Deformed Coordinate-Space HFB: Finite-Temperature Fission Barriers

Junchen Pei

UTK/ORNL

M. Stoitsov, W. Nazarewicz, G.I. Fann, N. Shunck, F.R. Xu

J.A. Sheikh , A.K. Kerman

5th ANL/MSU/JINA/INT FRIB Workshop

MSU, Nov. 21, 2008

Outline

- Various HFB codes
- HFBAX development
- Benchmarking Calculations
- Pinite-Temperature Fission Barriers of SHE

Purpose of Coordinate-Space HFB-AX

Purpose of Coordinate-Space HFB-AX

- Correct treat the surface properties and better convergence: halo structure, deformed halo, hot nuclei
- Provide better input for HFB+QRPA: pygmy resonance
- A general purpose tool for nuclear, atomic systems: Skyrme, Gogny, SLDA
- Large scale calculation utilizing the new generation computer

Purpose of Coordinate-Space HFB-AX

- Correct treat the surface properties and better convergence: halo structure, deformed halo, hot nuclei
- Provide better input for HFB+QRPA: pygmy resonance
- A general purpose tool for nuclear, atomic systems: Skyrme, Gogny, SLDA
- Large scale calculation utilizing the new generation computer

HFB codes based on HO basis expansion

HFB codes based on HO basis (have been strictly tested):

- 2D HFB-THO
 - based on transformed HO basis to improve the description of drip-line nuclei
 - very efficient in calculating the whole mass table

M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comp. Phys. Commun. 167, 43(2005).

- based on 3D Cartesian HO basis
- proper code to calculate the asymmetric and triaxial fission paths
- time-reversal symmetry broken

J. Dobaczewski and P. Olbratowski, Comp. Phys. Commun., 167, 214(2004)

Advantages of Coordinate-Space HFB codes

Gauss-type vs exponential asymptotics:

Convergence of HO basis:

240Pu FISSION ISOMER WITH SKM* FUNCTIONAL

M. Stoitsov, PRC, 2003

plot by N. Nikolov

Various Coordinate-Space HFB codes

1D HFBRAD: finite-difference method standard tool for benchmarking others codes at spherical cases

K. Bennaceur, and J. Dobaczewski, Compt. Phys. Comm. 168, 96 (2005).

- 2D HFB-Lattice: B-spline direct diagonalization method useful for studying deformation at drip-lines but very time consuming *E. Terán*, V.E. Oberacker, and A.S. Umar, Phys. Rev. C 67, 064314 (2003).
- 2D HFB-AX: B-spline direct diagonalization method numerical optimized to be as fast as HFODD; parallel; accurate J.C. Pei, M.V. Stoitsov, G. I. Fann, W. Nazarewicz, N. Schunck, and F.R. Xu, arXiv:0807.3036

J.C. Fel, M.V. Stollsov, G. I. Fallil, W. Nazarewicz, N. Schulick, and F.H. X

3D HFB

two-basis method: B. Gall, P.Bonche, J. Dobaczewski, et al. Z. Phys. A 348, 183(1994) canonical basis: N. Tajima, Physical Review C, vol.69, 034305 (2004)

3D Madness-HFB: adaptive multi-resolution wavelets error is controllable; spin-orbit has been implemented 3D HFB is still in progress (succeed for fixed potential recently) G.I. Fann, R.J. Harrison, G. Beylkin, J. Jia, R. Hartman-Baker, W.A. Shelton, and S. Sugiki, J. Phys. Conf. Ser. 78, 012018 (2007)

B-Spline techniques

In HFBAX, the wave functions are discretized on a 2D grid (r_{α} , z_{β}) with the *M*-order B-splines:

$$\psi_{n\Omega^{\pi}q}^{(1,2)}(\rho_{\alpha}, Z_{\beta}) = \sum_{i,j} B_i^M(\rho_{\alpha}) B_j^M(Z_{\beta}) C_{n\Omega^{\pi}q}^{ij(1,2)},$$

where C^{ij} is the matrix of expansion coefficients; $\alpha = 1, ..., N_{\rho}$ and $\beta = 1, ..., N_{z}$.

