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General idea of dual parameterization of GPDs

• The main idea is the assumption of duality between the s-channel and t-channel
descriptions of the quark-hadron scattering amplitude

n

n
=Σ

• The dual representation of quark GPDs of the pion is a formal solution reproducing
Mellin moments of the pion GPDs, M. Polyakov, 1998.

Joint INT/JLab/BNL workshop, October 29-30, 2006 2



• Derivation:

– Two-pion distribution amplitude ΦI(z, ξ, w2) is expanded in terms of
eigenfunctions of QCD evolution and in partial waves of produced pions

ΦI(z, ζ, w2, µ2) = 6z(1 − z)
∞
∑

n=0

n+1
∑

l=0

BI
nl(w

2, µ2) C3/2
n (2z − 1) Pl (2ζ − 1)

∗ I = 0, 1 isospin
∗ p1 and p2 momenta of final pions, P = p1 + p2

∗ z = k+/P+ quark light-cone fraction
∗ ζ = p+

1 /P+ distribution of light-cone momenta between pions
∗ w2 = (p1 + p2)

2
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– Consider Mellin moments of ΦI

∫ 1

0

dz(2z − 1)
N−1

Φ
I
(z, ζ, w

2
) =

1

[p+
1 + p+

2 ]N
〈p1p2|ψ̄γ

+
(
←→
∇

+
)
N−1

ψ|0〉

– As matrix elements of a local operator, the Mellin moments can be continued
to the crossed, GPD channel

〈p1p2|ψ̄γ
+
(
←→
∇

+
)
N−1

ψ|0〉 = 〈p2|ψ̄γ
+
(
←→
∇

+
)
N−1

ψ|−p1〉

– Changing appropriately the kinematic variables, we have

ξ
N
N−1
∑

n=0

n+1
∑

l=0

B
I
nl(t)Pl

(

1

ξ

) ∫ 1

0

dx
3

4
(1− x

2
)x

N−1
C

3/2
n (x) =

∫ 1

0

dxx
N−1

H
I
(x, ξ, t)

– The quark GPDs of the pion are reconstructed as a formal divergent series

HI(x, ξ, t, µ2) =
∞
∑

n=0

n+1
∑

l=0

BI
nl(t, µ

2) θ (ξ − |x|)

(

1 −
x2

ξ2

)

C3/2
n

(

x

ξ

)

Pl

(

1

ξ

)
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Dual parameterization of nucleon GPDs H and E

Shuvaev and Polyakov (2002) postulated similar dual parameterization for proton
GPDs,

Hi(x, ξ, t, µ2) =
∞
∑

n=1
odd

n+1
∑

l=0
even

Bi
nl(t, µ

2) θ (ξ − |x|)

(

1−
x2

ξ2

)

C3/2
n

(

x

ξ

)

Pl

(

1

ξ

)

,

E
i
(x, ξ, t, µ

2
) =

∞
∑

n=1
odd

n+1
∑

l=0
even

C
i
nl(t, µ

2
) θ (ξ − |x|)

(

1−
x2

ξ2

)

C
3/2
n

(

x

ξ

)

Pl

(

1

ξ

)

• i the quark flavor

• Bi
nl and Ci

nl unknown form factors

• Formula is written for singlet combinations of the GPDs, Hi(x, ξ, t) ≡ Hi(x, ξ, t)−
Hi(−x, ξ, t) and Ei(x, ξ, t) ≡ Ei(x, ξ, t) − Ei(−x, ξ, t)

• Polynomiality is by construction
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Main features of dual parameterization

• Easy QCD evolution to leading order accuracy

Bi
nl(µ

2) = Bi
nl(µ

2
0)

(

ln(µ2
0/Λ

2)

ln(µ2/Λ2)

)γn/B

– γn anomalous dimension
– B = 11 − (2/3)nflav

• Simple expression for the DVCS amplitude to the LO accuracy (see later) → use
the dual parameterization of the GPDs as a LO parameterization.

