Aspects of GPDs

 Unified description of nucleon structure probed in

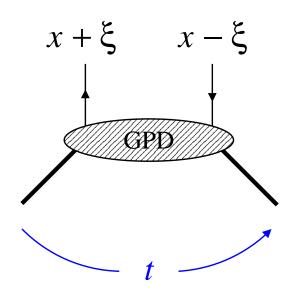
Inclusive DIS
Elastic form factors
Hard exclusive processes

• Access to operators not available in standard electroweak interactions EM Tensor, J_q

Quark/gluon imaging of nucleon

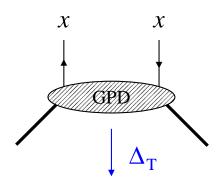
2D "tomography"

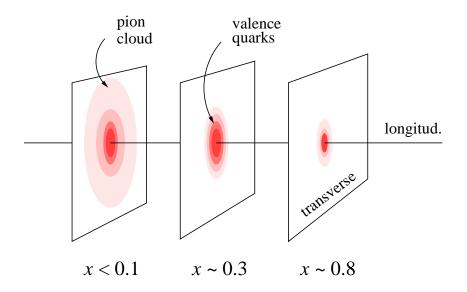
3D imaging


Q: What can measurements of hard exclusive processes

DVCS meson production

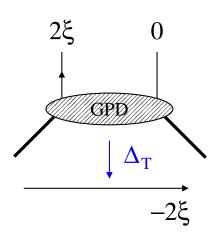
contribute to our knowledge of GPDs?


GPDs: Distinguish three regions

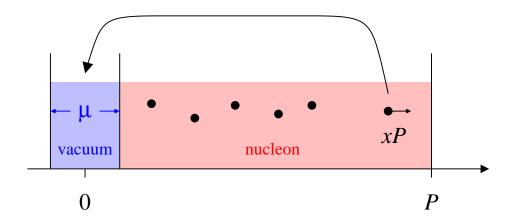

- → Interest for nucleon structure
- \longrightarrow Experimental access
- → Theoretical understanding

- I) $\xi = 0$ Transverse quark imaging ("tomography")
- II) $x = \xi$ "Stopping" of fast quark
- III) $x \neq \xi$ 3D imaging, sum rules

I) GPDs at $\xi=0$: Transverse parton imaging

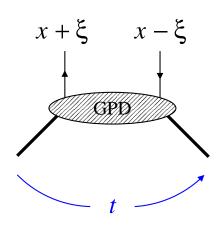


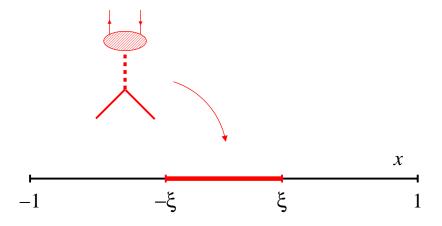
- Input: PDFs, Formfactors
- Correlation $x \leftrightarrow t$
 - $-x \rightarrow 1$: pQCD
 - Small x: Regge, DGLAP evolution
 - Intermediate x: Lattice
- Interesting: Transverse spin, etc.


Theory well understood; No direct access at large x $(\xi, t_{\min} \neq 0)$

Small $x \to \mathsf{tomorrow}$

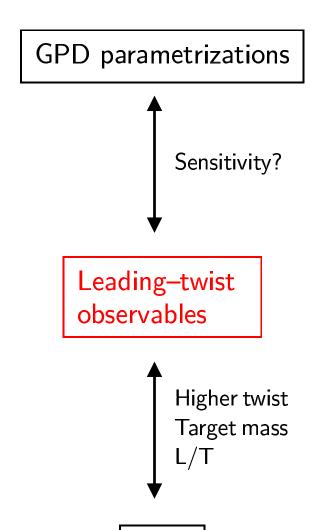
II) GPDs at $x = \xi$: Stopping of fast quark


- \bullet Probed by Im(DVCS) at leading twist
- Overlap of very different configurations in nucleon wave function
 - Role of vacuum structure?
 - Hard–soft separation, QCD evolution?


Directly accessible in experiment

Challenge for theory: Can we relate it to PDF/formfactor?

III) GPDs at $x \neq \xi$: General case


- Needed for 3D imaging, Ji's angular momentum sum rule $\int dx\,x\,\left[H_q(x,\xi)+E_q(x,\xi)\right]_{t=0}=2J_q$
- \bullet Probed by Re(DVCS) at leading twist

• Two–component structure: "Meson exchange" contributions for $-\xi < x < \xi$

Challenging for both experiment and theory!

From electroproduction data to GPDs

Data

 $2\mathrm{D}/3\mathrm{D}$ Imaging Sum rules J_q

Im(Amp)
$$\sim H(x = \xi, t)$$

Re(Amp) $\sim \int dx \frac{H(x, \xi, t)}{x \pm \xi}$

 $(e,e'\gamma)$ cross section, target/beam spin asymmetry

 $(e,e' \ \mathrm{meson})$ cross section and response fns (L/T)

GPD Parametrizations

GPD parametrizations: Requirements

Kinematic/ geometric constraints

- PDF, formfactor as limits
- Polynomiality: $\int dx \ x^n \ H(x,\xi) = \mathsf{Pol}_{n+1}(\xi)$

• Non-perturbative dynamics at $x \to \xi$

Dynamical input

- "Meson exchange" contributions at $-\xi < x < \xi$
- Correlation $x \leftrightarrow t$ dependence

GPD parametrizations: Overview

	Basic idea	Comments
Double distribution	Spectral representation symmetric in P, Δ ; Polynomiality	Widely used at large \boldsymbol{x} Relation to nucleon structure?
"Dual" parametrization	t—channel partial wave expansion; "Dual" amplitudes	LO evolution included Natural small– x expansion Useful at large x ?
Conformal parametrization	Diagonalization of QCD evolution; Complex angular momentum representation	LO/NLO evolution; Connection with Regge phenomenology at small \boldsymbol{x}

¹⁾ Radyushkin 96; Polyakov, CW 99; Belitsky, Müller 00; Goeke, Polyakov, Vanderhaeghen, 2001

²⁾ Polyakov, Shuvaev 02; Polyakov, Guzey 06

³⁾ Müller, Schäfer 05

GPD parametrizations: Questions

• Do we understand the $x \to \xi$ behavior?

How do measurements of $H(x = \xi) \sim \text{Im}(\text{DVCS})$ constrain GPDs elsewhere?

 \bullet Sensitivity of Re(DVCS) to parameters?

• What can lattice calculations of moments contribute?