The mesh point numbers: $N_z = N_\rho = \frac{R}{h} + (M - 1) - 2$, for a box of size *R*, max mesh size *h*, and *M*-order B-Splines.

Operators

Define matrix from Galerkin method:

$$\mathcal{O}(kl, ij) = \int v(r, z) B_k(r) B_l(z) \mathcal{O} B_l(r) B_j(z) dr dz$$
$$G(kl, ij) = \int v(r, z) B_k(r) B_l(z) B_l(r) B_j(z) dr dz$$

Operators $[\frac{\partial}{\partial r}, \frac{\partial}{\partial z}, \frac{\partial^2}{\partial r^2}, \frac{\partial^2}{\partial z^2}]$ are constructed with boundary conditions:

$$\mathcal{O}^{lphaeta}_{\delta\gamma} = \sum_{ij,kl,i'j'} ilde{B}^{r}_{\delta i'} ilde{B}^{z}_{\gamma j'} G^{i'j',kl} \mathcal{O}_{kl,ij} ilde{B}^{lpha i}_{r} ilde{B}^{eta j}_{z}$$

HFB equation becomes:

$$\sum_{lphaeta} \mathcal{H}^{lphaeta}_{\delta\gamma} \mathit{f}_{lphaeta} = \mathit{g}_{\delta\gamma}$$

We diagonalize the operators (non-symmetric), not actually the Hamiltonian matrix $\langle \psi_i | H | \psi_j \rangle$ like the basis expansion method.

Diagonalization Speedup

 Instead of diagonalizing the full HFB matrix, it is equivalent to diagonalize half of the matrix:

$$\begin{pmatrix} (h-\lambda+i\tilde{h})(h-\lambda-i\tilde{h}) & 0 \\ 0 & (-h+\lambda+i\tilde{h})(-h+\lambda-i\tilde{h}) \end{pmatrix} \begin{pmatrix} U' \\ V' \end{pmatrix} = \mathsf{E}_{\alpha}^{2} \begin{pmatrix} U' \\ V' \end{pmatrix}$$

 The resulting energy spectrum can be several GeV. We want an energy cut-off in LAPACK. For non-symmetric matrix: Hessenberg form->eigenvalues->eigenvectors (selection cutoff)

Broyden method

The Broyden mixing:

$$\boldsymbol{V}_{in}^{(m+1)} = \boldsymbol{V}_{in}^{(m)} + \mathbf{B}^{(m)} \boldsymbol{F}^{(m)},$$

 $B^{(m)}$ is a matrix that includes several previous iteration information.

Andrzej Baran, et al. Phys. Rev. C 78, 014318 (2008) In HFB-AX,

$$\boldsymbol{V} \equiv \left\{ \rho_{\boldsymbol{q}}, \tau_{\boldsymbol{q}}, \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{J}}_{\boldsymbol{q}}, \tilde{\rho}_{\boldsymbol{q}}, \nabla^2 \rho_{\boldsymbol{q}}, \nabla_{\rho} \rho_{\boldsymbol{q}}, \nabla_{z} \rho_{\boldsymbol{q}} \right\}.$$

(MeV)	HFB-AX	HFBRAD	HFBTHO
	<i>h</i> =0.6	<i>h</i> =0.1	N _{sh} =25
E _{tot}	-1018.795	-1018.791	-1018.777
E _C	347.442	347.400	347.370
E_{kin}^{p}	830.856	830.848	830.735
E_{kin}^{n}	1340.675	1340.668	1340.458
E_{pair}^{n}	-12.491	-12.467	-12.467
\tilde{E}_{kin}^n	1328.184	1328.201	1327.991
Δ_n	1.2448	1.2446	1.2447
λ_n	-8.0186	-8.0181	-8.0168

The renormalized kinetic energy $\tilde{E}_{kin} = E_{kin} + E_{pair}$ is less sensitive to the actual discretization of quasi-particle continuum.

Ni isotopes

Pairing properties

HFBRAD: J_{max}; HFBAX: Ω_{max}

Conclusion: Neutron drip-line nuclei with surface pairing require very large angular momentum cutoff.