• The formal series diverge → cannot be used in this form to study GPDs themselves.
However, the series can be decomposed over other orthogonal polynomials on
x ∈ [−1, 1] (Belitsky et al., 1997) or it can actually be summed using the trick of
Polyakov and Shuvaev.
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Polyakov-Shuvaev trick

Let us introduce of a set of generating functions Qi
k and Ri

k

Bi
n n+1−k(t, µ

2) =

∫ 1

0

dx xnQi
k(x, t, µ

2)

C
i
n n+1−k(t, µ

2
) =

∫ 1

0

dx x
n
R
i
k(x, t, µ

2
)→

Hi(x, ξ, t, µ2) =
∞
∑

k=0
even

[ξk

2

(

Hi (k)(x, ξ, t, µ2)−Hi (k)(−x, ξ, t, µ2)

)

+

(

1−
x2

ξ2

)

θ (ξ − |x|)

k−3
∑

l=1
odd

C
3/2
k−l−2

(

x

ξ

)

Pl

(

1

ξ

)
∫ 1

0
dy y

k−l−2
Q
i
k(y, t, µ

2
)
]

H
i (k)

(x, ξ, t, µ
2
) =

1

π

∫ 1

0

dy

y

[(

1− y
∂

∂y

)

Q
i
k(y, t, µ

2
)

]
∫ 1

−1
ds

x1−ks
√

2xs − x2s − ξ
2
θ(2xs − x

2
s − ξ

2
)

− lim
y→0

Q
i
k(y, t, µ

2
)

∫ 1

−1
ds

x1−ks
√

2xs − x2s − ξ
2
θ(2xs − x

2
s − ξ

2
)
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Minimal model

Essence of the minimal model: GPDs Hi and Ei are expressed in terms of the
forward parton distributions, unknown forward limit of Ei and Gegenbaeur moments
of the D-term.

• Keep only Qi
0 and Qi

2 for Hi and Ri
0 and Ri

2 for Ei.
In the HERA kinematics (ξ < 0.005), the contribution of Qi

k and Ri
k with k ≥ 2

is kinematically suppressed by ξk.
In HERMES kinematics (ξ < 0.1), we keep Qi

2 and Ri
2 as a first correction.

• Relation between Mellin moments of Hi and form factors Bi
nl in the ξ → 0 limit

B
i
nn+1(t, µ

2
) =

2n + 3

2n + 4

∫ 1

−1

dx x
n
H
i
(x, 0, t, µ

2
) ≡

2n + 3

2n + 4

∫ 1

0

dx x
n
(

q
i
(x, t, µ

2
) + q̄

i
)

Ci
nn+1(t, µ

2) =
2n + 2

2n + 4

∫ 1

−1

dx xnEi(x, 0, t, µ2) ≡
2n + 3

2n + 4

∫ 1

0

dx xn
(

ei(x, t, µ2) + ēi
)
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• Since all Bi
nn+1 and Ci

nn+1 are fixed, the generating functions Qi
0 and Ri

0 can be
restored

Q
i
0(x, t, µ

2
) = q

i
(x, t, µ

2
) + q̄

i
(x, t, µ

2
)−

x

2

∫ 1

x

dz

z2

(

q
i
(z, t, µ

2
) + q̄

i
(z, t, µ

2
)
)

Ri
0(x, t, µ

2) = ei(x, t, µ2) + ēi(x, t, µ2)−
x

2

∫ 1

x

dz

z2

(

ei(z, t, µ2) + ēi(z, t, µ2)
)

In t → 0 limit , qi(x, t, µ2) + q̄i(x, t, µ2) become the singlet combination of forward quark

distribution and ei(x, t, µ2) + ēi(x, t, µ2) become the unknown forward limit of the singlet

combination GPDs Ei

Therefore, up to the t-dependence, the leading functions Qi
0 and Ri

0 are
completely constrained by the forward parton distributions and the forward
limit of the GPDs Ei.
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Our input in the t → 0 limit

• Forward quark PDFs are taken from CTEQ5L at µ0 = 1 GeV.

