Introductory remarks - to second day

Hard exclusive processes with a future ep /eA collider

Mark Strikman

Joint INT/JLab/BNL Workshop

Now a Ring-Ring Design, using Polarized Electron Injection and "Stacking" in a Storage Ring (as presented at QCDFP/EIC2006 Workshop at BNL, July 2006)

Lower Energy option = LE

eRHIC Ring-Ring Design

Source: eRHIC Zeroth Design Report http://www.bnl.gov/eic

Existing RHIC ring for polarized p and un-polarized A Luminosity assumes at least 2 A-A experiments on (limiting the luminosity) *Electrons and positrons easily possible* One IR, can be built in short time scale

Table 2.4.2- 2 Parameters for higher luminosity--high electron beam energy

Two Higher Energy options = HE

eRHIC Linac-Ring Design

If community support is wide

- A design that allows up to four IRs
- \cdot 10->20 GeV upgrade trivial
- Clear advantages for element free regions in Interaction regions

Use existing p and A beam ring Add linac to the complex Assumes 2 A-A ℓ experiments on, limiting the estimated luminosity (in reality this may not be true, and lumi can be increased)

Two direction - moderate $x > 0.05$ and pushing to as small x as possible

 x_{min} $Q^2_{min}/W^2 = Q^2_{min}/4E_eE_p$

$1/x_{min}$ linear in maximal E_e, E_p

Potential advantage of collider (if collision region and detector are designed properly) - detection of fast particles (nucleons, mesons, ...) in the nucleon/ nucleus fragmentation region.

Small x region - physics of large longitudinal distances

 $l_{coh}(x) = (1 \div 2)/m_N x \Longrightarrow l_{coh}(x = 10^{-2}) = 10 \div 20$ *fm*

probably beyond the range of lattice QCD in the next 15 years

Small x - in NLO interplay of quark and gluon GPDs Need to measure both. Even more complicated that in DIS Example: difference in the t-dependence of quark and gluon QPD B_{DVCS} (x=10⁻³, Q²=8 GeV²)≈6 GeV⁻² B_{gluon gpd} $(x=10^{-3}, Q^2=3\div 8 \text{ GeV}^2) \approx 3.5\div 4.5 \text{ GeV}^{-2}$ from J/ ψ electro/photo

production

A. Freund and M. Mcdermott: σ_{DVCS} is difference of term due to quark and gluon gpd's with second term reducing σ _{DVCS} by nearly a factor of 2

$$
\Delta = B_{\text{quark gpd}} - B_{\text{gluon gpd}}
$$

Crucial to have high precision measurements of t -dependence for a wide range of hard processes

Need to explore relative merits of different options from the angle of

- $x, Q²$ range covered
- ☁ Acceptance in the forward region accurate measurement of t -dependence for diagonal case measurement of non-diagonal processes $\gamma^* + p \rightarrow \gamma(M) + \Delta^+(N^*)$ $\gamma^* + \vec{p} \rightarrow K^+ + \vec{\Lambda}$

for small \times $\lfloor (N^*)=1/2$ - baryon spectroscopy; chiral dynamics for gpd's

-
- Particle ID in the current fragmentation region
- ☁ Tagged neutrons for neutron gpd's

At what x , Q² LE option with higher lumi wins over HE? Optimizing energies of the runs - gains in the L/T separation

Nuclear gpds and exclusive processes Nuclear pdf \approx A x (nucleon pdf) for 0.4 > x > 0.02 with 10% accuracy $\overline{\psi}$? Nuclear gpd \approx A x (nucleon gpd) for 0.4 > x > 0.02 with 10% accuracy \downarrow \equiv Color transparency $Amplitude(\gamma^* + A \rightarrow \gamma(V) + A) = Amplitude(\gamma^* + A \rightarrow \gamma(V) + A)F_A(t)$ $Amplitude(\gamma^* + A \rightarrow \gamma(V) + A' [nucleus\,break breakup]) = 0_{\vert t=0}$ effects are small JHEP02(2002)027 and Wu [41], for several processes in QED. In particular, these authors demonstrated Γ for processes such as Delbruck scattering in the static scattering in the static in the static scattering in the sta cleon pdt) tor $(14 > x > 0)(7)$ with \mathbf{C} plicitly demonstrated that higher order diagrams, involving closed electron loops or graphs, in which a photon is allowed to be emitted and absorbed by the same electron, do not exponentiate. Secondly, the transverse diameter of the e+e−-system emitted by the photon A description of \mathcal{A} is the droplet model of \mathcal{A} $T_{\text{min}} = 0$ and the energy DIS on \mathbb{R}^n $\mathbf y$ virtual photon, constitution of $\mathbf y$ $n_1 - \text{min}($ ucleus is given by the square of the photon light-cone wavefunction multiplied wavefunction multiplied multiplied wavefunction multiplied wavefunction multiplied wavefunction multiplied wavefunction multiplied $m+a$ fracteus oreasured, i.e., m $\neq 0$ due to

