Constraints on Proton Structure from Precision Atomic-PhysicsMeasurements

John R. Hiller

jhiller@d.umn.edu

Department of PhysicsUniversity of Minnesota Duluth

Precision ElectroWeak Interactions, College of William and Mary, August 15-17, 2005 – p. 1/18

Introduction

- **•** consider difference between the well-known hyperfine splittings (hfs) in hydrogen and muonium.
- correct for magnetic moment and reduced mass effects.
- the large QED contributions for ^a pointlike nucleusessentially cancel.
- difference then due solely to proton structure.
- this provides ^a sum rule that constrains ^a particularcombination of proton form factors and structurefunctions.

Acknowledgments

- published as S.J. Brodsky, C.E. Carlson, JRH, and D.SHwang, PRL **⁹⁴**, ⁰²²⁰⁰¹ (2005); 169902(E) (2005).
- useful remarks in A.V. Volotka et al., Eur. Phys. J. D **³³**, 23 (2005).
- see also comments in J.L Friar and I. Sick, PRL **⁹⁵**, 049101 (2005) and the reply in PRL **⁹⁵**, ⁰⁴⁹¹⁰² (2005).
- work supported in part by US Department of Energy.

Outline

- *o* introduction
- sum-rule derivation \bullet
- **e** evaluation
- interpretation \bullet
- **CONCLUSIONS**

Hyperfine splittings

- Fermi energy: E_{F}^N with $N=\mu^+$ or $p, \, \mu_B=\frac{e}{2m}$, ar $\frac{N}{F}=\frac{8}{3}$ α 3 $\frac{1}{3\pi}$ μ B μ $\,N$ $\,m$ 3 e $(1{+}m_e/m_N)^3$, $^+$ or p , $\mu_B=\frac{e}{2m}$ $\frac{e}{2m_e}$, and μ_N $_N = (1 + \kappa_N) \frac{e}{2m}$ $2m_N$
- muonium $E_{\rm hfs}(e^ (\mu^{+}) = (1 + \Delta_{\mathrm{QED}} + \Delta^{\mu}_{R})$ $\,R$ $\frac{\mu}{R} + \Delta_h^{\mu}$ $\frac{\mu}{hvp}+\Delta_{\rm w}^{\mu}$ $^{\mu}_{\text{weak}})E^{\mu}_{F}$ $\,F$
- **•** hydrogen $E_{\mathrm{hfs}}(e^-p) = (1\!+\!\Delta_{\mathrm{QED}}\!+\!\Delta^p_{P}$ $R\overline{R}+\Delta_S+\Delta_h^p$ $_{hvp}^{p}+\Delta _{\mu }^{p}$ $_{\mu\nu p}^{p}+\Delta_{\text{weak}}^{p})E_{F}^{p}$
- construct ratio rescaled by μ_{N} \overline{N} and reduced masses

$$
\Delta_{\rm hfs} \equiv \frac{E_{\rm hfs}(e^-p)}{E_{\rm hfs}(e^-\mu^+)} \frac{\mu_\mu}{\mu_p} \frac{(1+m_e/m_p)^3}{(1+m_e/m_u)^3} - 1
$$

$$
=\frac{1+\Delta_{\text{QED}}+\Delta_R^p+\Delta_S+\Delta_{hvp}^p+\Delta_{\muvp}^p+\Delta_{\text{weak}}^p}{1+\Delta_{\text{QED}}+\Delta_R^{\mu}+\Delta_{hvp}^{\mu}+\Delta_{\text{weak}}^{\mu}}-1
$$

The atomic side

$$
\Delta_S = \Delta_{\text{hfs}} + \Delta_R^{\mu} + \Delta_{hvp}^{\mu} + \Delta_{\text{weak}}^{\mu}
$$

$$
-(\Delta_R^p + \Delta_{hvp}^p + \Delta_{\muvp}^p + \Delta_{\text{weak}}^p)
$$

$$
+\Delta_{\text{hfs}}(\Delta_{\text{QED}} + \Delta_R^{\mu} + \Delta_{hvp}^{\mu} + \Delta_{\text{weak}}^{\mu})
$$

- the leading $\Delta_{\rm QED}$ cancel.
- the remaining $\Delta_{\rm QED}$ can be replaced by the
Lessent endor examplisation \bullet lowest-order approximation, $\alpha/2\pi.$

