Light Meson Radiative Decays

F E Close, A Donnachie & Yu S Kalashnikova Phys.Rev.D **65** 092003 (2002) & Phys.Rev.D **67** in press

- Radiative transitions have proved their value in the baryon sector, successfully reproducing the magnitudes and relative phases of over 100 helicity amplitudes for photoexcitation of the proton and neutron.
- Calculations of light meson radiative decays have concentrated mainly on ground-state to ground-state decays.
- New and proposed facilities (ISR at BABAR & BELLE, CLEO-C, JLab, Novosibirsk) promise greatly increased statistics and open up the possibility of studying radiative decays of excited light mesons.

Several key radiative widths are found to be large, $\gtrsim 500$ keV, and offer strong discriminatory power. We shall concentrate on three aspects:

- discrimination between the radial (2^3S_1) and orbital (1^3D_1) excitations of the ρ
- ullet discrimination between these and the $J^{PC}=1^{--}$ hybrid
- ullet discrimination among different $qar{q}$ and glueball mixing scenarios in the scalars

The Model

Wave functions are taken as Gaussian, that is of the form $\exp(-p^2/\beta^2)$ multiplied by the appropriate polynomial, and the parameter β found for each of the 1S, 1P, 2S, 1D states by treating it as the variational parameter in the Hamiltonian

$$H = \frac{p^2}{m_q} + \sigma r - \frac{4}{3} \frac{\alpha_s}{r} + C$$

with standard quark-model parameters:

$$m_{u,d} = 0.33 \text{ GeV}, m_s = 0.45 \text{ GeV}, \sigma = 0.18 \text{ GeV}^2, \alpha_s = 0.5$$

The decay at rest of the meson A to the meson B and a photon with three-momentum \mathbf{p} has the form

$$\mathbf{M}_{A\to B} = \mathbf{M}_{A\to B}^q + \mathbf{M}_{A\to B}^{\bar{q}}.$$

with

$$\mathbf{M}_{A\to B}^{q} = \frac{I_q}{2m_q} \int d^3k \left[Tr \left\{ \phi_B^{\dagger}(k - \frac{1}{2}p)\phi_A(k) \right\} (2\mathbf{k} - \mathbf{p}) - i Tr \left\{ \phi_B^{\dagger}(\mathbf{k} - \frac{1}{2}\mathbf{p})\sigma\phi_A(\mathbf{k}) \right\} \times \mathbf{p} \right]$$

and

$$\mathbf{M}_{A\to B}^{\bar{q}} = \frac{I_{\bar{q}}}{2m_q} \int d^3k \left[Tr\{\phi_A(\mathbf{k})\phi_B^{\dagger}(\mathbf{k} + \frac{1}{2}\mathbf{p})\}(2\mathbf{k} + \mathbf{p}) - iTr\{\phi_A(\mathbf{k})\sigma\phi_B^{\dagger}(\mathbf{k} + \frac{1}{2}\mathbf{p})\} \times \mathbf{p} \right]$$

where I_q and $I_{\bar{q}}$ are isospin factors and m_q is the quark mass.

The differential decay rate is then given by

$$\frac{d\Gamma}{d\cos\theta} = 4p \frac{E_B}{m_A} \alpha I \sum |M_{A\to B}|^2$$

where the sum is over final-state polarisations and $I=I_q^2=I_{\bar q}^2$ is the isospin factor.

The pure electric-dipole (E1) transition is well-defined for heavy quarks, but is certainly a bad approximation for light quarks so we include the magnetic quadrupole (M2) transition as well.

This approach has a long history of success in the baryon sector even though the M2 terms are the same order in p^2 as E1 corrections such as:

- anomalous magnetic moments of the constituents
- spin-orbit terms
- Thomas precession
- binding effects

The success in the baryon sector suggests that the collective effect of these corrections is small.

Within this "leading multipole" hypothesis there are checks on our procedures.

