

New experimental constraints on the polarizability corrections in the hydrogen hyperfine structure

Keith Griffioen

Vahagn Nazaryan and Carl Carlson

email: griff@physics.wm.edu

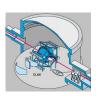
Dept. of Physics

College of William & Mary, Williamsburg, VA

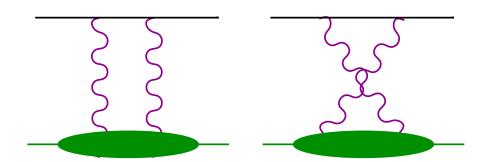
Introduction

- It has long been known that nuclear structure influences hyperfine splittings in atoms.
- Zemach, PR104(56)1771, calculates hfs contribution from proton form factors.
- Drell and Sullivan, PR154(67)1477, calculate the polarizability contribution to hydrogen hfs.
- Faustov and Martynenko, EPJC24(02)281, estimate polarizability contribution to hydrogen hfs.
- Friar and Sick, PLB579(04)285, determine the Zemach radius from world form factor data.
- Brodsky, Carlson, Hiller and Hwang, PRL94(05)
 022001, determine Zemach radius via Faustov.
- The inconsistencies call for an updated determination of the polarizability contribution.

Hyperfine Splitting



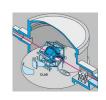
Feynman diagrams for proton polarizability term in the hydrogen hyperfine splitting



Ground-state hyperfine splittings have been measured to 13-digit accuracy. The largest theoretical uncertainty comes from Δ_S (proton structure).

$$E_{\text{HFS}}(e^-p) = 1.4204057517667(9)\text{GHz} = (1 + \Delta_{QED} + \Delta_R^p + \Delta_S)E_F^p$$

$$E_{\rm HFS}(e^-\mu^+) = 4.463302765(53) {
m GHz} = (1+\Delta_{QED}+\Delta_R^\mu) E_F^\mu$$
 in which the Fermi energy $E_F^N = \frac{8}{3} \alpha^4 \mu_N \frac{m_e^2 m_N^2}{(m_N+m_e)^3}$



- **▶** Brodsky, Carlson, Hiller, Hwang use hydrogen and muonium to extract an experimental $\Delta_S = -37.66(16)$ ppm.
- Zemach: $\Delta_Z = -2\alpha m_e \langle r \rangle_Z (1 + \delta_Z^{\rm rad})$
- $\Delta_{\text{pol}} = \frac{\alpha m_e}{2\pi (1+\kappa)M} (\Delta_1 + \Delta_2) = (0.2264798 \text{ ppm})(\Delta_1 + \Delta_2)$
- Friar and Sick: $\langle r \rangle_Z = 1.086 \pm 0.012$ fm from experiment. $\Delta_Z = -41.0(5)$ ppm.
- This all would imply that $\Delta_{pol} = 3.34(58)$ ppm.
- Faustov and Martynenko obtain $\Delta_{pol} = 1.4 \pm 0.6$ ppm from a model loosely constrained by SLAC E143 data.

Polarization Terms

$$\Delta_1 = \int_0^\infty \frac{dQ^2}{Q^2} \left\{ \frac{9}{4} F_2^2(Q^2) - 4M \int_{\nu_{\text{th}}}^\infty \frac{d\nu}{\nu^2} \bar{\beta}_1(\tau) g_1(\nu, Q^2) \right\}$$

$$\Delta_2 = -12M \int_0^\infty \frac{dQ^2}{Q^2} \int_{\nu_{\text{th}}}^\infty \frac{d\nu}{\nu^2} \beta_2(\tau) g_2(\nu, Q^2)$$

in which

- $\nu_{
 m th} = m_\pi + \frac{m_\pi^2 + Q^2}{2M}$
- $F_2(Q^2)$ is the Pauli form factor
- ullet g_1 and g_2 are the polarized structure functions
- and $\beta_{1,2}$ are kinematic functions

x Integrals

$$\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2^2(Q^2) + \frac{8M^2}{Q^2} \int_0^{x_{\text{th}}} dx \beta_1(\tau) g_1(x, Q^2) \right\}$$

$$\Delta_2 = -24M^2 \int_0^\infty \frac{dQ^2}{Q^4} \int_0^{x_{\text{th}}} dx \beta_2(\tau) g_2(x, Q^2)$$

- $x_{\text{th}} = \frac{Q^2}{Q^2 + m_{\pi}^2 + 2Mm_{\pi}}$
- Advantage: experiments evaluate $\int f(x)g_{1,2}dx$, so error analysis is simplified.
- Disadvantage: large, canceling integrands as $Q^2 \rightarrow 0$.