The hadronic side

$$
\bullet \ \Delta_S = \Delta_Z + \Delta_{\text{pol}}
$$

- Zemach contribution: $\Delta_Z=-2\alpha m_e(1+\delta^{\rm rad}_Z)\langle r\rangle_Z$, with $\langle r \rangle_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[\frac{G_E(Q^2) G_M(Q^2)}{1+\kappa_p} - \right]$ $r\,$ $r\rangle_Z=-\frac{4}{\pi}$ α Ω Ω \ldots \ldots $\frac{4}{\pi}\int_0^\infty$ 0 dQ Q^2 $\frac{Q}{2}$ $\left[\frac{G}{2}\right]$ ${}_E(Q$ 2 $^{2})G$ $_M(Q$ 2 $\frac{(\rho^2)G_M(Q^2)}{1+\kappa_p}$ −1l
I
I
I
I
I
i
i
i
i
i
i
i
 = $\int d^3r d^3$ $\lq\lq r$ ′ $|{\vec r}|$ $-\vec{r}'$ $|\rho_{E}(\vec{r})\rho_{M}(\vec{r}^{\,\prime}% ,\vec{r}^{\,\prime\prime\prime})|$)
- polarization contribution: $\Delta_{\rm pol}=\frac{1}{2\pi}$ $=$ $\frac{\alpha m}{4}$ e $\frac{\alpha m_e}{2\pi m_p(1+\kappa_p)}(\Delta$ 1 $_1 + \Delta$ $_2),$ with

$$
\Delta_1 = \int_0^\infty \frac{dQ^2}{Q^2} \left\{ \frac{9}{4} F_2^2(Q^2) - 4m_p \int_{\nu_{\rm th}}^\infty \frac{d\nu}{\nu^2} \beta_1 \left(\frac{\nu^2}{Q^2} \right) g_1(\nu, Q^2) \right\},
$$

\n
$$
\Delta_2 = -12m_p \int_0^\infty \frac{dQ^2}{Q^2} \int_{\nu_{\rm th}}^\infty \frac{d\nu}{\nu^2} \beta_2 \left(\frac{\nu^2}{Q^2} \right) g_2(\nu, Q^2),
$$

\n
$$
\nu_{\rm th} = m_\pi + (m_\pi^2 + Q^2)/2m_p,
$$

\n
$$
\beta_1(\theta) = 3\theta - 2\theta^2 - 2(2 - \theta)\sqrt{\theta(\theta + 1)},
$$

\n
$$
\beta_2(\theta) = 1 + 2\theta - 2\sqrt{\theta(\theta + 1)}
$$

Radiative correction to Zemach radius

- δ^{rad}_Z $\mathbb{P}^\mathrm{rad}_Z$ estimated by Bodwin & Yennie, PRD 37, 498 (1988).
- Karshenboim, PLA **²²⁵**, ⁹⁷ (1997) calculated analytically for dipole form factors: δ^{rad}_Z $I_Z^{\rm rad} = (\alpha/3\pi)\left[2\ln(\Lambda^2/m_e^2)\right]$ $\overline{\mathsf{L}}$ $\left(\begin{matrix} 2 \ e \end{matrix}\right)$ $-4111/420$. \lceil
- with $\Lambda^2=0.71$ GeV 2 , this yields $\delta^{\rm rad}_Z$ $Z^{\text{rad}} = 0.0153.$

Recoil corrections in muonium

$$
\bullet \quad \text{muonium: } \Delta_R^{\mu} = \Delta_{\text{rel}}^{\mu} + \Delta_{\text{rad}}^{\mu}.
$$

relativistic recoil [Bodwin & Yennie, PRD **³⁷**, ⁴⁹⁸ (1988)]:

$$
\Delta_{\text{rel}}^{\mu} = \frac{1}{1+\kappa_{\mu}} \left[\frac{-3\alpha}{\pi} \frac{m_e m_{\mu}}{m_{\mu}^2 - m_e^2} \ln \frac{m_{\mu}}{m_e} + \alpha^2 \frac{m_e}{m_{\mu}} \left(2 \ln \frac{1}{2\alpha} - 6 \ln 2 + \frac{65}{18} \right) \right]
$$

radiative recoil [Kinoshita, hep-ph/9808351; Eides et al., hep-ph/0412372]:

$$
\Delta_{\text{rad}}^{\mu} = \frac{1}{1 + \kappa_{\mu}} \left[\frac{\alpha^2}{\pi^2} \frac{m_e}{m_{\mu}} \left(-2 \ln^2 \frac{m_{\mu}}{m_e} + \frac{13}{12} \ln \frac{m_{\mu}}{m_e} + \frac{21}{2} \zeta(3) + \zeta(2) + \frac{35}{9} \right) \right. \\ \left. + \frac{\alpha^3}{\pi^3} \frac{m_e}{m_{\mu}} \left(-\frac{4}{3} \ln^3 \frac{m_{\mu}}{m_e} + \frac{4}{3} \ln^2 \frac{m_{\mu}}{m_e} - \left[4\pi^2 \ln 2 + \frac{29}{12} \right] \ln \frac{m_{\mu}}{m_e} + 47.7213 \right) \right. \\ \left. + \alpha^2 \left(\frac{m_e}{m_{\mu}} \right)^2 \left(-6 \ln 2 - \frac{13}{6} \right) \right]
$$