• Since the GPDs Ei decouple in the forward limit, the functions ei + ēi are
unconstrained. We followed the simple model of Goeke et al., 2001

ei(x, µ2) = Ai(µ
2) qival(x, µ2) +

Bi(µ
2)

2
δ(x)

ēi(x) =
Bi(µ

2)

2
δ(x)

where

Ai(µ
2
) =

2J i(µ2)−M i
2(µ

2)

M i,val
2

Bu(µ
2) = ku − 2Au(µ

2) , Bd(µ
2) = kd −Ad(µ

2)
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• Functions Qi
2 and Ri

2 are not so well-constrained, only their Mellin moments are
known. From

Bi
nn−1(t, µ

2) =
n

n+ 1
Bi
nn+1(t, µ

2) +
din(t, µ

2)

Pn−1(0)
,

where dn are Gegenbauer moments of the D-term, we find

Qi
2(x, t, µ2) = Qi

0(x, t, µ2) −

∫ 1

x

dz

z
Qi

0(z, t, µ2) + Q̃i
2(x, t, µ2)

where
∫ 1

0

dxxn Q̃i
2(x, t, µ2) =

din(t, µ
2)

Pn−1(0)

The Gegenbauer moments din are taken from the chiral quark soliton model.

• Since the D-term contribution to the GPDs Ei and Hi are equal and opposite in
sign,

Ri
2(x, t, µ2) = Ri

0(x, t, µ2) −

∫ 1

x

dz

z
Ri

0(z, t, µ2) − Q̃i
2(x, t, µ2)
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Two models of t-dependence

• Factorized exponential t-dependence

Hi(x, ξ, t, µ2) = exp

(

B(µ2) t

2

)

Hi(x, ξ, t = 0, µ2)

Ei(x, ξ, t, µ2) = exp

(

B(µ2) t

2

)

Ei(x, ξ, t = 0, µ2)

with Q2-dependent slope

B(µ2) = 7.6
(

1 − 0.15 ln(µ2/2)
)

GeV2

– The value of the slope is chosen to reproduce the only measurement of
differential DVCS cross section by H1 at HERA fitted to the exponential form:
B(µ2 = 8 GeV2) = 6.02 ± 0.35 ± 0.39 GeV−2, Aktas et al., 2005.

– The slight decrease of the slope is expected on general grounds.

Joint INT/JLab/BNL workshop, October 29-30, 2006 12



• Non-factorizable Regge-motivated t-dependence

qi(x, t, µ2
0) − q̄i(x, t, µ2

0) = qival(x, t, µ2
0) =

(

1

xα
′
valt

)

qival(x, µ2
0)

qi(x, t, µ2
0) + q̄i(x, t, µ2

0) =

(

1

xα′t

)

[

qi(x, µ2
0) + q̄i(x, µ2

0)
]

g(x, t, µ2
0) =

(

1

xα
′
gt

)

g(x, µ2
0)

with

α′val = 1.1(1 − x) GeV−2 , α′ = 0.9 GeV−2 , α′g = 0.5 GeV−2

Note that the data on σDVCS forces us to take α′, α′g > αIP = 0.25 GeV−2.
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• Since the D-term does not have a partonic interpretation, we cannot use the
Regge model.
Instead, we use the results of the lattice calculations, Gockeler et al., 2003

du,di (t) = du,di (t = 0)
1

(1 − t/M2
D)2

where MD = 1.11 ± 0.20 GeV in the continuum limit.
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DVCS cross section in HERA kinematics

