}|} - \sin \frac{1}{2} \theta_{e} \frac{k_{i} + k_{f}}{|\mathbf{Q}|} \left(X_{i} - X_{f} \right)$$

$$X_{i} = \sin \gamma_{i}^{(+)} e^{2i\lambda_{i}\phi_{i}} \sim \frac{V}{\epsilon_{i}},$$

$$X_{f} = \sin \gamma_{f}^{(-)} e^{-2i\lambda_{f}\phi_{f}} \sim \frac{V}{\epsilon_{f}}.$$

- plane wave θ_e dependence in blue.
- New helicity dependent terms in red.

Focusing factors & currents

Dirac wave function

$$f_i(\mathbf{0})f_f(\mathbf{0}) \approx \left(1 - \frac{V(0)}{E}\right)\left(1 - \frac{V(0)}{E}\right)$$

Dirac current j_e^0

$$\cos\frac{1}{2}\theta_e + \sin\frac{1}{2}\theta_e \left(X_i + X_f\right)$$

Klein-Gordon wave function

$$f_i(\mathbf{0})f_f(\mathbf{0}) \approx \left(1 - \frac{V(0)}{E}\right)$$

Klein-Gordon current $j_e^{\mu}(\mathbf{r})$

$$\left[\epsilon_{i} + \epsilon_{f} - 2V(0), \mathbf{k}_{i} + \nabla \chi_{i}^{(+)} + \mathbf{k}_{f} - \nabla \chi_{f}^{(-)}\right]$$

$$\approx \left(1 - \frac{V(0)}{E}\right) \left[\epsilon_{i} + \epsilon_{f}, \mathbf{k}_{i} + \mathbf{k}_{f}\right]$$

DWIA matrix element

$$\frac{d\sigma}{d\Omega_f d\epsilon_f} = \int d\Omega_p \frac{4\alpha^2}{(2\pi)^5} |\mathcal{M}|^2 \epsilon_f^2 p E_p$$

$$\mathcal{M} = \int d^3r \int \frac{d^3q}{(2\pi)^3} e^{i(\mathbf{Q}-\mathbf{q})\cdot\mathbf{r}} e^{i\chi(\mathbf{r})} \times f_f(\mathbf{r}) f_i(\mathbf{r}) j_e^{\mu}(\mathbf{r}) \left(\frac{1}{\mathbf{q}^2 - \omega^2}\right) J_{\mu}^N(\mathbf{q}, \mathbf{p})$$

Effective momentum approximation:

$$\mathbf{q} \approx \mathbf{Q}_{eff} = \mathbf{Q} + \nabla \chi(\mathbf{0})$$

$$\mathcal{M}_{eff} = \left(\frac{1}{\mathbf{Q}_{eff}^2 - \omega^2}\right) \int d^3r e^{i\mathbf{Q}\cdot\mathbf{r}} e^{i\chi(\mathbf{r})} \times f_f(\mathbf{r}) f_i(\mathbf{r}) j_e^{\mu}(\mathbf{r}) \widetilde{J}_{\mu}^{N}(\mathbf{r}, \mathbf{p})$$

Correction

Use identity

$$\frac{1}{\mathbf{q}^2 - \omega^2} = \frac{1}{\mathbf{Q}_{eff}^2 - \omega^2} + \frac{1}{\mathbf{Q}_{eff}^2 - \omega^2} \left(\mathbf{Q}_{eff}^2 - \mathbf{q}^2\right) \frac{1}{\mathbf{q}^2 - \omega^2}$$

$$\mathcal{M} = \mathcal{M}_{eff} + \delta \mathcal{M}$$

$$\delta \mathcal{M} = \int d^3r \int \frac{d^3q}{(2\pi)^3} e^{i(\mathbf{Q}-\mathbf{q})\cdot\mathbf{r}} e^{i\chi(\mathbf{r})} f_f(\mathbf{r}) f_i(\mathbf{r}) j_e^{\mu}(\mathbf{r}) \times \left[\frac{1}{\mathbf{Q}_{eff}^2 - \omega^2} \left(\mathbf{Q}_{eff}^2 - \mathbf{q}^2 \right) \frac{1}{\mathbf{q}^2 - \omega^2} \right] J_{\mu}^N(\mathbf{q}, \mathbf{p})$$

6D integral for correction not done.

