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I. Introduction

Fig. 1. Nuclei with measured masses according to 2003 AME. NOT shown: nuclei for which
quoted mass is an estimate based on local systematics (indicated by # in table).
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Limits on N and Z of nuclei that can exist?

As neutrons added with Z fixed neutron separation energy Sn

decreases,

Sn = Mat(N − 1, Z)−Mat(N, Z) + Mn

When Sn = 0 impossible to add any more neutrons.

Neutron drip line:

Z fixed, add neutrons, first nucleus with Sn = 0.
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Likewise, when protons added with N fixed proton separation
energy Sp decreases

Sp = Mat(N, Z − 1)−Mat(N, Z) + MH

When Sp = 0 impossible to add any more protons.

Proton drip line:

N fixed, add protons, first nucleus with Sp = 0.

(Note that because of pairing isolated particle-stable nuclei might be found beyond drip
lines.)
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Fig. 2. HFB-16 is most recent Hartree-Fock Bogoliubov mass model.
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Thousands of nuclei on neutron-rich side remain to
be measured

Serious problem for astrophysics

i) r-process of nucleosynthesis

ii) EOS of neutron-star crusts

All relevant properties will have to be calculated,
one way or another
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Fig. 3. Neutron star.
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Outer crust. ' 300 meters thick. 0 < ρ < 1.2× 10−3 ρ0
– n-rich nuclei (+ electrons); within neutron drip line.

Inner crust. ' 500 meters thick. 1.2× 10−3 ρ0 < ρ < 0.4 ρ0
– nuclear clusters (+ electrons) floating in neutron vapour;

beyond neutron drip line.

Core. 10 km radius (roughly). ρ up to about 4 ρ0
– homogeneous gas of n and p (+ electrons).

About 97 % n at ρ around ρ0; other particles
towards centre.

Electrical neutrality everywhere assured by electron
gas: beta-equilibrated with nucleons.
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Outer crust
Dealing with isolated nuclei; quantity of great importance

is mass
- use of mass models to extrapolate from known masses.

Inner crust
No longer dealing with isolated nuclei; EOS rather than

masses is relevant quantity
- but mass models can be generalized

to extrapolate from known masses to beyond the drip line.
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Fig. 4.
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Liquid-drop(let) mass models

• all derived from Weizsäcker model of 1935

• parameters fitted to masses

• extensively refined since 1935

• latest form is FRDM - finite-range droplet model

macroscopic-microscopic approach -
shell (including deformation) and pairing
corrections grafted on to liquid-drop picture.

An intermediate form has been generalized to EOS:
“compressible liquid-drop model” (Lattimer and Swesty).
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2. Skyrme-Hartree-Fock-Bogoliubov mass models

• Shell-model and pairing effects incorporated on same foot-
ing as macroscopic effects in a completely self-consistent manner.

• Based on effective forces: free parameters that are fitted
not to two- and three-nucleon data but to mass data themselves.

– semi-empirical tradition of Weizsäcker

• A much more microscopic approach that allows for a closer
conformity to reality, e.g., effective mass, neutron matter.

• More unified treatment of outer and inner crusts possible:
shell effects easily incorporated into EOS of latter.
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Skyrme force 10 parameters

vij = t0(1 + x0Pσ)δ(rij)

+t1(1 + x1Pσ)
1

2~2
{p2

ijδ(rij) + h.c.}

+t2(1 + x2Pσ)
1

~2
pij.δ(rij)pij

+
1

6
t3(1 + x3Pσ)ραδ(rij)

+
i

~2
W0(σi + σj).pij × δ(rij)pij

Pairing force
n− n and p− p only (T = Tz = 1)

v
pair
q (ririri, rjrjrj) = vπ q[ρq(rrr)] δ(rrrij)
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Model not completely microscopic -

some phenomenological elements:

• Phenomenological Wigner terms.
If Skyrme and pairing forces are only ingredi-

ents then serious underbinding (≈ 2 MeV) for N = Z.

• Coulomb exchange dropped.
Compensation for neglected Coulomb correla-

tions, vacuum polarization and charge-symmetry breaking.

• Phenomenological correction for spurious collec-
tive motion.