$eta_1(au)$ and $eta_2(au)$

$$\blacksquare$$
 $\beta_1(\tau) =$

$$\frac{4}{9}\left[-3\tau+2\tau^2+2(2-\tau)\sqrt{\tau(\tau+1)}\right]^{\frac{1}{2}}$$

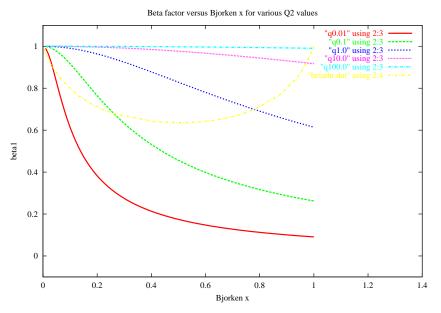
•
$$\beta_2(\tau) = 1 + 2\tau - 2\sqrt{\tau(\tau+1)}$$

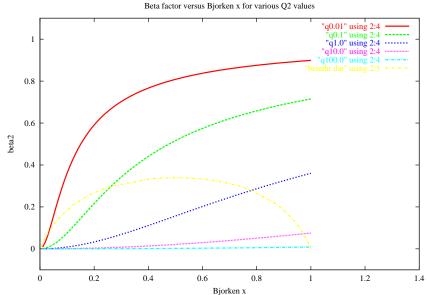
•
$$\beta_1(\tau) \rightarrow 0$$
 as $\tau \rightarrow 0$

•
$$\beta_1(\tau) \to 1 \text{ as } \tau \to \infty$$

$$m{\flat}$$
 $\beta_2(\tau) \rightarrow 1$ as $\tau \rightarrow 0$

•
$$\beta_2(\tau) \to 1/4\tau$$
 as $\tau \to \infty$

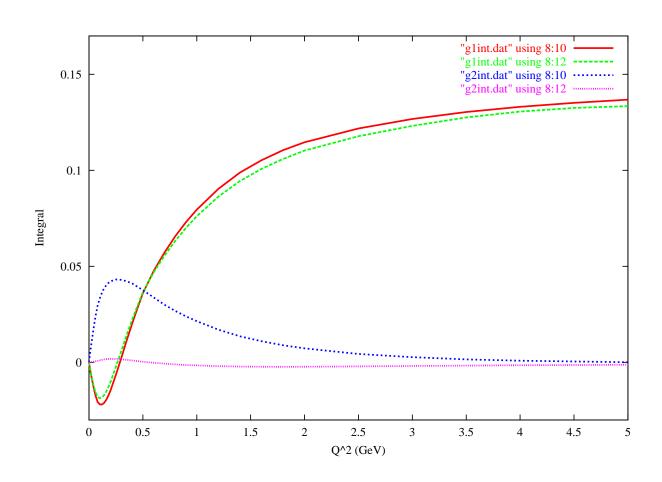




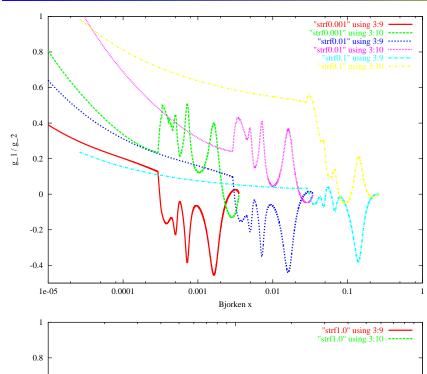
Integrals

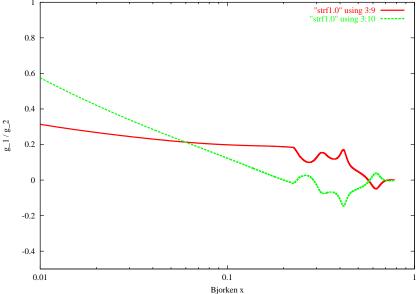
Comparisons between $\Gamma_1 = \int g_1 dx$ and $B_1 = \int \beta_1 g_1 dx$ and between $\Gamma_2 = \int g_2 dx$ and $B_2 = \int \beta_2 g_2 dx$

- $B_1 \approx \Gamma_1$
- $\blacksquare B_2 \approx 0$
- Experimentally, errors on Γ_1 are understood; we exploit this fact.
- $\Gamma_2 = \int g_2 dx \neq 0$ at low Q^2 .