Calculations

$$\frac{f_i(\mathbf{0})f_f(\mathbf{0})}{\mathbf{Q}_{eff}^2 - \omega^2} = \frac{1}{\mathbf{Q}^2 - \omega^2} \quad (Traini)$$

- Leads to overall factor σ_{Mott} .
- What is the effect of the new terms in j_e^μ from spin-dependence of eikonal?

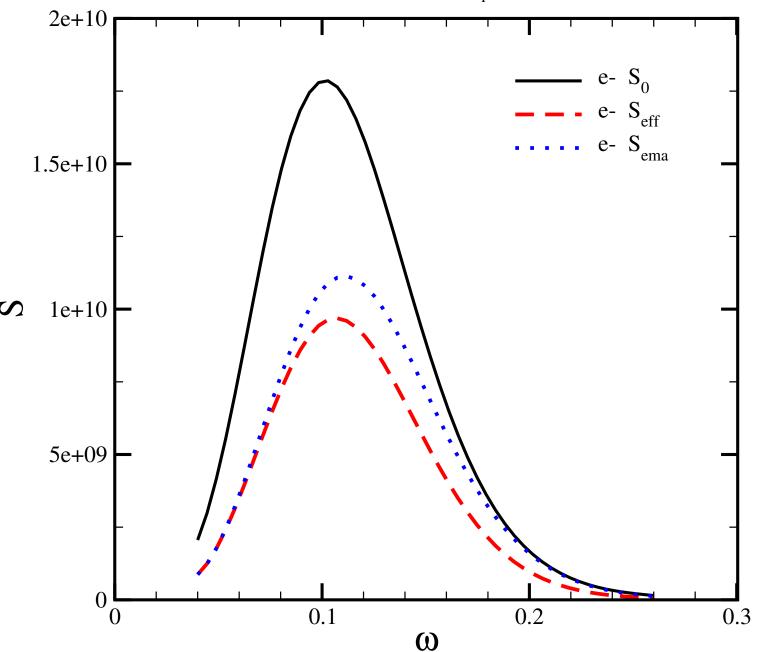
To get an idea we calculate response function $S_{\it eff}$

$$S_{eff} = \frac{1}{\sigma_{Mott}} \frac{d\sigma_{eff}}{d\Omega_f d\epsilon_f}$$

- $e\!f\!f$ denotes inclusion of new terms in j_e^μ , which mainly affect the $j_e^L J_N^L$ contribution.
- ema denotes omission of new terms.

Effective and leading order S_0

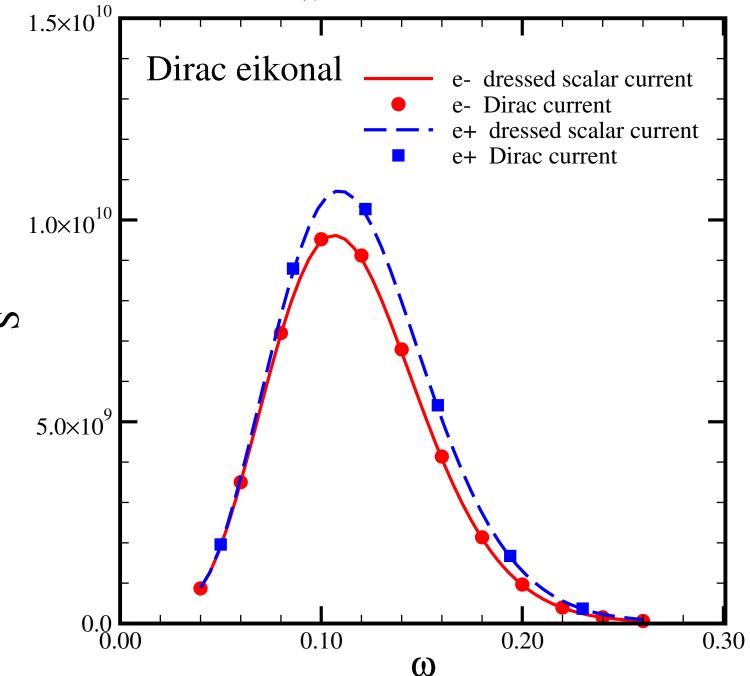
Dirac current $\theta=60^{\circ}$, $e_i=0.45$ GeV



—- S_0 uses Q^2 ;— — S_{eff} uses Q^2_{eff} ; · · · S_{ema} uses Q^2_{eff} but omits longitudinal current $J^L_e J^L_N$.

