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Collective Inertia in Fission dynamics

Spontaneous fission half-life (M. Brack et al., Rev. Mod.
Phys. 44 (1972) 320)

Tsf =
In2
n

1
P

Penetration probability, P, is calculated in WKB
approximation

P = [1 + exp S(Lmin)]
−1

where

S(L) = 2
∫ √

2
~2M(q) [V (q)− E ] dq

To obtain kinetic energy and mass distributions of fission
fragments, first collective Hamiltonian is derived and then
re-quantized using Pauli prescription (Goutte et al., Phys.
Rev. C71 (2005) 024316).
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Time-Dependent Hartree-Fock Bogoliubov Theory

Approximation : wavefunction is a Slater determinant and
stays such at all times
TDHFB equation (Ring and Schuck, Page 488)

ıṘ = [W,R]

R =

(
ρ κ
−κ∗ 1− ρ∗

)
and W =

(
h ∆

−∆∗ −h∗

)
TDHFB cannot describe quantum tunneling process as the
energy is conserved :

dE
dt

= Tr(WṘ) = ıTr(W[R,W]) = 0 (1)

Conceptual problem of non-linearity - superposition
principle is violated
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Adiabatic TDHFB

Approximation : Collective motion is slow (adiabatic)
compared to the single-particle velocity of the nucleons
Density operator is expanded as (Baranger and Veneroni,
Ann. of Phys. 114 (1978) 123)

R = eıχR0e−ıχ

R0 and χ are hermitian and time-even operators, and
correspond to the classical variables of coordinate and
velocity.
Main emphasis of the ATDHFB formalism is to derive the
phenomenological parameters appearing in the Bohr
Hamiltonian microscopically and in order to achieve this,
the densities are expanded up to quadratic terms only, i.e.,

R = R0 +R1 +R2

with R1 = ı[χ,R0] and R2 = 1
2 ı2[χ, [χ,R0]]
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Adiabatic TDHFB

Using the expansion of the density, total HFB energy can
be separated into kinetic and potential terms, and the
kinetic energy can be expressed as

K =
1
2

q̇i q̇jMij

where the collective inertia is given by

Mij =
ı

2q̇i
Tr
(

∂Ri
0

∂qj
[R0,R1]

)
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Adiabatic TDHFB

Trace in the collective mass expression is evaluated in the
quasiparticle basis. Defining the transformation

R0 = σzA†GAσz

W0 = σzA†EAσz

R1 = σzA†ZAσz

Ṙ0 = σzA†FAσz

σz =

(
1 0
0 −1

)
and A =

(
A† B†

BT AT

)
Derivative of R0 is given by the ATDHFB equation

ıṘ0 = [W0,R1] + [W1,R0]

and in quasiparticle representation can be expressed as

ıF = [E ,Z] + [AσzW1σzA† ,G]
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Adiabatic TDHFB

Matrix elements of the ATDHFB equation in the canonical
basis is given by (J. Dobaczewski and J. Skalski, Nucl.
Phys. A369 (1981) 123)

−ıFµν =
∑

δ

(E0
µδ Zδν + Zµδ E0 ∗

δν )

+
∑
δγ

(
1
2

V pp
δγµν ζ−δγζ−µν + V ph

µ̄δνγ̄ s∗µ̄sγη−δγη−µν

)
Zδγ

Hermiticity property of Z and F matrices allows to write

Z =

(
0 −Z ∗

Z 0

)
and F =

(
0 −F ∗

F 0

)
where Z ∗ = −Z † and F ∗ = −F †.
Collective mass tensor in terms of F and Z

Mij =
ı

q̇i q̇j
Tr
(

Z i∗F j − Z iF j∗
)
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Adiabatic TDHFB

Evaluation of the collective inertia needs F and Z matrices.
F matrix is simply derivative of the ρ0 and is given by

F i∗
µν̄ =

−sν̄

(uµvν + vµuν)
q̇i

(
∂ρ0

∂qi

)
µν

Taking the derivative of the static HFB equation, above
equation can also be written as

F i∗
µν =

q̇i

(Eµ + Eν)

[
(uµvν + vµuν)sν

(
∂h
∂qi

)
µν̄

−(uµuν + vµvν)

(
∂∆

∂qi

)
µν

]
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ATDHFB-Cranking

Approximation : Two-body terms are neglected in ATDHFB
equation

−ıFµν =
∑

δ

(E0
µδ Zδµ + Zµδ E0 ∗

δν )

where HFB energy matrix, E0
µν , is given

E0
µν = ζ+

µν hµν + η+
µν ∆µν̄ s∗ν̄

η±µν = uµvν ± uνvµ and ζ±µν = uµuν ∓ vµvν

In HF+BCS approximation, E0
µν matrix is simply a vector of

BCS quasiparticle energies and Z is simply given by

Zµν = −ıFµν/(Eµ + Eν)
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ATDHFB-Cranking