• The DVCS cross section on the photon level

σDVCS(xB, Q2) =
πα2x2

B

Q4
√

1 + 4m2
Nx2/Q2

∫ tmax

tmin

dt |ADVCS(ξ, t, Q
2)|2

– In the small-ξ limit, |ADVCS(ξ, t,Q
2)|2 ≈ |H|2(1 − ξ2)

–

H(ξ, t,Q2) =
∑

i

e2
i

∫ 1

0

dxHi(x, ξ, t,Q2)

(

1

x − ξ + i0
+

1

x + ξ − i0

)

• One appealing feature of the dual parameterization is that the convolution integral
can be easily taken

H(ξ, t, Q2) = −
∑

i

e2
i

∫ 1

0

dx

x

∞
∑

k=0

xkQi
k(x, t, Q

2)







1
√

1− 2x
ξ + x2

+
1

√

1 + 2x
ξ + x2

− 2δk0






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Contains both real and imaginary parts

ImH(ξ, t) = −
∑

i

e2
i

∫ 1

a

dx

x

1
√

2x/ξ − x2 − 1

∑

even k

xkQi
k(x, t) ,

ReA
i
(ξ, t) = −

∑

i

∫ 1

a

dx

x

∑

even k

x
k
Q
i
k(x, t)

( 1
√

1 + 2x/ξ + x2
− 2δk0

)

−
∑

i

e
2
i

∫ a

0

dx

x

∑

even k

x
k
Qk(x, t)

( 1
√

1− 2x/ξ + x2
+

1
√

1 + 2x/ξ + x2
− 2δk0

)

where a = (1 −
√

1 − ξ2)/ξ ≈ ξ/2 at small ξ.
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• Moreover, in the HERA kinematics, only Qi
0 which is given by forward PDFs, is

important → parameter-free∗ predictions for the DVCS cross section.
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• The differential DVCS cross section

dσDVCS(xB, t, Q2)

dt
=

πα2x2
B

Q4
√

1 + 4m2
Nx2/Q2

|ADVCS(ξ, t, Q
2)|2
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Beam-spin asymmetry in HERMES kinematics

• The approximate expression for the sinφ-moment of the beam-spin asymmetry,
Belitsky et al., 2001

Asinφ
LU ≈

(

xB
y

)

8 K y (2 − y)(1 + ǫ2)2

[

F1(t)ImH(ξ, t) + |t|

4m2
N

F2(t)Im E(ξ, t)
]

cBH
0,unp

• The dual parameterization predictions compare very well to the HERMES
measurement at 〈xB〉 = 0.11, 〈Q2〉 = 2.6 GeV2 and 〈t〉 = −0.27 GeV2

Asinφ
LU = −0.22 . . . − 0.24 , exponential t − dependence

Asinφ
LU = −0.27 . . . − 0.29 , Regge t − dependence

Asinφ
LU = −0.23 ± 0.04 ± 0.03 , HERMES (Airapetian, 2001)

The range of theoretical prediction comes from varying 0 ≤ Ju ≤ 0.4.
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• Comparison of the dual parameterization predictions for the Asinφ
LU dependence on

t, Q2 and xB in the HERMES kinematics, F. Ellinghaus, Ph.D. thesis, 2004.
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• The calculation is done with Ju = Jd = 0, but the sensitivity to the model for the
GPD E is weak.
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Beam-spin asymmetry in CLAS kinematics

The 2001 average kinematic point of the CLAS kinematics: E = 4.25 GeV,
〈Q2〉 = 1.25 GeV2, 〈xB〉 = 0.19 and 〈t〉 = −0.19 GeV2, experimental value,

Asinφ
LU = 0.15 . . . 0.17 , exponential t − dependence

Asinφ
LU = 0.18 . . . 0.20 , Regge t − dependence

Asinφ
LU = 0.202 ± 0.028 , CLAS (Stepanyan, 2001)

The range of theoretical prediction comes from varying 0 ≤ Ju ≤ 0.4.
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Calculations of Asinφ
LU in the present CLAS kinematics: E = 5.7 GeV, Q2 = 1.5

GeV2 and xB = 0.25.