- Ground-state to ground-state transitions, e.g. $\rho \to \eta \gamma$, $\omega \to \eta \gamma$, given correctly by the model.
- The predicted width for $\Gamma(f_1(1285) \to \gamma \rho)$ is in good accord with experiment.
- The prediction that $\Gamma(f_2(1270) \to \gamma \rho) \lesssim 0.5\Gamma(f_1(1285) \to \gamma \rho)$ is in qualitative accord with experiment as there is no evidence for the radiative decay of $f_2(1270)$ in either the MARK III or WA102 experiments and both have strong f_2 signals.
- From general considerations we can form a positivity constraint among a combination of widths which is satisfied by our explicit model and enables us to draw a more general conclusion, namely that $\Gamma(f_0 \to \gamma \rho) \sim \Gamma(f_1 \to \gamma \rho)$ in agreement with our calculation.

A Hidden Hybrid?

- The data on $e^+e^- \to \pi^+\pi^-\pi^+\pi^-$ and $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$, excluding $\omega\pi$, are completely consistent with $e^+e^- \to a_1\pi$ up to 1.65 GeV and the cross section is large (CLEO- τ , Novosibirsk).
- The data on $e^+e^- \to \pi^+\pi^-$ require a ρ' state (2 3S_1) at about 1.45 GeV and there is additional structure at higher mass (CLEO- τ , Novosibirsk, e^+e^-).
- The data on $e^+e^- \to \omega \pi$ are consistent with the tail of the ρ plus the (2 3S_1) (CLEO- τ , CLEO-B, Novosibirsk, e^+e^-).
- There is no strong $\omega \pi$ signal above the $\rho'(1450)$ (CLEO-B, e^+e^-).
- The 3P_0 model cannot explain the large 4π cross section, excluding $\omega\pi$:

$$\Gamma(\rho_{2S} \to a_1 \pi \to 4\pi) \sim 3 \text{ MeV}$$
 $\Gamma(\rho_{2S} \to h_1 \pi \to 4\pi) \sim 1 \text{ MeV}$
 $\Gamma(\rho_{2S} \to \omega \pi) \sim 115 \text{ MeV}$
 $\Gamma(\rho_{2S} \to \omega \pi) \sim 68 \text{ MeV}$

- The cross section for direct' production of $a_1\pi$ via ρ dominance is also very small.
- One solution is to invoke a vector hybrid as its dominant decay mode is $a_1\pi$.

But

• The hybrid has no direct e^+e^- coupling. It must be induced by mixing. To get a large 4π cross section the mixing must be maximal with the $\rho'(1450)$. This then implies a large cross section for $e^+e^- \to \omega\pi$ above the $\rho'(1450)$ which is not observed!

However

- Pham, Roiesnel & Truong (1978) and Penso & Truong (1980) argued that in the special case of $a_1\pi$ it is incorrect to use naive ρ dominance and that the axial current matrix element (which is dominated by the a_1) should be used. This gives a large (non-resonant) cross section for $e^+e^- \to a_1\pi$.
- The 1 3D_1 state (the $\rho'(1700)$) has a large 4π decay width: $\Gamma(\rho_{1D} \to a_1\pi \to 4\pi) \sim 104 \text{ MeV}$ $\Gamma(\rho_{1D} \to h_1\pi \to 4\pi) \sim 105 \text{ MeV}$
- The (rather strong) direct $a_1\pi$ can interfere with the (comparatively weak) 1 3D_1 state boosting it significantly.

So goodbye hybrid?

• Not necessarily. There will be some mixing between the hybrid and the 1 3D_1 and the direct $a_1\pi$ can boost the mixed states.

Vector Meson Radiative Decays

- Radiative decays can distinguish between the 2 3S_1 and the 1 3D_1 . For example:
 - $\Gamma(\rho(1450) \to f_2(1270)\gamma) \sim 700 \text{ keV}$ $\Gamma(\rho(1700) \to f_2(1270)\gamma) \sim 140 \text{ keV}$ $\Gamma(\rho(1450) \to f_1(1285)\gamma) \sim 350 \text{ keV}$
 - $\Gamma(\rho(1700) \to f_1(1285)\gamma) \sim 1100 \text{ keV}$
- Radiative decays can separate cleanly the $\phi(1690)$. For example the $f_2(1525)\gamma$ decay of the $\phi(1690)$ provides a unique signature for the $s\bar{s}$ state, albeit with a smallish width:

$$\Gamma(\phi(1690) \to f_2(1525)\gamma) \sim 200 \text{ keV}$$

- Radiative decays can resolve the issue of the $J^{PC}=1^{-1}$ hybrid, ρ_H . As the $q\bar{q}$ pair in the hybrid is in a spin-singlet state, radiative decays to the spin-triplet $f_2(1270)$ and $f_1(1285)$ will be suppressed. The dominant radiative decay should be to the spin-singlet $b_1(1235)$, which is suppressed for the spin-triplet $\rho(1450)$ and $\rho(1700)$. Specific calculation (Close and Dudek) gives
- $\Gamma(\rho_H(1700) \to b_1(1235)\gamma) \sim 700 \text{ keV}$

- Vector meson radiative decays can also tell us something about the scalar glueball.
- There are three scalar state when, if we only have $q\bar{q}$ states, there should be two.
- If there is no mixing among the scalars so that the $f_0(1370)$ is pure $n\bar{n}$ and the $f_0(1710)$ is pure $s\bar{s}$ then

$$\Gamma(\rho(1700) \to f_0(1370)\gamma) \sim 900 \text{ keV}$$

 $\Gamma(\rho(1450) \to f_0(1370)\gamma) \sim 65 \text{ keV}$
 $\Gamma(\phi(1900) \to f_0(1710)\gamma) \sim 190 \text{ keV}$

• The result of mixing is that the bare $n\bar{n}$ and $s\bar{s}$ states contribute in varying degrees to each of $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$

- Three different mixing scenarios have been proposed: the bare glueball is lighter than the bare $n\bar{n}$ state the bare glueball lies between the bare $n\bar{n}$ state and the bare $s\bar{s}$ state the bare glueball is heavier than the bare $s\bar{s}$ state
- Each one affects the radiative decays in a unique way:

	ho(1700)			$\phi(1900)$		
	$\mathbf{L}_{\mathbf{r}}$	M	H	L	M	Н
$f_0(1370)$	174	440	603	7	8	31
$f_0(1500)$	520	301	98	5	35	261
$f_0(1710)$				173	156	17

- So the relative rates of the radiative decays of the $\rho(1700)$ to $f_0(1370)$ and $f_0(1500)$, and of the $\phi(1900)$ to $f_0(1500)$ and $f_0(1710)$ change radically according to the particular model for $q\bar{q}$ -glueball mixing.
- An important check on this phenomenology is provided by the decay $\omega(1650) \to a_0(1450)\gamma$, predicted width $\sim 610 \text{ keV}$.

Scalar Meson Radiative Decays

• A complementary approach to flavour-filtering among the scalars is provided by the radiative decays of the scalars to the ground-state vectors ρ , ω and ϕ .

	ho(770)				$\phi(1020)$		
	L	M	H	L	M	Н	
$f_0(1370)$	443	1121	1540	8	9	32	
$f_0(1500)$	2519	1458	476	9	60	454	
$f_0(1710)$	42	94	705	800	718	78	

- The width of the decay $f_1(1285) \rightarrow \rho \gamma$ is measured and provides a good check on the model: 1320 ± 312 keV compared to a predicted value of ~ 1400 keV.
- The predicted width for the decay $f_2(1270) \rightarrow \rho \gamma$ is ~ 640 keV. Experimentally this width is small as neither MARK III nor WA102 see it although both have a large $f_2(1270)$ signal.
- The branching fractions for radiative decay of J/ψ to $f_1(1285)$ and $f_2(1270)$ are comparable at $(6.1 \pm 0.9) \times 10^{-4}$ and $(1.30 \pm 0.14) \times 10^{-3}$, so the non-observation of any $f_2(1270)$ signal in the decay $J/\psi \to \gamma(\gamma\rho)$ is meaningful.
- A similar situation holds in central production in high-energy proton-proton interactions and one an deduce an upper limit on $\Gamma(f_2(1270) \to \rho \gamma)$ of 500 keV at 95% confidence level.
- A further check on the phenomenology would be provided by the decay $a_0(1450) \rightarrow \omega \gamma$, predicted width $\sim 2100 \text{ keV}$.