Densities

	HFB-AX	HFBTHO		HFB-AX	HFBTHO
Etot	-893.983	-893.840	\tilde{E}_{kin}^n	1365.006	1364.878
E _C	226.758	226.712	Δ_n	0.636	0.652
E_{kin}^{p}	632.115	631.882	λ_n	-3.552	-3.543
E_{kin}^{n}	1368.206	1368.201	Q_{20}^p	444.02	443.90
Enair	-3.200	-3.323	$Q_{20}^{\overline{n}}$	788.32	786.63

'potential.dat' -10 -20

Two-center Potential Test

The two-center separated potential provides a good test for different numerical methods at very large deformations:

					40
Ω^{π}	HO	HO	B-spline	Wavelets	- 5
	N _{sh} =20	N _{sh} =30	<i>h</i> =0.6	-5 -	-15
1/2+	-22.23916	-22.240 <mark>08</mark>	-22.24011	-22.24011	-25
$1/2^{-}$	-22.23 <mark>816</mark>	-22.2399 <mark>5</mark>	-22.23998	-22.23998 []	
1/2+	-9.43 <mark>145</mark>	-9.436 <mark>59</mark>	-9.4366 <mark>3</mark>	–9.43662 ∞	40 45
3/2-	-9.4 <mark>231</mark> 4	-9.43 <mark>199</mark>	-9.4320 <mark>3</mark>	-9.43202 🚆	
3/2+	-9.4 <mark>256</mark> 1	-9.430 <mark>78</mark>	-9.4308 <mark>1</mark>	-9.43080 -	15 ²⁰
$1/2^{-}$	-9.41 <mark>93</mark> 1	-9.4278 <mark>3</mark>	-9.42788	_9.42788 ⁻ *√	15 - 15 - 15
1/2+	-8.77 <mark>250</mark>	-8.7782 <mark>5</mark>	-8.77828	-8.77828	2024
1/2-	-8.7 <mark>6475</mark>	-8.7738 <mark>0</mark>	-8.7738 <mark>4</mark>	-8.77383	6 820
1/2+	-1.70727	-1.72 <mark>405</mark>	-1.725 <mark>06</mark>	-1.72516	
1/2-	-1.49222	-1.52 <mark>490</mark>	-1.526 <mark>75</mark>	-1.52693	

Fission Pathways

The HO basis HFB can have several hundreds of KeV differences in the prediction of fission barriers at large deformations.

Atomic calculations

Superfluid Local Density Approximation(SLDA) for Fermi system description: no spin-orbit coupling Aurel Bulgac, arXiv:cond-mat/0703526

$$\mathcal{E}(\mathbf{r}) = \alpha \frac{\tau_c(\mathbf{r})}{2} + \beta \frac{3(3\pi^2)^{2/3} n^{5/3}(\mathbf{r})}{10} + g_{eff}(\mathbf{r}) |\nu_c(\mathbf{r})|^2 + V_{ext}(\mathbf{r}) n(\mathbf{r})$$

where $g_{eff}(\mathbf{r})$ is renormalized pairing. Similarly the HFB equation with two components: spin up and down,

$$\begin{cases} [h(\mathbf{r}) - \mu] u_k(\mathbf{r}) + \Delta(\mathbf{r}) v_k(\mathbf{r}) = E_k u_k(\mathbf{r}), \\ \Delta^*(\mathbf{r}) u_k(\mathbf{r}) - [h(\mathbf{r}) - \mu] v_k(\mathbf{r}) = E_k v_k(\mathbf{r}), \end{cases}$$

Recently we have implemented that in HFBAX.

