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Definitions and OPE formalismDefinitions and OPE formalism
• QCD dynamics in photo leptoproduction is encoded in the hadronic tensor

• leading singularities in 1/x2 arise from the hand-bag diagram

‼ however, operators contain also non-leading contributions

• the expectation value of operators might be defined in terms of DDs

ΓOρ(x,−x) = ψ̄(−x)[−x, x]Γρψ(x)
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• To drop non-leading terms, take the + component and replace x by n with n2 =0.

(Fourier transform is simpler to perform with x rather n)

• Fourier-transform  leads to Compton form factors, given as

! power suppressed contributions are added in an uncontrolled way

• for DVCS kinematics one should set 

• taking one `exact’ relation into account, e.g.,

is ambiguous

includes higher twist contributions in an uncontrolled way 

has nothing to do with target mass corrections
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Systematic twist expansionSystematic twist expansion
geometrical twist = dimension – spin of the operator

to separate different twist-contributions one might consider local operators

Oρ(x,−x) =
∞∑

j=0

(−2i)j

j!
xµ1 . . . xµjOρ;µ1...µj , Oρ;µ1...µj = ψ̄Γρ i

↔
Dµ1 . . . i

↔
Dµj ψ,

i. symmetries  by means of Young-tableaus        

ii. set x to n to remove trace terms (twist-four and higher) 

� these steps so far lead to a breaking of U(1) gauge invariance

iii. employ                   to separate qq and qGq operators 

iv. resum local operators and define GPDs

� restoration of U(1) gauge invariance, twist-2 is talking to twist-3 operators

ρ µ1 ··· µn µ1 ··· µn
ρ

twist-two twist-three

/Dψ = 0

qtwist−3 = CWW ⊗ qtwist−2 + qqGq

General procedure, e.g., for twist-three sector



A challenge A challenge –– going beyond twistgoing beyond twist--threethree

� twist-two and -three contributions are distinguishable in photo electroproduction

� t/Q2 and M2/Q2 corrections arise from kinematical factors and twist-four operators

� dynamical contributions might complete kinematical ones 

(e.g., the φ independent part of the interference term arises from 

kinematical and dynamical twist-3 effects and is expressed by twist-two GPDs)

� new features at twist-four (and higher) in off-forward kinematics

� Wandzura-Wilczek terms are not uniquely defined

� What is the appropriate basis of qGGq operators? 

� no straightforward method known to consistently evaluate twist-four contributions

� twist-two operators know something about twist-four operators 

� an idea to evaluate higher twist contributions in a straightforward way: 

� twist-decomposition + EOM  in forward kinematics (should be have done)

� use conformal symmetry to map forward operators to non-forward ones 



geometrical twist expansion + equation of motion within  t=0

� failure in restoration of U(1) gauge invariance

� resummation of target mass corrections is possible within DDs

� target mass corrections can not be absorbed by means of a `Nachtmann’ variable

� expanded version, i.e., M2/Q2 terms, can be expressed in terms of GPDs

target mass corrections are in addition suppressed by ξ
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F =
∫
Ω
dy dz f(y, z)C(y, z|ξ)

C
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SummarySummary

� target mass corrections seem to be numerical small for fixed target 
experiments (numerical studies are not done so far)

� power suppressed contributions beyond twist-three are challenging 

� because of their lack one should stick to twist-two definition of variables, 
i.e.,  set η=ξ in GPDs