Recoil corrections in hydrogen

- Bodwin & Yennie, PRD **³⁷**, ⁴⁹⁸ (1988): $\Delta_R^p=-1.55$ ppm.
- finite-size corrections $\rightarrow +5.68(1)$ ppm.
- radiative recoil corrections [Karshenboim, PLA **²²⁵**, ⁹⁷ (1997)] $\rightarrow 5.77(1)$ ppm.
- Volotka et al, EPJD **³³**, ²³ (2005):
	- re-evaluation of finite-size corrections $\rightarrow 5.86$ ppm.
	- forced G_M $_M$ to reproduce their $\langle r \rangle_Z \rightarrow 6.01$ ppm.
- chose Δ_R^p $_{R}^{p} = 5.86(15)$ ppm.

Atomic inputs

- S.G. Karshenboim, Can. J. Phys. **⁷⁷**, ²⁴¹ (1999): $E_{\rm hfs}(e^-p) = 1\;420.405\;751\;766\;7(9)\;{\rm MHz}.$
- W. Liu et al., PRL **⁸²**, ⁷¹¹ (1999): $E_{\rm hfs}(e^-\mu^+) = 4\; 463.302\; 765(53)\; {\rm MHz}.$
- S. Eidelman et al., PLB **⁵⁹²**, ¹ (2004): $m_p = 938.272\ 029(80)\ \mathrm{MeV},\, m_\mu = 105.658\ 369(9)\ \mathrm{MeV},$ $m_e=$ 0.510 998 918(44) MeV $_e = 0.510\ 998\ 918(44)\ \text{MeV}, \ \alpha^{-1} = 137.035\ 999\ 11(46).$
- G.W. Bennett et al., PRL **⁹²**, ¹⁶¹⁸⁰² (2004): $\kappa_{\mu} = 0.001$ 165 920 8(6).
- P.J. Mohr and B.N. Taylor, RMP **⁷⁷**, ¹ (2005): m_μ/m_e $e = 206.768$ $2838(54)$, m_p/m_e $e = 1836.15267261(85)$.
- P.J. Mohr, private communication: $\mu_\mu/\mu_p = 3.183~345~20(20)$, free of muonium hfs.

Cross-check with QED

$$
\begin{aligned}\n\text{M} & \text{M} & \text{M} & \text{M} \\
\Delta_{\text{QED}} &= \frac{E_{\text{hfs}}(e^{-}\mu^{+})}{E_{F}^{\mu}} - 1 - \left(\Delta_{R}^{\mu} + \Delta_{hyp}^{\mu} + \Delta_{weak}^{\mu}\right) \\
& = 1136.12(13) \text{ ppm.}\n\end{aligned}
$$

hydrogen: $\Delta_{\rm QED}$ $=\frac{E_{\text{hfs}}(e)}{E_{\text{hfs}}(e)}$ $\frac{\varepsilon (e^-p)}{E_F^p}$ −1− $-\left(\Delta_R^p\right)$ $\frac{p}{R} + \Delta$ $\, S \,$ $\Delta_{hyp}^p + \Delta_{\mu vp}^p + \Delta_{\text{weak}}^p$ mix: $\Delta_{\rm QED}$ $=\frac{E_{\text{hfs}}(e)}{E_{\text{hfs}}(e)}$ $\frac{{\rm s}(e^-p)}{E_F^p}$ −1− $-\left(\Delta_{R}^{\mu}\right)$ $\,R$ $\frac{\mu}{R} + \Delta_h^{\mu}$ $\frac{\mu}{hvp}+\Delta_{\rm w}^{\mu}$ weak $_{\rm k}+\Delta_{\rm hfs})$ $=1136~09(14)$ pr $\Delta_\text{hfs}(\frac{\alpha}{2\tau}$ 2π $\frac{\alpha}{\pi} + \Delta_H^{\mu}$ $\,R$ $\frac{\mu}{R} + \Delta_h^{\mu}$ $\frac{\mu}{hvp}+\Delta_{\rm w}^{\mu}$ $_{\mathrm{weak}}^{\mu})$ $1136.09(14)$ ppm.

consistent with Dupays et al., PRA **⁶⁸**, ⁰⁵²⁵⁰³ (2003) and Volotka et al., EPJD **³³**, ²³ (2005).

