The Hot Dark Matter Conundrum David O. Caldwell

University of California Santa Barbara

Institute for Nuclear and Particle Astrophysics and Cosmology

One- and three-neutrino hot dark matter
Two-neutrino dark matter with 4 neutrinos
The astrophysical paradox: universe structure
Important new input from LSND and KARMEN
Corroberation from supernova nucleosynthesis

```
Bad News for Neutrino Dark Matter?
One-neutrino dark matter \sum m_{\nu} = 93\Omega_{\nu}h^2
 vy is the most likely candidate (solar: 12-12)
 CHORUS and NOMAD do not see 24+24
 Atmospheric whe likely due to ut with Dm2~10-3eV2
  Not vire: CHOOZ veri; Super-K & distributions
  14.+15 (sterile) unlikely: nucleosynthesis limit
  vy+24 fits Super-K data best (would kill 1-2, DM)
Three-v dark matter (D.O.C.+R.Mohapatra, Phy. Rev. 93; rediscoveries)
 y + v (atm.), y + ve (solar); mv = my = mv ~1.5 eV
 BBON presents difficulties for Majorana v(LSND kills it)
Two-v dark matter (also D.O.C.+R. Mohapatra '93; J. Peltoniemi
 2.3 eV (atm.), ve+vs (solar); mve, mvs light; my ≈m2 ~2.3 eV
```

Universe Structure and Neutrino Dark Matter Fit to all published CMB, galaxy survey data E. Gawiser and J. Silk used 10 models [Science 280, 1405, '98] Covers 3 orders of magnitude in spatial scale Only one model fits: $\Omega_m = 1$, $\Omega_v = 0.2$, $\Omega_b = 0.1$ Most more direct measurements give $0.2 \le \Omega_{\rm m} \le 0.5$ Will conflict remain with more precise data coming soon? Conclusion now: low $\Omega_{\rm m}$ and $\Omega_{\rm m}$ $\uparrow \Lambda$ models don't work Neutrinos help, but not enough (Primack and Gross)

	All		No APM Clusters	
Model	$\chi^{2}/70$	Probability	$\chi^{2}/62$	Probability
Standard CDM	3.8	<10-7	3.7	<10-7
Tilted CDM	2.1	1.8×10 ⁻⁷	2.0	1.1×10-5
Hot+CDM	1.2	0.09	1.06	0.34
Ω =0.5 CDM	1.8	2.9×10 ⁻⁵	1.67	6.7×10-4
N+CDM	1.9	1.1×10-5	1.71	4.3×10-4
Late ϕ +CDM	2.2	< 10-7	2.0	3.8×10-6
N=0.88+BCDM	7.3	<10-7	7.7	< 10-7
Isocurv. CDM	2.5	<10-7	2.5	< 10-7
PBH BDM	2.0	8.3×107	1.9	1.4×10-5
Strings+1	2.6	<10-7	2.6	<10-7

Uses H=65±15 km/s Mpc; cf. Nevalainen, Roos 68±5; Tammann 57±7

22 Better than 12 Dark Matter
Problems of 12 dark matter at ~10h⁻¹ Mpc
Galaxy clusters overproduced
Galaxy pairwise velocities too low
Void regions incorrect

 2ν increased streaming length solves these

Can $\Delta m_{e,u}^2$ be Big Enough for Hot Dark Matter? Past comparisons of LSND with other experiments LSND's "likelihood" vs. others' confidence levels Typical values: 90% likelihood (-2.3 LLU) > 90% C.L. (-3.3 LLU) KARMEN (298): no events "excluded" LSND (Feldman-Cousins) Now have ~8 events, about the expected background Joint LSND/KARMEN analysis (Eitel, Yellin) Overlap of 95% C.L.'s to give joint 90% (at IS/OSII) Better method (adding likelihoods) emphasizes ~6eV2 LSND's 22 favors this region Coming: more KARMEN data, better LSND analysis

Later: MiniBooNE, I216 (?)