Single quark transitions

• Independent of details of binding dynamics it is possible to obtain relations among helicity amplitudes, and hence widths, that depend only on the assumption that the mesons are $q\bar{q}$ P and S states. The width for the decays $V \to \gamma f_J$ is

$$\Gamma(V \to \gamma f_J) = 2p\alpha \frac{E_B}{m_A} I \frac{1}{3} \sum_{\lambda} |A_{\lambda}|^2$$

and for the decays $f_J \to \gamma V$ is

$$\Gamma(f_J \to \gamma V) = 2p\alpha \frac{E_B}{m_A} I \frac{1}{2J+1} \sum_{\lambda} |A_{\lambda}|^2$$

where A_{λ} are the helicity amplitudes.

• In terms of electric dipole and magnetic quadrupole transitions

$$A_0 = \sqrt{2}(E_1 + 2E_R)$$

for ${}^3S_1 \rightarrow {}^3P_0$ transitions,

$$A_0 = \sqrt{3}(E_1 + E_R + M)$$
 $A_1 = \sqrt{3}(E_1 + E_R - M)$

for ${}^3S_1 \rightarrow {}^3P_1$ transitions and

$$A_0 = (E_1 - E_R + 3M)$$
 $A_1 = \sqrt{3}(E_1 - E_R + M)$
 $A_2 = \sqrt{6}(E_1 - E_R - M)$

for ${}^3S_1 \rightarrow {}^3P_1$ transitions.

• Consider the decays $V \to \gamma f_J$. For equal phase space and equal form factors the $|M|^2$ term and the cross terms between E_1 and E_R can be eliminated and a combination formed proportional to $|E_0|^2 + |E_R|^2 \ge 0$. The resulting inequality is

$$\Gamma(\rho(2S) \to \gamma f_2) + 7\Gamma(\rho(2S) \to \gamma f_0) \ge 3\Gamma(\rho(2S) \to \gamma f_1)$$

Similarly for the decays of pure $n\bar{n}$ states

$$5\Gamma(f_2 \to \gamma \rho) + 7\Gamma(f_0 \to \gamma \rho) \ge 9\Gamma(f_1 \to \gamma \rho)$$

• As $\Gamma(f_1 \to \gamma \rho) \sim 1300$ keV, this latter equation requires that one or other of f_0 , f_2 must have a radiative width ~ 1000 keV. As there is no evidence for the f_2 decay it follows that $f_0 \to \gamma \rho$ should be large, in line with our specific calculations.

Summary

- In general, radiative decays are a better probe of meson structure than hadronic decays as the coupling to the charges and spins of constituents gives detailed information on wave functions.
- Specifically, light-quark radiative decays provide a strong discriminatory mechanism and act as a good flavour filter.

Discrimination: $\rho(1450)$, $\rho(1700)$, $\rho_H(1700)$.

Flavour filter: glueball mixing in the scalars $f_0(1370)$, $f_0(1500)$, $f_0(1710)$.

- Specific and general checks of the model are in good agreement with experiment.
- New and proposed facilities promise greatly increased statistics and will allow these decays to be measured.
- Some of the radiative decays may be detectable in present experiments:

E852 sees $\omega(1650) \to \omega \eta$

- $-{}^{3}P_{0}$ model predicts $\Gamma(\omega(1650) \to \omega \eta) \sim 13 \text{ MeV}$
- $-\Gamma(\omega(1650) \rightarrow a_1(1260)\gamma) \sim 1000 \text{ keV} \sim 8\% \text{ of } \omega\eta \text{ width}$

VES sees $\rho(1450) \rightarrow \rho \eta$ and $\rho(1700) \rightarrow \rho \eta$

- $-{}^{3}P_{0} \mod \Gamma(\rho(1450) \rightarrow \rho\eta) \sim \Gamma(\rho(1700) \rightarrow \rho\eta) \sim 25 \text{ MeV}$
- $-\Gamma(\rho(1450) \to f_2(1270)\gamma) \sim 700 \text{ keV}$
- $-\Gamma(\rho(1700) \to f_1(1285)\gamma) \sim 1100 \text{ keV}$