Beyond the Standard Model Theory

Jens Erler (IF-UNAM) Precision Electroweak Interactions Williamsburg,VA August 15-17, 2005

Outline

Latest news from LEP, SLC, and Tevatron
Implications for the Standard Model
Low Energy Tests
Implications for New Physics

Final LEP/SLC Heavy Flavor Results

	value	error	SM	pull
R_b	0.21629	0.00066	0.21578	0.8
R_c	0.1721	0.0030	0.1723	-0. I
A^b_{FB}	0.0992	0.0016	0.1031	-2.4
A^c_{FB}	0.0707	0.0035	0.0737	-0.8
A_b	0.923	0.020	0.9347	-0.6
A_c	0.670	0.027	0.6678	0.1

LEP 2: $R_b \ 2.1\sigma \text{ low}, A_{FB}^b \ 1.6\sigma \text{ low}.$

Zbb form factors

 $\begin{array}{l} \textbf{Global Fit} \\ m_t = 172.6 \pm 2.8 \,\, {\rm GeV} \\ M_H = 89^{+38}_{-28} \,\, {\rm GeV} \\ \alpha_s = 0.1216 \pm 0.0017 \\ \chi^2/d.o.f = 47.6/42 \end{array}$

last year: $M_H = 113^{+56}_{-40}$ GeV upper error: -12 GeV (top mass central value) - 6 GeV (top mass uncertainty) excl. low energy: - 5 GeV excl. E-158: - 3 GeV

 M_H

46 GeV < M_H < 155 GeV (90% range)

incl. direct searches @ LEP: $M_H < 189 \text{ GeV}$ (95% C.L.)

lower direct limit (LEP 2): $M_H > 114.4 \text{ GeV} (95\% \text{ C.L.})$

LEP 2 Higgs searches plus precision data 0.07 0.06 probability per GeV 0.05 0.04 50% 0.03 0.02 5% 0.01 0 ⊑ 100 200 250 300 150 $M_{\rm H}$ [GeV]

M_H Probability Distribution 2005

Small Deviations

	value	error	SM	pull
$\sigma^{\theta}_{\rm had}[{\rm nb}]$	41.541	0.037	41.467	2.0
$R_{\tau}(\text{LEP})$	0.0188	0.0017	0.0162	1.5
$A_{LR}(\mathrm{SLD})$	0.1514	0.0022	0.1471	2.0
$\frac{10^{9}\frac{g-2-\frac{\alpha}{\pi}}{2}}{2}$	4511.07	0.82	4509.82	1.5
$g_L^2({ m NuTeV})$	0.3001	0.0014	0.3038	2.7
$Q_W(Cs)$	-72.56	0.48	-73.17	1.3
$10^{7} A_{LR}(\text{E158})$	-1.31	0.17	-1.53	1.3
$\sin^2 heta_W^{ ext{eff.}}(ext{FNAL})$	0.2238	0.0050	0.2315	-1.5

New Physics

- Z-pole: Z-couplings; new physics indirect
- LEP 2 + Tevatron: oblique parameters (S,T,U)
- LEP 2: high energies, low statistics
- Low energy: interference; new physics direct

$v_q a_e$ 4-Fermi couplings

Low Energy Complementarity

Z' bosons from E_6

Weak Mixing Angle

Scale dependence in \overline{MS} scheme including higher orders

 $\hat{s}^{2}(\mu) = \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \hat{s}^{2}(\mu_{0}) + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right] + \hat{\alpha}(\mu) \left[\frac{\lambda_{2}}{3} \ln \frac{\mu^{2}}{\mu_{0}^{2}} + \frac{3\lambda_{3}}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \tilde{\sigma}(\mu_{0}) - \tilde{\sigma}(\mu) \right].$

energy range	λ_1	λ_2	λ_3	λ_4
$\bar{m}_t \leq \mu$	9/20	289/80	14/55	9/20
$M_W \le \mu < \bar{m}_t$	21/44	625/176	6/11	3/22
$\bar{m}_b \le \mu < M_W$	21/44	15/22	51/440	3/22
$m_{ au} \le \mu < \bar{m}_b$	9/20	3/5	2/19	1/5
$\bar{m}_c \le \mu < m_\tau$	9/20	2/5	7/80	1/5
$\bar{m}_s \le \mu < \bar{m}_c$	1/2	1/2	5/36	0
$\bar{m}_d \le \mu < \bar{m}_s$	9/20	2/5	13/110	1/20
$\bar{m}_u \le \mu < \bar{m}_d$	3/8	1/4	3/40	0
$m_{\mu} \le \mu < \bar{m}_u$	1/4	0	0	0
$m_e \le \mu < m_\mu$	1/4	0	0	0
$\mu < m_e$	0	0	0	0