G. Bertsch, J. Dobaczewski, w. Nazarewicz, J. Pei, arXiv:0808.1874

HFBAX and applications

Pinite-Temperature Fission Barriers of SHE

- Interesting experiments
- Calculations and results

Important SHE experiments

- Cold-fusion in GSI (⁷⁰Zn+²⁰⁸Pb)²⁷⁸112→²⁷⁷112+n S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 7. 733(2000).
- e hot-fusion in Dubna (⁴⁸Ca+²⁴⁴Pu)²⁹²114→²⁸⁸114+4/

Y. Oganessian, Pure Appl. Chem. 78, 889(2006).

highly-hot fusion experiment ³¹²124*(⁷⁴Ge+²³⁸U) > 10⁻¹⁸ s

M. Morjean, et al., Phys. Rev. Lett. 101, 072701(2008).

Important SHE experiments

cold-fusion in **GSI** (⁷⁰Zn+²⁰⁸Pb)²⁷⁸112→²⁷⁷112+*n*

S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733(2000).

2 hot-fusion in Dubna (⁴⁸Ca+²⁴⁴Pu)²⁹²114→²⁸⁸114+4n

Y. Oganessian, Pure Appl. Chem. 78, 889(2006).

initial bigstail b

M. Morjean, et al., Phys. Rev. Lett. 101, 072701(2008). One of the key problems is the survivability of the highly excited compound nuclei. While temperature dependent fission barrier calculations of SHE is still absent.

Important SHE experiments

cold-fusion in **GSI** (⁷⁰Zn+²⁰⁸Pb)²⁷⁸112→²⁷⁷112+*n*

S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733(2000).

e hot-fusion in Dubna (⁴⁸Ca+²⁴⁴Pu)²⁹²114→²⁸⁸114+4n

Y. Oganessian, Pure Appl. Chem. 78, 889(2006).

inighly-hot fusion experiment ³¹²124*(⁷⁴Ge+²³⁸U) > 10⁻¹⁸ s

M. Morjean, et al., Phys. Rev. Lett. 101, 072701(2008). One of the key problems is the survivability of the highly excited compound nuclei. While temperature dependent fission barrier calculations of SHE is still absent.

What's the secrets here?

FT-HFBAX

In the case of Finite Temperature, the HFB density matrix ρ and pairing tensor κ is

$$\rho(\mathbf{r}) = \sum_{i} [f_i |U_i(\mathbf{r})|^2 + (1 - f_i) |V_i(\mathbf{r})|^2]$$
$$\tilde{\rho}(\mathbf{r}) = -\sum_{i} (1 - 2f_i) V_i(\mathbf{r}) U_i^*(\mathbf{r})$$
$$f_i = \frac{1}{1 + e^{(E_i/kT)}}$$

Also we should modify the kinetic densities τ , the spin currents $\nabla \cdot \mathbf{J}(r)$. Conventionally the potential energy is obtained by free energy F = E - TS, *S* is the entropy. The SkM* force is chosen for fission barrier calculations.

J. Pei, W. Nazarewicz, J.A. Sheikh , A.K. Kerman, to be appear.

Gas solutions in box

unphysical gas is obatained by solving the Hartree-Fock equation without potential. T. Vertse, A.T. Kruppa, W. Nazarewicz, PRC, 2000

Fortunately the gas wouldn't change the fission barrier calculations.

Finite-Temperature Fission Barriers of SHE $\circ \circ \circ \circ \circ \circ \circ \circ$

Isothermal or isentropic fission

Equivalent at low temperatures in self-consistent calculations: consistent with the relation: $-P = (\frac{\partial U}{\partial V})_S = (\frac{\partial F}{\partial V})_T$

But they are very different in Maro-microscopic calculations:

M. Diebel, K. Albrecht and R.W. Hasse, Nucl. Phys. A355, 66(1981).

results

results

In experimental analysis, usually we using a damping factor γ_D :

$$B_f = B_{LD} - \delta W e^{-\gamma_D E^*}$$

M.G. Itkis, Yu. Ts. Oganessian and V.I. Zagrebaev, Phys. Rev. C 65, 044602(2002). We can fit that after kT > 0.5, 7.6e^{$-E^*/16$} for ²⁷⁸112 and 9.6e^{$-E^*/34$} for ²⁹²114.

- A 2D HFB-AX has been developed, it is very accurate, reasonable fast, very useful for describing weakly bound nuclei and elongated nuclear shapes.
- It can easily be extended to describe atomic system by SLDA.
- Interesting results have been obtained using the finite-temperature calculations of SHE fission barriers