Evaluation of atomic side

$$
\bullet \ \Delta_{\mathrm{hfs}}=145.51(4) \ \mathrm{ppm}.
$$

- Δ^μ_τ $\frac{\mu}{R}=-178.34$ ppm.
- more inputs [Volotka et al., EPJD **³³**, ²³ (2005)]: Δ^μ_τ $\Delta^p_{\mu v p}=0.07$ ppm, $\Delta^p_{\rm weak}=1$ $\frac{\mu}{hvp}=0.05$ ppm, Δ_w^μ $\lambda_{\rm weak}^{\mu}=-0.01$ ppm, $\Delta_{hvp}^{p}=0.01$ ppm, $_{\rm k} = 0.06$ ppm.

$$
\bullet \quad \Delta_S = -38.62(16) \text{ ppm}.
$$

 \rightarrow constraint on $G_E,$ $G_M,$ $g_1,$ and g_2 $_{\rm 2}$ that is better than 1%.

Interpretation of hadronic side

- if use estimate of $\Delta_{\rm pol} = 1.4(6)$ ppm by Faustov and
Mertyperke IEB IC 24, 284 (2002)], then Martynenko [EPJC **²⁴**, ²⁸¹ (2002)], then $\Delta_Z=$ $-40.0(6)$ ppm and $\langle r \rangle_Z$ $_Z = 1.043(16)$ fm.
- Griffioen et al.: $\Delta_{\rm pol} = 0.72(37)$ ppm \rightarrow $\Delta_Z=-39.3(4)$ ppm and $\langle r \rangle_Z=$ $-39.3(4)$ ppm and $\langle r \rangle_Z$ $_Z = 1.024(16)$ fm.
- if use estimate of $\langle r \rangle_Z$ [PLB 579, 285 (2004)], then $\Delta_{\rm pol} = 3.05(49)$ ppm. $Z = 1.086(12)$ fm by Friar and Sick
 $Z = 1.086(12)$ fm by Friar and Sick

$\langle r \rangle_Z$ **from form-factor models**

- dipole \rightarrow \rightarrow 1.025 fm
- **•** fit to standard Rosenbluth separation [J. Arrington, PRC **⁶⁹**, 022201(R) (2004), Table I] $G_E(Q^2)$, $G_M(Q^2)/(1 + \kappa_p) = 1/(1 + p_2Q^2 + p_4Q^4 + \cdots)$ \longrightarrow $\rightarrow 1.081$ fm
- **•** fit constrained by polarization transfer data [Arrington, Table II] $\rightarrow 1.050$ fm

Electric charge radius

•
$$
r_{\text{E,rms}} = \sqrt{-6 \frac{d}{dQ^2} G_E(Q^2)|_{Q^2=0}}.
$$

- obtain estimates from
	- a standard empirical fit: $0.862(12)$ fm [G.G. Simon et al., NPA **³³³**, ³⁸¹ (1980)]
	- Lamb-shift measurements: $0.871(12)$ fm [K.Pachucki, PRA **⁶³**, ⁰⁴²⁵⁰³ (2001); K. Pachucki and U.D. Jentschura, PRL **⁹¹**, ¹¹³⁰⁰⁵(2003); updated by M. Eides, private communication]
	- a continued-fraction fit for G_E : $0.895(18)$ fm [I. Sick, PLB **⁵⁷⁶**, ⁶² (2003)]
	- the 2002 CODATA value: $0.8750(68)$ fm [P.J. Mohr and B.N. Taylor, RMP **⁷⁷**, ¹ (2005)]

Plot of $\langle r \rangle_Z$ Z VS $r_{\rm E,rms}$

Conclusions

- atomic physics provides ^a very precise constraint onproton structure, to better than 1%.
- **•** the subtraction method removes uncertainties associated with pure QED contributions to hfs.
- the method could also be applied to Lamb shifts, to extract $r_{\rm E,rms}$ with less uncertainty.
- the interpretation of individual structure contributionsrequires more data and analysis, particularly for
	- $g_1,\,g_2,$ and $\Delta_{\rm pol}$.
	- two-photon contributions to electron-protonscattering.