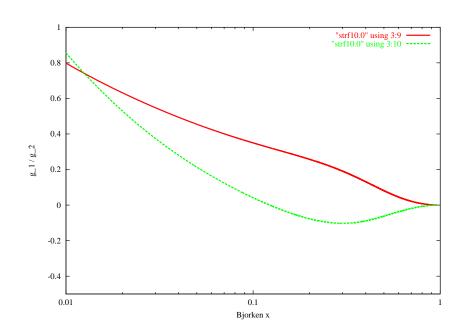
Model g_1 and g_2



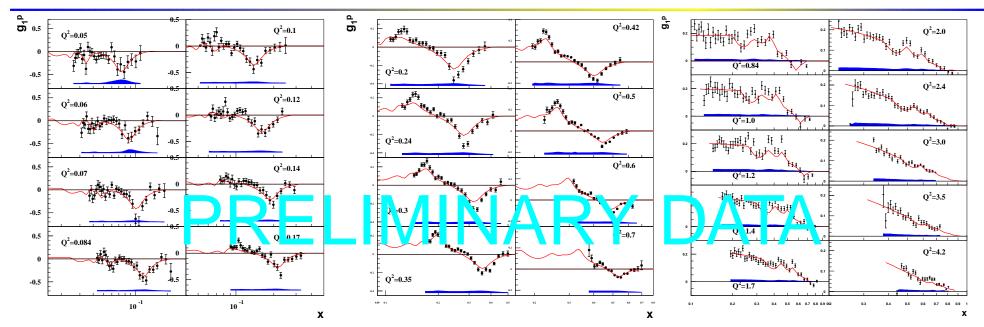


- MAID parameterization in resonance region
- E155 fit in DIS region
- g_2^{WW} in DIS region
- $Q^2 = Q^2$

0.001, 0.01, 0.1, 1.0, 10.0

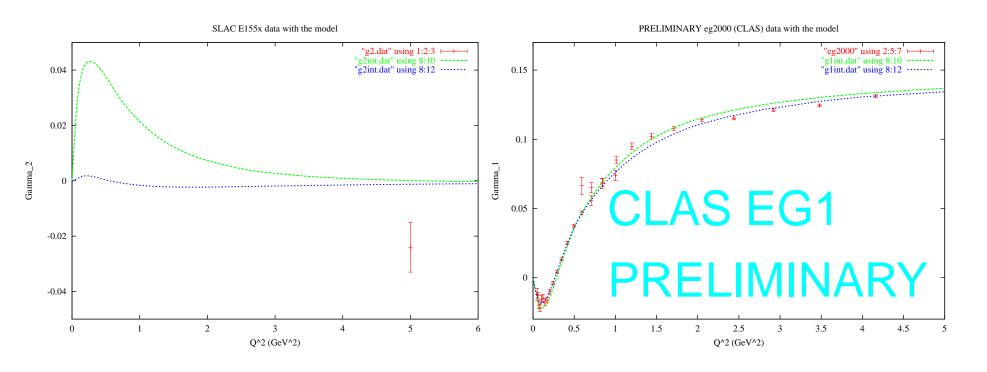


CLAS g_1 with Model



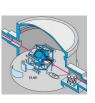
- ullet Preliminary CLAS g_1 data
- $0.05 < Q^2 < 4.2 \text{ GeV}^2$
- Red line: Model
- Model reproduces the data quite well over the full range kinematics.