Form is determined by microscopic calcula-
tions, parameters fitted to fission barriers.
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Not only do we require our mass models to give best possible
fit to data, and to extrapolate masses as reliably as possible
beyond the known region out to drip lines, but we also want to
be able to extend them to the calculation of following properties
of astrophysical importance:

i) EOS of inner crust of neutron stars.

ii) Fission barriers.

iii) Level densities.

iv) Beta-decay rates.

Unique effective force for all nuclear properties of
astrophysical interest.
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HFB-1 to HFB-16

(Force-parameter sets BSk1 to BSk16)

Imposed various constraints of physical reality:

pairing

effective mass

experimental barriers

neutron matter

Always fit not only mass data but also charge-radii data: pre-
dicted equilibrium density of symmetric INM (infinite nuclear
matter) very sensitive to latter.
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Rms and mean (expt. - model) deviations between data and
predictions for HFB-8 and HFB-16; FRDM shown for conve-
nience. The first pair of lines refers to all the 2149 measured
masses M of nuclei with Z and N ≥ 8 given in the 2003 AME,
the second pair to the masses Mnr of the subset of 185 neutron-
rich nuclei with Sn ≤ 5.0 MeV, and the third pair to the 782
measured charge radii. Last line shows isoscalar effective mass
in symmetric INM at equilibrium density.

HFB-8 HFB-16 FRDM
σ(M) [MeV] 0.635 0.632 0.656
ε̄(M) [MeV] 0.009 -0.001 0.058

σ(Mnr) [MeV] 0.838 0.748 0.910
ε̄(Mnr) [MeV] -0.025 0.161 0.047
σ(Rc) [fm] 0.0275 0.0313 0.0545
ε̄(Rc) [fm] 0.0025 -0.0149 -0.0366
M∗

s /M 0.8 0.8 -
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Neutron matter

Beginning with model HFB-9 we fitted the model parameters
not only to the mass data, but also require that Skyrme pa-
rameters reproduce energy-density curve of neutron matter, as
calculated from realistic N-N and N-N-N forces.

This improves the reliability of the mass predictions for highly
neutron-rich nuclei.

Moreover, such forces are well adapted to the calculation of the
EOS of the inner crust of neutron stars with the HFB method (or
approximations thereto): in addition to well representing the
highly neutron-rich environment, the mass fit takes into account:

i) presence of protons

ii) inhomogeneities
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Fig. 5. FP: Friedman and Pandharipande (1981)

A18∗: A18 + δ v + UIX∗ of Akmal et al (1998).
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If we try to constrain mass fit to A18∗ rms deviation increases
dramatically

– seems impossible to get decent mass fits under this con-
straint with conventional Skyrme forces.

So which is the better neutron-matter calculation?

Calculated values of neutron-skin thickness θn in 208Pb for
different Skyrme forces.

BSk8: θn = 0.12 fm; asym = 28 MeV
BSk16 (FP): 0.15 fm; 30 MeV
“A18∗”: 0.19 fm; 32 MeV

(last force is best fit Skyrme to A18∗ neutron-matter curve)
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Strong correlation between θn and asym as well.

Why this correlation between bulk properties, such as e′n and
asym, and purely surface quantity θn?

Droplet model of Myers and Swiatecki

θn = −2

3

√
3

5

ass

asym
r0 I

where ass is “surface-symmetry” appearing in simple drop-
model mass formula

e = av + asfA−1/3 + asymI2 + assI
2A−1/3 + Coulomb + · · ·

I = (N − Z)/A.
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Mass data do not determine asym very well:

increase in asym can be compensated by a decrease in ass

– mass data do not yet go far enough away from stability
line.

So measurement of θn will help to tie down asym,
compensating thereby lack of mass data.

Connection between θn and e′n is more ambiguous
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HFB-16 is our best model so far.

Agrees closely with FRDM in the known region.

But what happens when we extrapolate

to the neutron drip line?
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Fig. 6. FRDM masses - HFB-16 masses
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3. Outer crust of neutron star

∼ 300 meters thick 0 < ρ̄ <∼ 2.4× 10−4 nucleons.fm−3

n-rich nuclei + degenerate electrons

but NO FREE NEUTRONS – within neutron drip line

– everything determined by mass model, i.e., by mass tables.
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Assume T = 0.