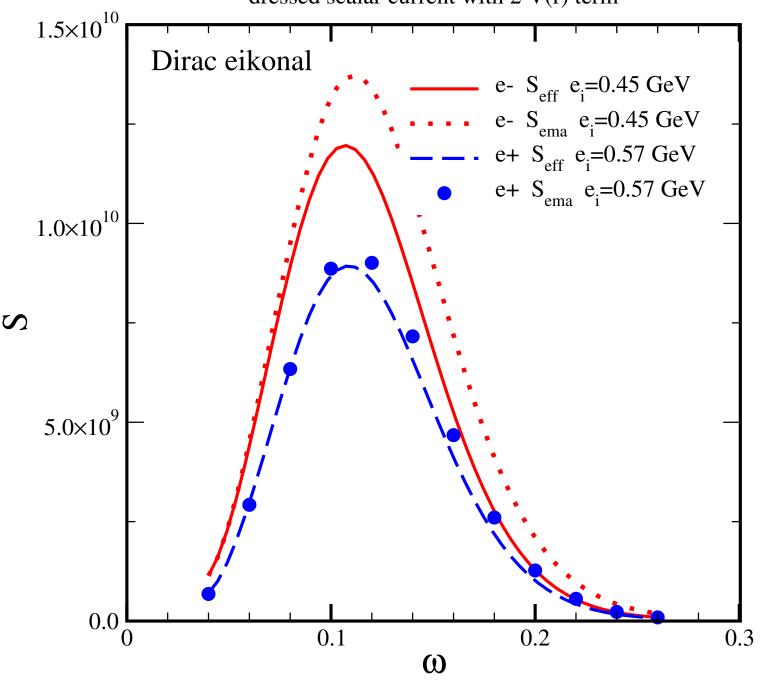
 S_{ef}

No 2V(r) term in dressed scalar current



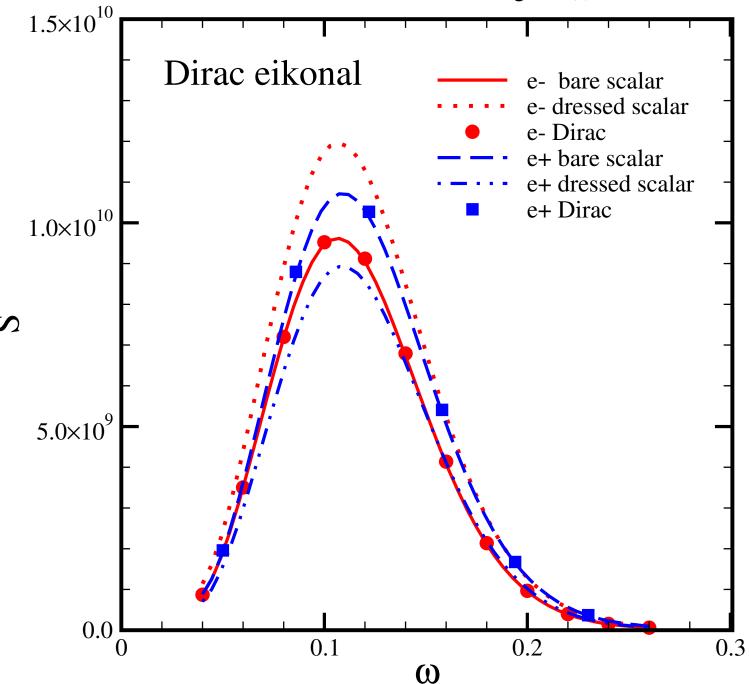
Comparison of currents: Klein-Gordon $e^-(---)$ and $e^+(-----)$; filled circles and squares show Dirac current.