$\Gamma_{1,2}$ Data



- Left plot: E155x data for $\Gamma_2 = \int g_2(x,Q^2)dx$ with model (green, upper curve) and $B_2 = \int \beta_2 g_2 dx$ (blue, lower curve)
- Right plot: CLAS data for $\Gamma_1 = \int g_1(x,Q^2)dx$ with model (green, upper curve) and $B_1 = \int \beta_1 g_1 dx$ (blue, lower curve)

Contributions to Δ_{pol}



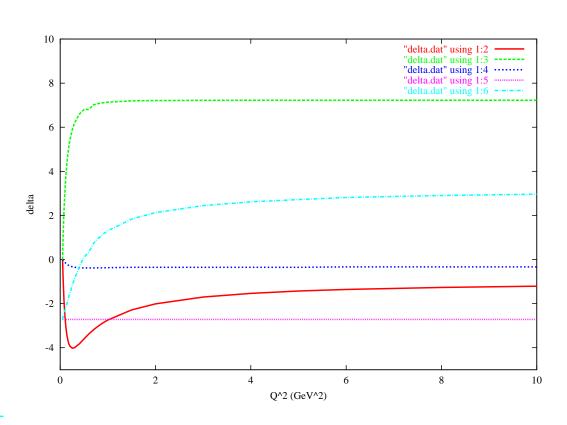
- Running integrals over Q^2
- ullet Magenta: Δ_{pol} up to

$$Q^2 = 0.05 \text{ GeV}^2$$

- Red: $\Delta_1^{g_1}$ for $[0.05, Q^2]$
- Blue: Δ_2 for $[0.05, Q^2]$
- Green: $\Delta_1^{F_2}$ for

$$[0.05, Q^2]$$

$$\Delta_2 + \Delta_1^{F_2}$$



Δ_1 at low Q^2

$$G_E = F_1 - \frac{Q^2}{4M^2} F_2$$

$$G_M = F_1 + F_2$$

•
$$F_2(0) = \kappa$$
 $F_1(0) = 1$ $G_E(0) = 1$ $G_M(0) = 1 + \kappa$

$$F_1(0) = 1$$

$$G_E(0) = 1$$

$$G_M(0) = 1 + \kappa$$

$$\langle r_M^2 \rangle = -\frac{6}{G_M(0)} \frac{dG_M(Q^2)}{dQ^2} |_0$$

Friar and Sick:

$$\langle r_E^2 \rangle = (0.895 \pm 0.018 \text{ fm})^2$$

$$\langle r_E^2 \rangle = (0.895 \pm 0.018 \text{ fm})^2 \qquad \langle r_M^2 \rangle = (0.855 \pm 0.035 \text{ fm})^2$$

• GDH Sum Rule: $\frac{\Gamma_1}{Q^2} = -\frac{\kappa^2}{8M^2}$ as $Q^2 \to 0$

$$\kappa = 1.79284739(6)$$

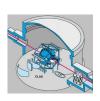
$$M = 0.938272029(80) \text{ GeV}$$

$$\Delta_1^{[0,0.05]} = -2.35 \pm 0.30$$
 (-2.07) in 2nd order

$$(-2.07)$$
 in 2nd order

■ Bosted form factor fit: $\Delta_1^{[0,0.05]} = -2.44301$

Δ_2 at low Q^2



- Hall A ³He data show $g_2 \approx -g_1$ for the neutron at low Q^2 .
- $g_1 + g_2 \propto \sigma_{LT}$ which should go to zero as $Q^2 \rightarrow 0$.
- $\beta_2(\tau) \to \frac{1}{4\tau}$ as $\tau \to \infty$ with

$$au=rac{Q^2}{4M^2x^2}.$$
 Therefore, $eta_2=0$ at

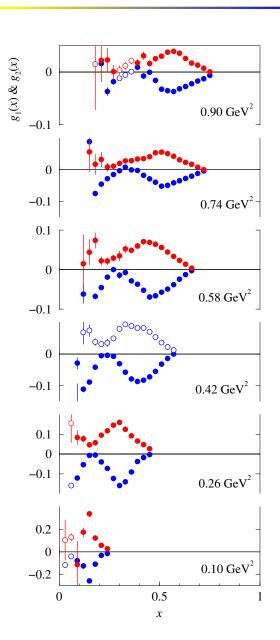
$$x = 0 \text{ and } \beta_2 = \frac{M^2 Q^2}{(Q^2 + m^2)^2} \text{ at } x_{\rm th}, \text{ with }$$

$$m^2 = m_\pi^2 + 2Mm_\pi$$

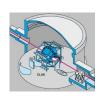
- **●** Take average β_2 and $g_2 = -g_1$
- ullet $\Delta_2^{[0,0.05]} =$

$$-24M^2 \int_0^{0.05} \frac{dQ^2}{Q^4} \frac{M^2 Q^2}{2(Q^2 + m^2)^2} \left(\frac{\kappa^2}{8M^2} Q^2 \right)$$

= -2.276 (numerically incorrect, but integral converges!)