Electron gas (assumed uniform) is completely degenerate; rela-
tivistic effects treated exactly. Electron energy per unit volume
ue determined uniquely by electron density

ρe =
Z

A
ρ̄

Electron energy per nucleon

ee =
ue(ρe)

ρ̄

Total energy per nucleon for nucleus (Z, A)

e = ee +
1

A

{
Elatt + M ′

at(Z,A)
}

Elatt: total energy of interaction between nucleus and electrons

M ′
at(Z,A) : tabulated atomic mass - binding energy of elec-

trons.
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Assume complete beta and nuclear equilibrium:

“COLD CATALYZED MATTER” ???

Then minimize total energy e per nucleon wrt N and Z.
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Fig. 7. Composition of outer crust for HFB-16.
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4. Inner crust of neutron star

∼ 500 meters thick

∼ 2.4× 10−4 nucleons.fm−3 < ρ̄ <∼ 0.1 nucleons.fm−3

beyond neutron drip line
– n-p clusters in neutron vapour
or neutron-vapour bubbles in n-p liquid

uniform gas of electrons – global neutrality
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Adopt picture of Wigner-Seitz cell (spherical so far)

–minimize total energy per nucleon wrt N and Z

How to calculate energy with forces of our mass models?

HFB would be method of choice,
• – but neutrons populate continuum and problems with

boundary conditions on their s.p. wavefunctions
• – time-consuming

So we began with ETF approximation to HF

•Extended Thomas-Fermi
•fourth-order in gradients
•semi-classical: no shell effects, no pairing
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Importance of fitting Skyrme force to neutron
matter

Comparison of HFB-8 and HFB-9

Until HFB-16 the best fit was found with HFB-8, but it was
not fitted to neutron matter. HFB-9 was first of our models
constrained by neutron matter.

We will see that this choice makes a great difference to optimal
value of Z in the inner crust, and thus to observational properties
of neutron star.
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Fig. 8. Optimal Z-value in WS cell for inner crust as a function of density (nucleons.fm−3)
(ETF calculations).
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Shell effects

• Added perturbatively and self-consistently to ETF energy by
STRUTINSKY-INTEGRAL method

EETFSI = EETF +
∑

q=n,p

Esc
q

ETFSI

• Used for our first mass model and barrier calculations.

Esc
q =

∑
i

niε̃i,q −
∫

d3r

(
~2

2M̃∗
q

τ̃q + Ũq ρ̃q + W̃q · J̃q

)
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Now extend to EOS: TETFSI (temperature dependent).

Neutrons in continuum, so no neutron-shell effects.

• Only proton shells, so no problem with boundary conditions.

FTETFSI = FTETF + Esc
p − T (S

s.p.
p − STETF

p )

Esc
p as at T = 0, except

ni =
1

1 + exp{(ε̃i,p − µp)/T}
Note also inclusion of shell effects in entropy.
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Fig. 9. Variation of fTETFSI with Z (always for optimal value of A) at ρ̄ = 0.005 fm−3 and

T = 0.1 MeV (HFB-14).
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ρ̄ (fm−3) Z A
0.0003 50 (38) 200 (147)
0.001 50 (39) 460 (341)
0.005 50 (38) 1130 (842)
0.01 40 (38) 1210 (1107)
0.02 40 (35) 1480 (1294)
0.03 40 (33) 1595 (1303)
0.04 40 (31) 1610 (1242)
0.05 20 (30) 800 (1190)
0.06 20 (29) 765(1116)

TETFSI results for number of protons Z and total number of
nucleons A in WS cell for nuclear and beta equilibrium at T =
0.1 MeV as a function of ρ̄ for force of model HFB-14. TETF
results in parentheses.
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5. Conclusions

• Skyrme-HFB mass models can give high quality fits to the
mass and charge-radius data, and to neutron matter.

• Can be extrapolated beyond the drip line to give EOS of inner
crust of neutron-star matter; important to fit both masses and
neutron-matter energy curve.

• Inner crust of neutron star shows significant shell effects.

• Measurement of neutron-skin thickness distinguishes between
different realistic calculations of neutron matter. When com-
bined with mass data determines absolute value of symmetry
coefficient.