 $S_{\mbox{eff}}$ VS $S_{\mbox{ema}}$ dressed scalar current with 2 V(r) term



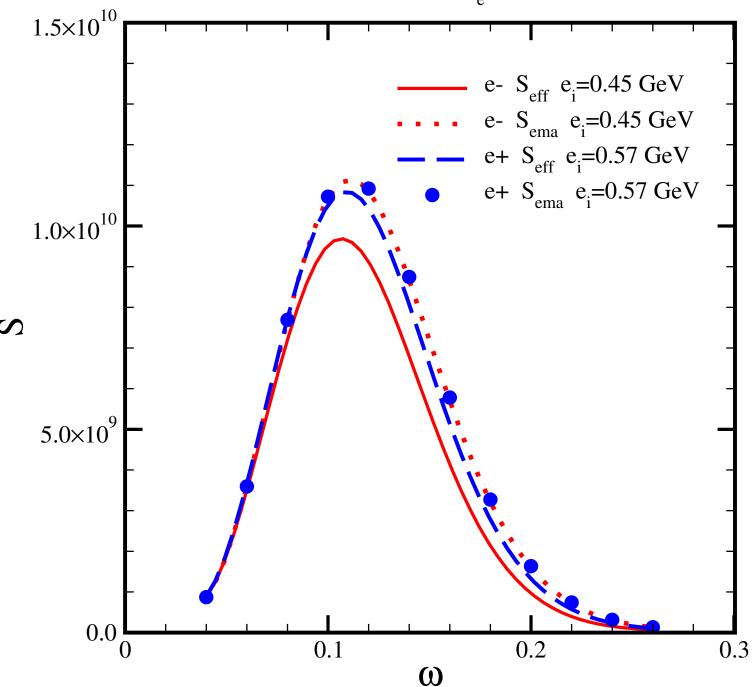
Comparison of currents: Klein-Gordon $e^-(---)$ and $e^+(----)$; filled circles and squares show Dirac current.

 $S_{\mbox{eff}}$ Dressed scalar current including 2 V(r) term



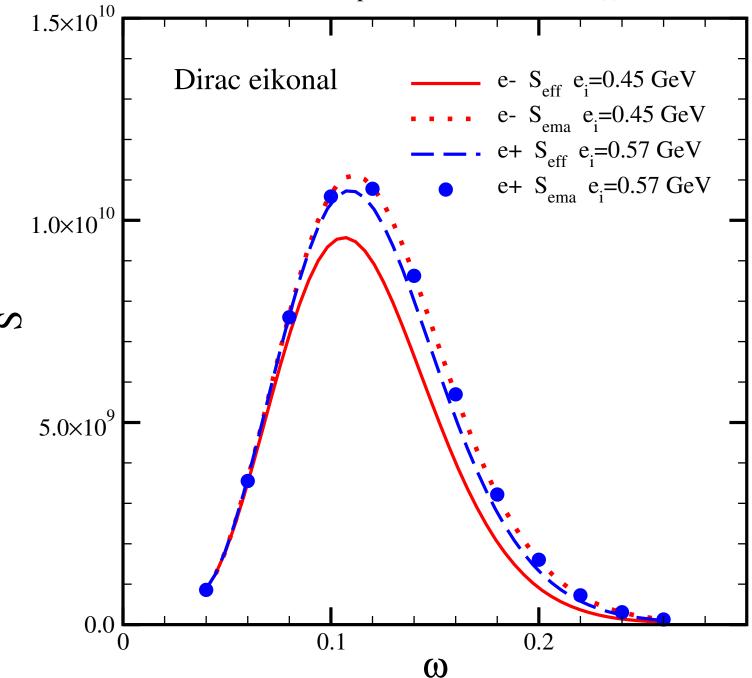
Comparisons of e^- and e^+ using Dirac eikonal. The use of either Dirac current or bare scalar current gives equivalents results.

- OK to use of Dirac focusing factor with bare scalar current.
- OK to use KG focusing factor with dressed KG current.
- Use of Dirac focusing factors with dressed scalar current is not consistent.
- \bullet Three factors of $\left(1-\frac{V(0)}{E}\right)$ is one too many.



Dirac current: Comparison of e^- (red) and e^+ (blue) for ema (omits $j_e^L J_N^L$ term) and eff (includes $j_e^L J_N^L$ term)

 $S_{eff} \ VS \ S_{ema}$ dressed scalar lepton current without 2 V(r) term



Scalar current: Comparison of e^- (red) and e^+ (blue) for ema (omits $j_e^L J_N^L$ term) and eff (includes $j_e^L J_N^L$ term)

Summary

- Eikonal expansion provides an accurate way to determine the DWIA wave functions.
- Analytical results for $V(r) = \frac{Z\alpha}{\sqrt{r^2 + R^2}}$.
- Lower component $\ell_{\pm\frac{1}{2}}(\mathbf{r})=\pm u_{\pm\frac{1}{2}}(\mathbf{r})$.
- Nontrivial corrections to current matrix elements.
- Response functions for e^+ and e^- very close based on $j_e^0 J_N^0$ coupling. (ema)
- Calculations for e^+ and e^- differ at 10-15% level when $j_e^L J_N^L$ term is included. (*eff*)