In the complete HFB framework, E0
µν matrix is

non-diagonal and in order to evaluate Z , we need to find
the inverse of E0

µν matrix.
As an approximation, equivalent BCS energies can be
calculated (J. Dobaczewski, W. Nazarewicz, T.R. Werner,
J.-F. Berger, C.R. Chinn, and J. Dechargé, Phys. Rev. C53
(1996) 2809)

Eµ = Eµµ =
√

(hµµ − λ)2 + ∆2
µµ̄

Above equation is quite similar to the BCS quasiparticle
energy expression, but involves quantities hµµ and ∆µµ̄,
which are obtained by transforming the HFB particle-hole
and the pairing fields to the canonical basis.
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Perturbative Cranking

Approximation : Perturbation theory is employed to
evaluate the derivatives
The standard mass expression

Mij = 2
∑
µν

〈ν|∂ĥ/∂qi |µ〉〈µ|∂ĥ/∂qj |ν〉
(Eµ + Eν)3 (uµvν + uνvµ)2

where

〈µ|∂ĥ
∂q
|ν〉 = 〈µ|Q̂|ν〉

[
2
∑

m

〈φ0|Q̂|m〉〈m|Q̂?|φ0〉
Em − E0

]−1

and is obtained by considering the quadrupole constraint
as an external field.
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Evaluation of Collective Inertia using
ATDHFB-Cranking

Derivatives are calculated explicitly and using Lagrange
three point formula the derivative of the density matrix, for
instance, is given by(

∂ρ

∂q

)
µν

≈ −δq′

δq(δq + δq′)

∑
n1n2

D∗
n1µ(ρ(q0 − δq))n1n2Dn2ν

+
δq − δq′

δq δq′
∑
n1n2

D∗
n1µ(ρ(q0))n1n2Dn2ν

+
δq

δq′(δq + δq′)

∑
n1n2

D∗
n1µ(ρ(q0 + δq))n1n2Dn2ν
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Few details of the mean-field calculations

HFODD program : Solves HF or HFB equations
self-consistently using Cartesian 3D deformed
harmonic-oscillator basis (J. Dobaczewski and J. Dudek,
Comp. Phys. Comm. 102 (1997) 166)
Breaking of most of the symmetries is allowed in HFODD :
crucial in the fission studies
Lowest 1140 single-particle basis states - corresponding to
17 oscillator shells at the spherical point
Energy cutoff for quasiparticle states : 60 MeV
No. of Hartree Fock or canonical states : twice the
neutron/proton particle number
Standard center of mass correction : multiplying kinetic
energy term by (1− 1/A)
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Few details of the mean-field calculations

Skyrme interaction : SkM* in the particle-hole channel
HFB : density-dependent delta-interaction in
particle-particle channel

Vpair (~r1 −~r2) = v0t δ(~r1 −~r2)

(
1− α

ρ(~r1)

ρ0

)
where α = 1/2 (mixed pairing), ρ0 = 0.16 fm−3, v0n =
-425.5 MeV fm3 and v0p = -448.5 MeV fm3 (fitted to
reproduce the empirical odd-even mass difference in
252Fm).
HF+BCS : seniority pairing force

Gn = [24.70− 0.108(N − Z )]/A
Gp = [14.76 + 0.241(N − Z )]/A
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Comparison of various mean-field models for 252Fm
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Comparative study of HF+BCS and HFB approaches

In most of the fission analysis, HF+BCS approach is
employed rather than HFB and has been justified by
comparing the fission barriers.
A systematic comparison of HF+BCS and HFB
approaches has been performed not only for fission
barriers, but also for masses and other properties.
Masses have been calculated using “Equivalent BCS”
procedure.
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Comparison of HF+BCS and HFB results
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Comparison of HF+BCS and HFB results
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Comparison of HF+BCS and HFB results
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Comparison of HF+BCS and HFB results
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Comparison of HF+BCS and HFB results
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Summary and Outlook

Summary
Collective masses derived from ATDHFB-Cranking
approach are about 10% higher than the perturbative
cranking masses for 252Fm. It is expected that these
differences will change half-lives by 1-2 orders of
magnitude.
HF+BCS and HFB approaches lead to similar barrier
distributions and average pairing properties. However, the
collective masses calculated in the two approaches are
different.

Outlook
Evaluate collective inertia in the full ATDHFB approach by
including time-odd fields.
Evaluation of the fission half-lives and energy and mass
distributions.
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