Evidence for vs: Heavy-Element Nucleosynthesis Rapid neutron capture (supernova r process) Occurs far outside the neutron star at late time (~10spb) Needs very neutron-rich region (zn-pe- vs. zp-ne+) Problem if LSND MSW region is inside r region Thermal ze have (E) = 11 MeV, but ze have (E) = 25 MeV If v, > ve, high-energy converted ve have larger o~ E2 ven-per depletes neutrons, stopping the r process Sure problem: models give too few neutrons in r region Too few neutrons per seed nucleus (e.g., Fe) Need ~102 n/"Fe" to make the heaviest elements Fatal problem: a effect kills the r process All protons form a's, removing neutrons More neutrons removed by ven→e-p, so p→a, etc.

Solving the Problems

What is needed

Large ve flux to eject baryons near the neutron star

Near removal of v_e flux farther out where as form

Neutrino features to accomplish this

Existence of at least one light sterile neutrino

Near-maximally-mixed yu-vr

2/4,2/4 __

Small y - ve mixing

Veivs =

Two neutrino doublets well separated (>2eV2)

Exactly model needed for solar, atmospheric, LSND, HDM!

Problem-Solving Mechanism

First level crossing: 1/4, + 1/5

D.O.C, GM. Fuller, Y-Z. Qian

Gets rid of dangerous high-energy 1/4,T

Near radius where V(2,7) ~ (n2-nn/2)→0

Second level crossing: 20+1/47

LSND MSW region now not your te, since few your

Outside neutron star but inside weak freezeout radius

Needed density puts a requirement on $\Delta m_{e, (M, T)}^2$

Two resonances are close, so coherence+maximal mixing gives

Prob. (2,24)=1/4, Prob. (2,24)=1/4, Prob. (4,24)=1/2

Prob. (24+24)=1/4, Prob. (24+24)=1/4, Prob. (24+25)=1/2

Prob. (2, 2)=0, Prob. (2, 2)=0, Prob. (2, 2)=0

r-process problems are solved!

Astrophysical Need for Large $\Delta m_{\mu e}^2$ 5.5 eV² region gives desired 15-20% hot dark matter $\Sigma m_{\nu_i} = 2 \times 2.35 = 4.7 \, \text{eV}$ and $\Omega_{\nu} = \frac{4.7}{43 \, \text{h}^2}$ If $\Omega_{m} = 1$, h=0.55, then $\Omega_{\nu} = 0.17$ If h=0.65, then $\Omega_{\nu} = 0.12$, or 20% of $\Omega_{m} = 0.6$ Supernova nucleosynthesis needs resonances ordered $\nu_{\mu} \rightarrow \nu_{s}$ inside of $\nu_{\mu} \Rightarrow \nu_{e}$ and both inside of WFO radius Density variation with radius sets $\Delta m_{\mu e}^2$

~6eV2 is ideal

New Astrophysical Inputs

Doubts about the distance scale

Geometric measurement to galaxy NGC4258 (H2O mase)

Disagrees with Cepheid ladder by 15-20%

Shorter universe age would agree with $\Omega_m=1$, not 0.3

Doubts about Supernova Ia determination of $\Omega_{\rm m}, \Lambda$

Possibilities of dust or evolution

Close SN take ≥2d. longer for peak brightness than far SN

May not be a true standard candle

Measurements in next few years should settle issues

Distance from Space Interferometry Mission (2005)

MAP, Planck, Sloan Digital Sky Survey→#v's, mv

Conclusions

Hot dark matter is most likely 2ν ($\nu_{\mu}+\nu_{\tau}$)

1 ν dark matter ruled out if atmospheric $\nu_{\tau}\rightarrow\nu_{\tau}$ If correct, LSND rules out 3ν dark matter r-process nucleosynthesis works with this 4ν scheme $\Omega_m=1$, $\Omega_{\nu}\approx 0.2$ fits universe structure 2ν dark matter works better than 1ν ($\nu_{\tau}+\nu_{\tau}\sim 5$ eV)

If $\Omega_m\approx 0.5$, just CDM or CDM+ Λ does not work

Conflict with low- Ω_m results needs new measurements phusics