-0.1

-0.05
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A
si

nφ
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Regge
exponential

Note that our model becomes increasingly ambiguous starting from xB =
0.2 − 0.3.
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Estimate of the intrinsic ambiguity of the minimal model

The average HERMES kinematics: Q2 = 2.6 GeV2, t = −0.27 GeV2, xB = 0.11

Asinφ
LU = −0.27

Asinφ
LU = −0.31 , Q̃2 →

Q̃2

2

Asinφ
LU = −0.35 , Q̃2 → 0

The average CLAS kinematics: Q2 = 1.25 GeV2, t = −0.19 GeV2, xB = 0.19

Asinφ
LU = 0.18

Asinφ
LU = 0.28 , Q̃2 →

Q̃2

2

Asinφ
LU = 0.38 , Q̃2 → 0
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Beam-charge asymmetry in HERMES kinematics

• The approximate expression for the cosφ-moment of the beam-charge asymmetry,
Belitsky et al., 2001

Acosφ
C ≈

(

xB
y

)

8 K (2−2y+y2)
(

1 + ǫ2
)2

[

F1(t) ReH(ξ, t) + |t|

4m2
N

F2(t) Re E(ξ, t)
]

cBH
0,unp

• The dual parameterization predictions in the average HERMES kinematics,
〈xB〉 = 0.12, 〈Q2〉 = 2.8 GeV2 and 〈t〉 = −0.27 GeV2

Acosφ
C = 0.010 . . . 0.030 , exponential t − dependence

Acosφ
C = 0.19 . . . 0.23 , Regge t − dependence

Acosφ
C = 0.11 ± 0.04 ± 0.03 , HERMES (2002, unpub.)

The range of theoretical prediction comes from varying 0 ≤ Ju ≤ 0.4.
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• Also for the 2006 HERMES kinematics: 〈xB〉 = 0.10, 〈Q2〉 = 2.5 GeV2 and
〈t〉 = −0.12 GeV2

Acosφ
C = 0.013 . . . 0.022 , exponential t − dependence ,

Acosφ
C = 0.080 . . . 0.092 , Regge t − dependence ,

Acosφ
C = 0.063 ± 0.029 ± 0.026 , (HERMES, 2006)
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• Comparison of the dual parameterization predictions for the Acosφ
C dependence

on t, Q2 and xB to the analysis (F. Ellinghaus, Ph.D. thesis, 2004) and to new
HERMES data (Airapetian, 2006).
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• The calculation is done with Ju = Jd = 0.

• The Regge model of the t-dependence gives a much better description of the
data.
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Transversely-polarized target asymmetry in HERMES kinematics

• The sinφ-cosϕ-moment of the transversely-polarized target (unpolarized beam)
asymmetry is sensitive to the GPD E, Belitsky et al., 2001

Asinφ cosϕ
UT = A

sin(φ−φS) cosφ
UT ∝ F2(t) ImH(ξ, t) − F1(t) Im E(ξ, t)

• Can be used to discriminate between different models of the GPD E

• Can be used to determine the total angular momentum carried by quarks,
Ellinghaus, Nowak, Vinnikov, Ye, 2005.

• The dual parameterization predictions for A
sin(φ−φS) cosφ
UT can be compared to the

preliminary HERMES data, Ye, 2005. However, because of large experimental
errors, no quantitative conclusion from the comparison can be made.
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Conclusions and discussion

• A new LO parameterization of GPDs H and E with the known simple QCD
evolution and simple (regular) expressions for the LO DVCS amplitude.

Satisfies polynomiality by construction.

• It allows for an economical and good description of all available data on DVCS.

• The minimal model starts to be increasingly model-dependent for xB ≥ 0.2− 0.3

• The Regge model of the t-dependence seems to be preferred by the AC and AUT

HERMES data.
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