appropriate variables. In other words, within the eikonal approximation the projectile is

Deviations from CT due to HT effects $- x \sim 0.05$ optimal as expansion figure 11. It represents the form \mathbf{r} nucleus scattering amplitude, in which the inter-

Figure 11: Feynman diagram giving risoram leadi eikonal approximation. while in figure 1 the virtual photon interacts by dissocial into a multipude of H example of HT diagram leading to shadowing $\frac{1}{2}$ vory small $\sigma_{\alpha} \sim 5$ For heavy nuclei can probe very small σ_{eff} ~ 5 mb

proximation that the dominant fluctuations of the projectile can be considered to be frozen, can bustified by a suitable choice of basis states that discrete the states of basis states the scattering of χ – Another strategy - A -dependence of break up (good for all x) $\sigma(\gamma^* + A \to \gamma(V) + A'[nucleus\,break breakup]) \propto A^n$ CT: n=1, large σ_{eff} n=1/3

EMC type effects

The leading twist prediction is

$$
\sigma_{\gamma A \to VA}(s) = \frac{d\sigma_{\gamma N \to VN}(s, t_{min})}{dt} \left[\frac{G_A(x_1, x_2, Q_{eff}^2, t=0)}{AG_N(x_x, x_2, Q_{eff}^2, t=0)} \right]^2
$$
\n
$$
\frac{t_{min}}{\int_{-\infty}^{t_{min}} dt} \left| \int d^2b dz e^{i\vec{q}_l \cdot \vec{b}} e^{-q_l z} \rho(\vec{b}, z) \right|^2,
$$
\nwhere $x_1 - x_2 = \frac{m_V^2}{s} \equiv x$.
\n
$$
\frac{t_{min}}{\sqrt{\frac{m_V^2}{4}}} \left[\frac{G_A(x_1, x_2, Q_{eff}^2, t=0)}{G_A x_1} + \frac{G_A(x_1, x_2, Q_{eff}^2, t=0)}{G_A x_2} \right]
$$
\n
$$
\frac{d\vec{a}}{dt} = \frac{1}{\sqrt{\frac{m_V^2}{c^2}}} \left[\frac{G_A(x_1, x_2, Q_{eff}^2, t=0)}{G_A x_1} + \frac{G_A(x_1, x_2, Q_{eff}^2, t=0)}{G_A x_2} \right]
$$

Factor of $>$ 2 suppression of cross sections at x < 0.005 for large Q^2 for light mesons and for onium production for all Q. (Diagonal DVCS is very difficult for such x - Guzey talk)
Data with nuclei are crucial for acctions at $x< 0.005$ for large O^2 for impact parameters b \blacksquare \overline{a} and, hence, suppresses the corresponding contribution to the \overline{b} light mesons and for onium production for all Q. (Diagonal DVCS is very $\hskip1cm \Box$ $H_{\rm{S}}$ model, which describes many global properties many global properties of nuclei $[27]$ as well as many single-particle nuclear structure characteristics extracted from the high Factor of > 2 suppression of cross sections at $x < 0.005$ for large Q² for difficult for such x - Guzey talk)

etermining the O range which could the Data with nuclei are crucial for determining the Q range which could be used to extract gpd's in scattering off nuleons to be top roduction \mathbf{S} allows one to express the imaginary part of the imaginary part of the forward amplitude ampl

for the production of a heavy vector meson by a photon, γ + T → V + T, through con-