$$\bar{m} = \hat{m}(\hat{m}) \exp\left[-\frac{13}{24}\frac{\hat{\alpha}_s(\hat{m})}{\hat{\alpha}_s(\hat{m}) + \pi} - \frac{\hat{\alpha}_s^2}{288\pi^2} \left(655\zeta(3) - \frac{3847}{6} + \frac{361}{9}n_q + \frac{295}{9}\frac{\sum_{q\neq f}Q_q^2}{Q_f^2}\right)\right].$$

$$\hat{\alpha}_{s}(M_{Z}) = 0.1214 \pm 0.0018,$$

$$\hat{m}_{c}(\hat{m}_{c}) = 1.285^{+0.040}_{-0.047} GeV$$

$$\hat{m}_{b}(\hat{m}_{b}) = 4.205 \pm 0.031 GeV$$

$$\bar{m}_{c} = 1.176 GeV$$

$$\bar{m}_{b} = 3.995 GeV$$

$$\begin{aligned} \xi_q &= 2\,\bar{m}_q/M_{1S} \\ \xi_q &\to 1 \text{ for } \bar{m}_q \to \infty \\ \xi_q &\to 0 \text{ for } \bar{m}_q \to 0 \\ \text{Heavy quark: } \xi_q &\sim 1 \\ \text{Light quark: } \xi_q \ll 1 \\ \bar{m}_1 &< \bar{m}_2 \Longrightarrow \xi_1 < \xi_2 \\ \xi_c &= 0.759, \xi_b = 0.845 \\ \bar{m}_s &= \xi_s M_\phi/2 < \xi_c M_\phi/2 = 387 \ MeV \end{aligned}$$

Limits on the strange quark contribution

$$\Delta_s \hat{\alpha}(\bar{m}_c) = Q_s^2 \frac{\alpha}{\pi} K_{\text{QCD}}^s \ln \frac{\bar{m}_c^2}{\bar{m}_s^2} > Q_s^2 \frac{\alpha}{\pi} K_{\text{QCD}}^c \ln \frac{\bar{m}_c^2}{\bar{m}_s^2} > \frac{2\alpha}{9\pi} K_{\text{QCD}}^c \ln \frac{M_{J/\Psi}}{M_{\phi}} = 6.9 \times 10^{-4}.$$

$$K_{\text{QCD}}^{s} > K_{\text{QCD}}^{c} = 1 + \frac{\hat{\alpha}_{s}(\bar{m}_{c})}{\pi} + \frac{103}{48} \frac{\hat{\alpha}_{s}^{2}(\bar{m}_{c})}{\pi^{2}} + \frac{1979}{576} \frac{\hat{\alpha}_{s}^{3}(\bar{m}_{c})}{\pi^{3}} = 1.209,$$

$$\Delta_{s}\hat{\alpha}(\bar{m}_{c}) < \frac{\Delta\hat{\alpha}^{(3)}(\bar{m}_{c})}{6} - \frac{5}{27}\frac{\alpha}{\pi}K_{\rm QCD}^{s}\ln\frac{M_{\phi}}{M_{\omega}} < \frac{\Delta\hat{\alpha}^{(3)}(\bar{m}_{c})}{6} - \frac{5}{27}\frac{\alpha}{\pi}K_{\rm QCD}^{c}\ln\frac{M_{\phi}}{M_{\omega}} = 9.9 \times 10^{-4}.$$

$$\Delta \hat{\alpha}^{(3)}(\bar{m}_c) = 0.00678 \pm 0.00010,$$

$$\Delta_s \hat{\alpha}(\bar{m}_c) = (8.4 \pm 1.5) \times 10^{-4}, \bar{m}_s = 305^{-65}_{+82} \text{ MeV}.$$

Uncertainties

- Heavy flavor: parametric (α_s, m_b, m_c)
 effects fully correlated with α(M_Z)
 SU(3) breaking effect
 Isospin violation
- OZI rule violation

Error Breakdown

Conclusions

- Above, below, and top of the Z-pole offer complementary BSM physics opportunities.
- Polarized electron scattering at low energies is valuable diagnostic tool.
- "Discovering" new physics would require factor 4 or better improvement in precision.
- Diversification: many different observables will hedge us against error and help distinguish between competing models for physics Beyond the SM.