Comments on $\langle r \rangle_Z$



- Unless G_E and G_M go as $1 + \epsilon Q^2$, the Zemach radius diverges.
- Bosted fit, PRC51(95)409:

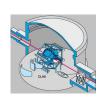
 $G_E=1/(1+0.14Q+3.01Q^2+0.02Q^3+1.20Q^4+0.32Q^5)$ and $G_M=(1+\kappa)G_E$ fits all data well; yet the Zemach integral diverges.

- JLab fit, ARNPS54(04)217, $(1+\kappa)G_E/G_M = 1 0.13(Q^2 0.29)$ yields a divergent $\langle r \rangle_Z$.
- Friar and Sick's analysis assumes a convergent Q^2 dependence (reasonable); however, data alone are consistent with $\langle r \rangle_Z = \infty$.

Results

term	Q^2 (GeV 2)	value	component
Δ_1	[0, 0.05]	-2.44 ± 1.2	
	[0.05, 20]	7.22 ± 0.72	F_2
		-1.10 ± 0.55	g_1
	$[20,\infty]$	0.00 ± 0.01	F_2
		0.12 ± 0.01	g_1
total		3.80 ± 1.5	(3.55 ± 1.27)
Δ_2	[0, 0.05]	-0.28 ± 0.28	
	[0.05, 20]	-0.33 ± 0.33	
	$[20,\infty]$	0.00 ± 0.01	
total		-0.61 ± 0.61	(-1.86 ± 0.36)
$\Delta_{ m pol}$		$0.72 \pm 0.37 \text{ ppm}$	(0.38 ± 0.37)

Comments on Δ_{pol}



- Δ_{pol} is dominated by F_2 with a smaller (canceling) contribution from g_1 , and a small contribution from g_2 .
- Most of Δ_{pol} comes from $Q^2 < 1$ GeV².
- Unless $F_2 \to \kappa + \epsilon Q^2$ and $\Gamma_1 = -\kappa^2 Q^2/8M^2$ (generalized GDH Sum Rule) as $Q^2 \to 0$, Δ_1, Δ_Z diverge.
- If $\Gamma_2 \to \kappa^2 Q^2/8M^2$ ($g_2 = -g_1$ and GDH) as $Q^2 \to 0$, Δ_2 converges.
- $\Delta_{\rm pol} = 0.7 \pm 0.4$ ppm is small compared to $\Delta_{\rm pol} = 3.3 \pm 0.6$ ppm from the HFS+Zemach analysis.
- Discrepancy most likely lies in the low- Q^2 dependencies of g_1 , g_2 , G_E and G_M .

Conclusions

- Determination of Δ_{pol} can be improved only by precision data for g_1 , g_2 and F_2 with $Q^2 < 1$ GeV²
- The behavior of g_1 , g_2 , and F_2 for $Q^2 < 0.05$ is crucial, since a large part of $\Delta_{\rm pol}$ comes from this region.
- Although beautiful g_1 data exist from CLAS at JLab over a large kinematic region, the errors on this part are dominated by the lowest Q^2 data.
- Finite hyperfine splittings imply: $\Gamma_1 \to -\kappa^2 Q^2/8M^2$ $g_2 \to -g_1, \ F_2 \to \kappa \epsilon Q^2, \ G_E \to 1 \epsilon_E Q^2, \ \text{and}$ $G_M/(1+\kappa) \to 1 \epsilon_M Q^2 \ \text{as} \ Q^2 \to 0.$
- Higher orders $(Q^4, Q^6, \text{ etc.})$ are crucial at low Q^2 for an accurate determination of Δ_{pol} .